• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Control of trajectory tracking of two-wheeled differential spherical mobile robot

    2020-08-25 04:50:40WANGWeiZHANGZhiliangGAOBenwenYIMing

    WANG Wei, ZHANG Zhi-liang,, GAO Ben-wen, YI Ming

    (1. School of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China;2. Drilling Engineering Technology Institute of CNPC Xibu Drilling Engineering Company Limited, Urumqi 830011, China)

    Abstract:This paper presents a two-wheeled differential spherical mobile robot in view of the problems that the motion of spherical robot is difficult to control and the sensor is limited by the spherical shell.The robot is simple in structure, flexible in motion and easy to control.The kinematics and dynamics model of spherical mobile robot is established according to the structure of spherical mobile robot.On the basis of the adaptive neural sliding mode control, the trajectory tracking controller of the system is designed.During the simulation of the s-trajectory and circular trajectory tracking control of the spherical mobile robot, it is concluded that the spherical mobile robot is flexible in motion and easy to control.In addition, the simulation results show that the adaptive neural sliding mode control can effectively track the trajectory of the spherical robot.The adaptive control eliminates the influence of unknown parameters and disturbances, and avoids the jitter of left and right wheels during the torque output.

    Key words:mobile robot; adaptive neural sliding mode control; dynamics controller; trajectory tracking

    0 Introduction

    At present, robots play an increasingly important role in human life and work, and the mobile robot becomes an important branch in the field of robotics.During the development of the robot industry, the traditional wheeled and tracked mobile robots have been developed earlier, and the technology is more mature and widely used at present.Along with the continuous expansion of robot application, new spherical robots emerge.As a kind of mobile robot with special structure, it has a completely closed spherical shell which is composed of control system, power system, motion actuator, sensor and so on, realizing complex motion mainly according to centroid skewing, momentum conservation and other related principles.Compared with the traditional mobile robot, the spherical robot has many unique advantages.For example, it can achieve zero turning radius when it is steering.The spherical shell can effectively cushion the external impact force to protect the internal device.However, the spherical robot also has some defects.For example, because of the limitation of the spherical shell structure, the external information cannot be effectively transmitted to the internal controller via the sensor, which makes the spherical robot unable to achieve intelligent control.In addition, since the spherical robot is featured by non-integrity constraint, underactuation, non-chain, strong coupling and so on, its motion control becomes a difficult problem to solve.Therefore, it is very important to design a spherical robot with good structural characteristics to realize precise motion control, which has important theoretical significance and engineering application value.Jelassi et al.studied the optimization of scanning probe microscopy(SPM)for 3-RRR spherical parallel robot.In addition to the constrained workspace and dexterity, the distribution of single positions was also studied[1].Liu et al.has designed a new type of bionic spherical amphibious child-mother robot system, in which the spherical amphibious mother robot moves on land in a bionic four-legged crawling mode and uses a vector water jet motor to spray water for propulsion under water, featured by no noise, increased concealment and provision of control signals and energy for the micro child-robot.The micro child-robot is driven by wheels on land and designed with an amphibious impeller.The child-mother robot system realizes wireless communication through XBee communication module.Through land and underwater motion tests of the child-mother robot, the effectiveness of the designed child-mother robot system was verified[2].Huang et al.introduced a prototype of a spherical rolling robot with a new driving mechanism.The spherical robot has a momentum wheel(gyroscope)that rotates at high speed in an outer spherical shell.The test results were also provided to verify the feasibility of the mechanism[3].Fan et al.aiming at the uncertainty and nonlinearity of the mobile robot model, proposed a hybrid algorithm of PI-type sliding mode control(SMC)based on backstepping dynamic control and adaptive radial basis function neural network(RBFNN)to adjust sliding mode gain, so as to enhance the adaptability to stochastic uncertainty factors and eliminate the jitter of sliding mode control input[4].

    In combination with the flexible motion of wheeled mobile robot and the protective motion of spherical mobile robot, a two-wheeled differential spherical mobile robot is proposed here.Unlike the traditional spherical shell type rolling robot, the driving system of the two-wheeled differential spherical mobile robot realizes the complex motion of the whole system mainly by two hemispherical rollers.The hemispherical differential spherical robot is a mobile robot designed by integrating the features of the differential drive of left and right wheels of two-wheeled self-balancing robot based on the existing spherical robot.This robot not only still has the advantages of flexible movement of spherical robot in two-dimensional plane, but also eliminates the restriction of the spherical shell on internal sensor and external environment via the design of the central connecting platform, which makes it better to obtain the external information and carry a variety of sensor devices to improve the autonomous motion ability of the spherical robot.Therefore, this robot may have great advantages and extensive application prospects in the fields of planet exploration, dangerous environment detection, etc.

    1 Driving system and operating principle

    As shown in Fig.1, the stable platform is driven by the left and right hemispherical wheels, the motion of which are independent from each other, and it keeps a vertical state under the action of the balancing weight.The system is composed of driving wheel, stable platform, drive motor, rack and pinion, bearing and other components.The stable platform is installed by the upper and lower units by connecting bolts, and it can be equipped with sensors, cameras and control units of the system, and with the counterweight slots at below for the installation of the power supply of the system.For the spherical robot, the motor installed on the stable platform is directly connected with the gear, and the circular rack is fixedly connected with the spherical shell to keep connection with the stable platform via the bearing.The driving motor drives the gear to rotate, and the gear meshes with the circular rack, so as to drive the spherical shell to rotate.The stable platform keeps stable under the action of gravity.The omnidirectional motion of the spherical robot will be realized under the action of two driving wheels at different speeds.

    1—Top cap;2—Left gear;3—Right gear;4—Fixed plate of motor;5—Motor;6—Bearing seat;7—Driving wheel;8—Round internal gear;9—Bearing;10—Stable platform;11—Connecting bolt

    When the two driving wheels rotate in the same direction at the same speed, the spherical robot can move in a straight line.When the two driving wheels rotate in the same direction at a differential speed, the curve and circular motion can be realized.If the two driving wheels rotate in the opposite direction at the same speed, the in-situ steering motion can be realized.Therefore, compared with the existing spherical robots[3-8], the differential spherical robot is easier to realize various forms of motion.The robot is simple and dexterous and free of restriction of spherical shell, and can be carried with sensors and cameras, so as to capture external information, realize intelligence of spherical robot and expand its range of application.

    2 Differential equation of motion

    The spherical mobile robot is one of nonlinear multi-input and multi-output systems that are featured by nonholonomic constraints and strong coupling[2].At present, in the theoretical study of motion control of the mobile robot, it is generally assumed that the nonholonomic constraint of the system is an ideal constraint, that is, the wheel is in point contact with the ground and only pure rolling occurs at the point of contact without relative sliding(including lateral and longitudinal sliding).The spherical mobile robot controls the speed and direction of motion of the robot by controlling the speed of two driving wheels.

    2.1 Kinematic modeling

    In our work, we simplify the physical model of the robot when analyzing the motion of a spherical mobile robot, so as to highlight the impact of key factors.In addition, a rectangular coordinate system is established in the plane of motion, and the simplified model is shown in Fig.2.

    Fig.2 Simplified model of spherical mobile robot

    The centroid point of the stable platform isO, the distance between the two driving wheels isL, the radius of the driving wheel isR, the heading angle of the whole system isθ, the turning angle of the left driving wheel isωL, and the turning angle of the right driving wheel isωR.

    The speed at the center of mass of the stable platform of the spherical mobile robot isV0, in a direction perpendicular to two drive axles, thus the components in thexaxis andyaxis directions can be obtained as

    (1)

    By eliminatingV0in the above equation, the constraint equation can be obtained as

    (2)

    The relationship of the linear velocity, heading angle and driving wheel angle of the robot system is expressed as

    (3)

    From that, the kinematical equations of the differential spherical mobile robot can be obtained as

    (4)

    (5)

    2.2 Dynamical modeling

    The Lagrange multiplier equation[12-13]is usually selected to analyze the dynamical model of the spherical mobile robot due to nonholonomic constraints in motion.

    The position of the robot are described by the three-dimensional generalized coordinates , the mobile robot is regarded as a point, and pointOis the current position of the mobile robot.

    Since there is a nonholonomic constraint in the system, as represented by Eq.(2), which is given in the form of formula as

    (6)

    Assuming that

    (7)

    whereS(q)represents the velocity transition matrix of the system as

    v(t)=[ωRωL]Tmeans the speed matrix.The speed of the coordinate system of the robot,v(t)=[ωRωL]T, can be converted into the speed,V(t)=[vω]Tin the Cartesian coordinate system, wherevis the linear speed of the center of massC, andωis the angular speed thereof.Then the kinematical equation of the spherical mobile robot is

    (8)

    Total kinetic energy,T, of the system is

    (9)

    whereTVis the translation kinetic energy of the system;TJis the rotational kinetic energy of the system;mis the mass of the system; andIis rotational inertia.

    A binding force is added as an input item to the dynamical equation of the system to prevent the driving wheel from sideslip.The Lagrange equation with multipliers is represented as

    (10)

    Substituting Eq.(9)into Eq.(10), we can obtain the dynamical model of the system as[9]

    (11)

    It can be seen that the dynamic equation of the spherical mobile robot is[11-12]

    (12)

    Eq.(12)can be further converted to

    (13)

    where

    3 Design of trajectory tracking controller

    Based on the kinematical and dynamical equations of the spherical mobile robot mentioned above, firstly, an appropriate control function is selected for the pose error system of kinematical Eq.(8)to design a reasonable kinematics controller, and the linear speedvand angular speedωoutput from the controller are used as auxiliary control inputs, so that the actual and planned trajectories of motion of the robot converge to zero.After that, according to the dynamical equations of the system, the torque controller of the spherical mobile robot is designed by using adaptive neural sliding mode control[9-10], so as to make its speed converge to the desired speed given by the motion controller.

    3.1 Design of kinematical controller

    According to the motion system of the spherical mobile robot, the motion trajectory is given asqd=[xdydθd]T, and the tracking error of the position and course of the system is

    (14)

    Then, the differential equation ofqeis

    (15)

    Then, according to Lyapunov function[10], the auxiliary speed control input,VF, is designed as

    (16)

    wherekx,ky,ks,αandλ(α+λ=1)are constant greater than zero.VFmakes the pose error of the spherical mobile robot converge to zero.

    3.2 Design of dynamical controller

    By using adaptive neural sliding mode control[11-13], the speed tracking error of spherical mobile robot is designed as

    (17)

    The sliding mode surface is selected by Eq.(13)as

    (18)

    whereη>0.

    Then, the derivative ofS(t)can be got as

    (19)

    LetB=E0τ, the equivalent control lawBeqis

    (20)

    The control characteristic of the robot is realized by adjustingη.However, there are unknown parameters and disturbances in the whole system.And also, the above Eq.(20)cannot accurately describe the characteristics of the system and the stability of the entire system.Therefore, the adaptive neural network is used to approximate Eq.(19), the input of the network is 2, the number of hidden units is N, and the output of the network is 2.Taking the tracking error as the input of the neural network, i.e.xi=ec(i),(i=1,2), and the output of the neural network is

    (21)

    where the weight vector of the neural network isWi=[wi1wi2…wim]T;Hirefers to the radial basis vector,Hi=[hi1hi1…h(huán)im]T, andhijis a Gaussian function in the form as

    (22)

    (23)

    wherej=1,2,…,m;c(∶,j)refers to the network center, andbjrefers to the base width.

    It is assumed that the optimal output value of the network is

    (24)

    Because of the minimum deviation in the system model, its equivalent control is

    (25)

    In order to overcome the influence of uncertain parameters and disturbances in the system, the adaptive adjustment of neural network weights is adopted, and the equivalent control is

    (26)

    (27)

    (28)

    At that time, the law of neural sliding mode control is

    (29)

    In order to eliminate the jittering in the system, radial basis function neural network(RBFNN)is used to adjust the sliding mode gain,Γ, and the sliding mode surface is taken as the input of RBFNN, causingxi=si,i=1,2, so that the output of RBFNN[13]is

    (30)

    whereAi=[αi1αi2…αim]Tis the weight vector of the network, andψi=[φi1φi2…φim]T, in whichφijis Gauss function, namely

    i=1,2,j=1,2,…,m,

    (31)

    wheredijis the center of thejth node of theith input in RBFNN, andδijis the base width, all of which are the constants greater than zero.

    For the gain of switching control, the optimal parameters should be selected in the design process of sliding mode controller.Because of the uncertain parameters and unknown disturbances as well as the uncertain factors of approximation accuracy of neural network, the parameters obtained by mobile robot system are often imprecise.Therefore, the adaptive control law is used to estimate the optimal parameters[14-15].

    Assuming that the switching controller of the optimal gain is

    (32)

    and the estimated gain switching controller is

    (33)

    (34)

    (35)

    whereγi>0, from which the adaptive neural sliding mode controller of the system is obtained as

    (36)

    3.3 Certificate of stability

    Theorem: According to Eq.(8)of spherical mobile robot system, Lyapunov function is selected to design Eq.(16)of the kinematical controller, and the adaptive neural sliding mode is used to design Eq.(36)of the dynamical controller of the system.The adaptive law of parameters is Eqs.(27)and(35), which indicates that Eq.(12)of the whole system is asymptotically stable.

    It is proved that Lyapunov function should be selected as

    L=L1+L2,

    (37)

    (38)

    (39)

    Substituting the derivative ofL1in respect of time into Eq.(15), we can obtain

    xe(vrcosθe-v-Ksθew)+vrsinθe(ye+Ksθe)+

    ((ye+Ksθs)Ks+sinθe/Ky)(wr-w).

    (40)

    Substituting Eq.(16)into Eq.(40), we can obtain

    (41)

    Substituting the derivative of Eq.(39)into Eqs.(19),(26),(27),(34),(35)and(36), we can obtain

    (42)

    Ifηi>0, the following equation can be obtained as

    (43)

    ?≥0.

    (44)

    4 Simulation test

    In this paper, a simulation model is built in Matlab/Simulink to verify the trajectory tracking control of the spherical mobile robot according to the control designed by the neural network adaptive sliding mode control.The control algorithm is shown in Fig.3.

    Fig.3 Structural diagram of kinematical and dynamical control algorithm of spherical mobile robot

    Fig.4 S-trajectory tracking of spherical mobile robot

    For the circular trajectory,yr=sin(t),θr(t)=t,vr=1 m/s andωr=1 rad/s.The initial error between the actual trajectory and the reference trajectory of the spherical mobile robot is defined asqe=(0.5 0 0), and the initial reference pose isq=(1 0 π/2).The simulation of the robot in trajectory tracking of 40 s is shown in Fig.5.It can be seen from Figs.4 and 5 that the robot has strong flexibility in motion and can complete complex trajectory motion.Under the adaptive neural sliding mode control, the system can realize the trajectory tracking control well, and enters the steady state in 3 s, during which the trajectory and heading angle converge to the reference value gradually.

    Fig.5 Tracking of circular trajectory of spherical mobile robot

    It can be seen from shown Figs.6 and 7, the tracking error of the system gradually converges to zero in 3 s, and no jittering is found in the whole system in the process of the trajectory tracking, and the influence of unknown parameters and disturbances is eliminated.

    Fig.6 System tacking error

    Fig.7 Control curve of left and right wheels

    5 Conclusion

    In this paper, we discuss a two-wheeled differential spherical mobile robot.The robot body is composed of an internal support platform and two hemispherical rollers, which increases the loading space of the sensor.The robot is simple in structure, flexible in motion and easy to control.Based on the adaptive neural sliding mode control method, the trajectory tracker of the system is designed, and a model is built for simulation.The simulation test results show that the spherical robot can complete the control over the tracking along the s-trajectory and the circular trajectory and eliminate the influence of unknown parameters and disturbances in the motion of the spherical robot, and no jittering is found during the torque output of the whole system.Therefore, the system proposed is stable and reliable, meeting the requirements of mobile robot system for jittering prevention and anti-interference.

    久久国产乱子伦精品免费另类| 亚洲真实伦在线观看| 久久天堂一区二区三区四区| 狠狠狠狠99中文字幕| 午夜激情福利司机影院| 欧美大码av| 日韩国内少妇激情av| 日韩精品青青久久久久久| 国产高清激情床上av| 男女之事视频高清在线观看| 国产麻豆成人av免费视频| 久久人妻av系列| 精品福利观看| 午夜福利高清视频| 国产野战对白在线观看| 少妇裸体淫交视频免费看高清 | 欧美人与性动交α欧美精品济南到| 亚洲第一电影网av| 国产精品98久久久久久宅男小说| 男人舔女人下体高潮全视频| 人成视频在线观看免费观看| 亚洲男人的天堂狠狠| 免费在线观看视频国产中文字幕亚洲| 国产视频一区二区在线看| 亚洲精品在线观看二区| 国产精品精品国产色婷婷| 国产成人aa在线观看| 亚洲欧美日韩高清在线视频| 麻豆久久精品国产亚洲av| 欧美黄色片欧美黄色片| 久久午夜亚洲精品久久| 观看免费一级毛片| 色哟哟哟哟哟哟| 久久精品国产清高在天天线| 嫁个100分男人电影在线观看| 成人18禁在线播放| 免费无遮挡裸体视频| 一级a爱片免费观看的视频| 欧美性猛交╳xxx乱大交人| 国产欧美日韩一区二区精品| 99精品在免费线老司机午夜| 免费在线观看影片大全网站| 亚洲中文av在线| 别揉我奶头~嗯~啊~动态视频| 50天的宝宝边吃奶边哭怎么回事| 久久精品91蜜桃| 久久中文看片网| 久久精品成人免费网站| xxx96com| 老司机靠b影院| 男女床上黄色一级片免费看| 一级作爱视频免费观看| 日日夜夜操网爽| 黄色 视频免费看| 国产欧美日韩精品亚洲av| 一本一本综合久久| 国产av麻豆久久久久久久| 黄色 视频免费看| 九色成人免费人妻av| 亚洲色图 男人天堂 中文字幕| 最近最新中文字幕大全电影3| 一级黄色大片毛片| 欧美黄色片欧美黄色片| 可以在线观看的亚洲视频| 啦啦啦韩国在线观看视频| 不卡一级毛片| 波多野结衣高清作品| 国产av又大| 精品国产乱子伦一区二区三区| 日本黄大片高清| 亚洲精品美女久久久久99蜜臀| 香蕉国产在线看| 夜夜躁狠狠躁天天躁| 不卡一级毛片| 精品久久久久久久毛片微露脸| 亚洲人成伊人成综合网2020| 在线十欧美十亚洲十日本专区| 美女免费视频网站| 最近最新免费中文字幕在线| 九色国产91popny在线| 亚洲中文字幕一区二区三区有码在线看 | 日韩中文字幕欧美一区二区| 一二三四社区在线视频社区8| 一本一本综合久久| 91在线观看av| 一a级毛片在线观看| 一个人观看的视频www高清免费观看 | 日本一区二区免费在线视频| 女人爽到高潮嗷嗷叫在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 啪啪无遮挡十八禁网站| 久久热在线av| 午夜视频精品福利| 99国产综合亚洲精品| 国产精品亚洲av一区麻豆| 熟妇人妻久久中文字幕3abv| 中文字幕人成人乱码亚洲影| 18禁裸乳无遮挡免费网站照片| xxx96com| 久久久久亚洲av毛片大全| 久久中文字幕人妻熟女| 成熟少妇高潮喷水视频| 日韩中文字幕欧美一区二区| 哪里可以看免费的av片| 99久久精品国产亚洲精品| 丰满人妻熟妇乱又伦精品不卡| 国产成+人综合+亚洲专区| 日韩免费av在线播放| 日韩精品免费视频一区二区三区| 久久午夜亚洲精品久久| 91九色精品人成在线观看| 日韩成人在线观看一区二区三区| 18美女黄网站色大片免费观看| 欧美大码av| 老司机靠b影院| or卡值多少钱| 亚洲国产中文字幕在线视频| 久久久久久免费高清国产稀缺| 久久精品影院6| 99热6这里只有精品| 欧美乱码精品一区二区三区| 日本 av在线| 俺也久久电影网| 黄色a级毛片大全视频| 一区二区三区高清视频在线| 我要搜黄色片| 日韩欧美国产在线观看| 久久欧美精品欧美久久欧美| 51午夜福利影视在线观看| 国产成人啪精品午夜网站| 又紧又爽又黄一区二区| 中文字幕人妻丝袜一区二区| 国产97色在线日韩免费| 日本成人三级电影网站| 五月玫瑰六月丁香| 最新在线观看一区二区三区| 黑人巨大精品欧美一区二区mp4| 天堂√8在线中文| 午夜老司机福利片| 亚洲色图av天堂| 免费在线观看完整版高清| 亚洲成人久久爱视频| 91九色精品人成在线观看| 男人舔女人下体高潮全视频| 成人av在线播放网站| 亚洲成av人片在线播放无| 亚洲成人中文字幕在线播放| 午夜精品在线福利| 两性午夜刺激爽爽歪歪视频在线观看 | 国产av不卡久久| 免费在线观看成人毛片| av免费在线观看网站| 国产成年人精品一区二区| 狂野欧美白嫩少妇大欣赏| 欧美 亚洲 国产 日韩一| 欧美午夜高清在线| e午夜精品久久久久久久| 亚洲一区中文字幕在线| 老汉色av国产亚洲站长工具| 99久久综合精品五月天人人| 色哟哟哟哟哟哟| 国产精品av久久久久免费| 校园春色视频在线观看| 人妻夜夜爽99麻豆av| 亚洲性夜色夜夜综合| 成人三级做爰电影| 少妇粗大呻吟视频| 制服丝袜大香蕉在线| 国产久久久一区二区三区| 久久婷婷成人综合色麻豆| 亚洲性夜色夜夜综合| 亚洲国产中文字幕在线视频| 97碰自拍视频| 岛国在线免费视频观看| 国产探花在线观看一区二区| 国产又色又爽无遮挡免费看| 免费在线观看黄色视频的| 又黄又粗又硬又大视频| 五月玫瑰六月丁香| 欧美日韩亚洲国产一区二区在线观看| 国产精品综合久久久久久久免费| 亚洲aⅴ乱码一区二区在线播放 | 日日干狠狠操夜夜爽| 男女那种视频在线观看| 久久欧美精品欧美久久欧美| 午夜免费激情av| 国产成人精品久久二区二区免费| 黄色女人牲交| 成人国语在线视频| 日本黄色视频三级网站网址| 91av网站免费观看| 午夜精品一区二区三区免费看| 最好的美女福利视频网| 真人一进一出gif抽搐免费| 欧美乱码精品一区二区三区| 香蕉av资源在线| 日本一区二区免费在线视频| 精品不卡国产一区二区三区| 国产伦人伦偷精品视频| 丁香六月欧美| 欧美午夜高清在线| 精品久久蜜臀av无| 18禁观看日本| 这个男人来自地球电影免费观看| netflix在线观看网站| 婷婷六月久久综合丁香| 欧美色欧美亚洲另类二区| 国产精品99久久99久久久不卡| 哪里可以看免费的av片| 亚洲第一电影网av| 日韩欧美精品v在线| 久久九九热精品免费| 韩国av一区二区三区四区| 草草在线视频免费看| 99久久国产精品久久久| 三级男女做爰猛烈吃奶摸视频| 亚洲无线在线观看| √禁漫天堂资源中文www| 18禁观看日本| 嫁个100分男人电影在线观看| 国产熟女xx| 1024香蕉在线观看| 中出人妻视频一区二区| 久久欧美精品欧美久久欧美| tocl精华| 日本成人三级电影网站| av视频在线观看入口| 日日爽夜夜爽网站| 国产精品免费一区二区三区在线| 精品欧美一区二区三区在线| 男人舔奶头视频| www.www免费av| 欧美乱码精品一区二区三区| 亚洲精品国产精品久久久不卡| 人妻久久中文字幕网| 老熟妇仑乱视频hdxx| 夜夜爽天天搞| 熟妇人妻久久中文字幕3abv| 亚洲中文av在线| 国产av一区在线观看免费| 此物有八面人人有两片| 好男人在线观看高清免费视频| 不卡av一区二区三区| 久久精品影院6| 久久伊人香网站| 神马国产精品三级电影在线观看 | 波多野结衣高清无吗| www.www免费av| 国产成+人综合+亚洲专区| 亚洲精品美女久久久久99蜜臀| 一卡2卡三卡四卡精品乱码亚洲| 亚洲 国产 在线| 中国美女看黄片| 国产熟女xx| 一二三四社区在线视频社区8| 校园春色视频在线观看| 成人三级黄色视频| 美女 人体艺术 gogo| 小说图片视频综合网站| 大型av网站在线播放| 中文字幕高清在线视频| 在线免费观看的www视频| 亚洲欧美精品综合久久99| 一区二区三区高清视频在线| 欧美乱妇无乱码| 手机成人av网站| 嫩草影院精品99| 一级毛片女人18水好多| 婷婷六月久久综合丁香| 亚洲av电影不卡..在线观看| 国产精品久久久av美女十八| 免费在线观看亚洲国产| 又粗又爽又猛毛片免费看| 国产精品 国内视频| 韩国av一区二区三区四区| 免费高清视频大片| 久久久久久久久免费视频了| 久久婷婷人人爽人人干人人爱| 首页视频小说图片口味搜索| 人人妻,人人澡人人爽秒播| 国产亚洲av嫩草精品影院| 岛国在线观看网站| 在线观看美女被高潮喷水网站 | 少妇被粗大的猛进出69影院| 国产成人啪精品午夜网站| 人人妻人人澡欧美一区二区| 国产成人一区二区三区免费视频网站| 老司机靠b影院| 欧美成人一区二区免费高清观看 | 国产一区二区在线观看日韩 | 嫩草影院精品99| 看免费av毛片| 国产欧美日韩精品亚洲av| 久久久久精品国产欧美久久久| 久久国产乱子伦精品免费另类| 免费在线观看黄色视频的| 亚洲电影在线观看av| 欧美在线一区亚洲| 岛国在线观看网站| 亚洲av熟女| 欧美乱码精品一区二区三区| 国产精品自产拍在线观看55亚洲| 50天的宝宝边吃奶边哭怎么回事| 国产成年人精品一区二区| svipshipincom国产片| 97人妻精品一区二区三区麻豆| 狂野欧美白嫩少妇大欣赏| 亚洲精品中文字幕在线视频| 香蕉国产在线看| 精品少妇一区二区三区视频日本电影| 1024视频免费在线观看| 国内少妇人妻偷人精品xxx网站 | 天堂av国产一区二区熟女人妻 | 国产精品永久免费网站| 久久精品aⅴ一区二区三区四区| 少妇的丰满在线观看| 男人舔女人的私密视频| 操出白浆在线播放| 大型黄色视频在线免费观看| 精品熟女少妇八av免费久了| 久久久久久九九精品二区国产 | 午夜影院日韩av| 国产成人av教育| 免费在线观看影片大全网站| 午夜精品久久久久久毛片777| 国语自产精品视频在线第100页| 51午夜福利影视在线观看| 搡老熟女国产l中国老女人| 欧美性猛交黑人性爽| 在线观看www视频免费| 日本一二三区视频观看| 国产欧美日韩精品亚洲av| 一级a爱片免费观看的视频| 淫秽高清视频在线观看| 男人的好看免费观看在线视频 | 亚洲成人精品中文字幕电影| 国产黄色小视频在线观看| 久久久国产成人精品二区| 亚洲中文日韩欧美视频| 国内少妇人妻偷人精品xxx网站 | а√天堂www在线а√下载| 国产精品 欧美亚洲| 全区人妻精品视频| 丰满的人妻完整版| 真人一进一出gif抽搐免费| 国产av麻豆久久久久久久| 午夜福利18| 国产黄色小视频在线观看| 欧美国产日韩亚洲一区| 一二三四在线观看免费中文在| 久久精品国产清高在天天线| 久久久久国内视频| 免费观看精品视频网站| www.自偷自拍.com| 亚洲欧美一区二区三区黑人| 国产精品永久免费网站| 黑人巨大精品欧美一区二区mp4| 国产主播在线观看一区二区| 亚洲狠狠婷婷综合久久图片| 老司机午夜福利在线观看视频| 日日夜夜操网爽| 男人舔女人的私密视频| 国产伦人伦偷精品视频| 午夜久久久久精精品| 18禁观看日本| 国产成人精品久久二区二区91| 黑人欧美特级aaaaaa片| 精品人妻1区二区| 欧美黑人巨大hd| 国产精品一区二区免费欧美| 国产精品影院久久| 久久久久国内视频| 国产成人精品久久二区二区免费| 国产在线观看jvid| 十八禁人妻一区二区| 亚洲国产欧美网| 国内揄拍国产精品人妻在线| 精品欧美国产一区二区三| 久久精品亚洲精品国产色婷小说| 国产不卡一卡二| av福利片在线| 又黄又爽又免费观看的视频| 99精品欧美一区二区三区四区| 亚洲一区高清亚洲精品| 黑人巨大精品欧美一区二区mp4| 欧美一区二区国产精品久久精品 | 变态另类成人亚洲欧美熟女| 女生性感内裤真人,穿戴方法视频| 91麻豆av在线| 午夜视频精品福利| 搡老妇女老女人老熟妇| 国产aⅴ精品一区二区三区波| 男人舔奶头视频| 免费看十八禁软件| 韩国av一区二区三区四区| 免费av毛片视频| 午夜激情福利司机影院| 国产精品99久久99久久久不卡| 床上黄色一级片| 成人亚洲精品av一区二区| 久久久久久人人人人人| 岛国在线免费视频观看| 一本久久中文字幕| 麻豆一二三区av精品| 国产精品av视频在线免费观看| 精品一区二区三区四区五区乱码| 国产精品免费视频内射| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品国产一区二区精华液| 国产高清视频在线播放一区| 大型av网站在线播放| 亚洲av中文字字幕乱码综合| 国内揄拍国产精品人妻在线| 美女 人体艺术 gogo| 久热爱精品视频在线9| 嫩草影院精品99| 精品第一国产精品| 搡老岳熟女国产| 麻豆成人午夜福利视频| 精品福利观看| 91成年电影在线观看| 国内久久婷婷六月综合欲色啪| 久久精品人妻少妇| 一边摸一边抽搐一进一小说| 国产亚洲精品av在线| 日本精品一区二区三区蜜桃| 色综合欧美亚洲国产小说| 国产高清视频在线播放一区| 精品久久久久久久末码| 亚洲av成人一区二区三| 国产精品,欧美在线| 老司机福利观看| 亚洲专区中文字幕在线| 国产精品久久久久久人妻精品电影| 人人妻人人看人人澡| 亚洲av美国av| 午夜福利成人在线免费观看| 大型黄色视频在线免费观看| 国模一区二区三区四区视频 | 亚洲精品一卡2卡三卡4卡5卡| 久久久久性生活片| 婷婷精品国产亚洲av| 国产精品自产拍在线观看55亚洲| 久久国产精品人妻蜜桃| 国产不卡一卡二| 国产日本99.免费观看| 在线观看www视频免费| 日本 欧美在线| 欧美 亚洲 国产 日韩一| 女生性感内裤真人,穿戴方法视频| 日韩欧美国产在线观看| 成人三级黄色视频| xxxwww97欧美| 免费在线观看影片大全网站| 久久精品91无色码中文字幕| 国产成+人综合+亚洲专区| 国产精品九九99| 久久国产精品人妻蜜桃| 国产一区在线观看成人免费| bbb黄色大片| 不卡一级毛片| 国模一区二区三区四区视频 | 久久婷婷成人综合色麻豆| 最近最新免费中文字幕在线| 国产伦一二天堂av在线观看| 国产精品九九99| 午夜精品一区二区三区免费看| 日韩欧美一区二区三区在线观看| 女人被狂操c到高潮| 此物有八面人人有两片| 欧美色视频一区免费| 久热爱精品视频在线9| 最近最新中文字幕大全免费视频| 午夜日韩欧美国产| 波多野结衣高清作品| 中文字幕最新亚洲高清| 男人舔女人下体高潮全视频| xxxwww97欧美| 97碰自拍视频| 国产真实乱freesex| 精品一区二区三区视频在线观看免费| 99久久无色码亚洲精品果冻| 特级一级黄色大片| 久久久精品欧美日韩精品| 一级毛片精品| 国产av不卡久久| 欧美久久黑人一区二区| 久久精品国产亚洲av香蕉五月| 少妇的丰满在线观看| 午夜福利在线在线| 国产成人av教育| 一进一出抽搐gif免费好疼| 午夜福利视频1000在线观看| 三级男女做爰猛烈吃奶摸视频| 久久亚洲真实| 亚洲午夜精品一区,二区,三区| 免费观看人在逋| 成人永久免费在线观看视频| 露出奶头的视频| 久久 成人 亚洲| 久久久水蜜桃国产精品网| 亚洲人成网站高清观看| 1024香蕉在线观看| 亚洲第一电影网av| 亚洲美女视频黄频| 亚洲avbb在线观看| 男女下面进入的视频免费午夜| 久久精品国产99精品国产亚洲性色| 久久欧美精品欧美久久欧美| 日韩有码中文字幕| 一区二区三区高清视频在线| tocl精华| 欧美日韩黄片免| 久久午夜亚洲精品久久| 久久精品91蜜桃| 毛片女人毛片| 老汉色∧v一级毛片| 两性夫妻黄色片| 精品一区二区三区视频在线观看免费| 国产精华一区二区三区| 久久久久久免费高清国产稀缺| 精品欧美国产一区二区三| 99久久久亚洲精品蜜臀av| 美女 人体艺术 gogo| 亚洲乱码一区二区免费版| 又爽又黄无遮挡网站| 99re在线观看精品视频| 欧美日韩亚洲国产一区二区在线观看| 草草在线视频免费看| 精品久久久久久久久久久久久| 亚洲激情在线av| 久久久精品大字幕| 九色成人免费人妻av| 麻豆一二三区av精品| 俄罗斯特黄特色一大片| 免费在线观看视频国产中文字幕亚洲| 黄频高清免费视频| 亚洲色图av天堂| 一边摸一边抽搐一进一小说| 国产一级毛片七仙女欲春2| 别揉我奶头~嗯~啊~动态视频| 欧美+亚洲+日韩+国产| 免费在线观看成人毛片| 久久人人精品亚洲av| 国产v大片淫在线免费观看| 亚洲美女视频黄频| 亚洲人成网站高清观看| 国产亚洲欧美在线一区二区| 国产午夜精品论理片| av视频在线观看入口| 黑人巨大精品欧美一区二区mp4| 制服诱惑二区| 999久久久国产精品视频| 在线看三级毛片| 亚洲国产看品久久| 亚洲天堂国产精品一区在线| 国产精品一区二区三区四区久久| 黄色毛片三级朝国网站| 欧美日韩亚洲综合一区二区三区_| 国内精品一区二区在线观看| 色精品久久人妻99蜜桃| 国产一区二区三区视频了| 女警被强在线播放| 国产野战对白在线观看| 国产精品久久电影中文字幕| 欧美午夜高清在线| 国内精品久久久久精免费| 最近视频中文字幕2019在线8| 国产亚洲精品一区二区www| 国产成人精品久久二区二区91| 熟女电影av网| 久99久视频精品免费| 久久人人精品亚洲av| 精品午夜福利视频在线观看一区| 久久精品夜夜夜夜夜久久蜜豆 | 天天躁夜夜躁狠狠躁躁| 久久精品国产99精品国产亚洲性色| 国产高清激情床上av| 亚洲av成人精品一区久久| 久久久精品欧美日韩精品| 欧美不卡视频在线免费观看 | 人妻夜夜爽99麻豆av| 免费在线观看成人毛片| av在线播放免费不卡| 两个人看的免费小视频| 亚洲国产欧美人成| 少妇熟女aⅴ在线视频| 99riav亚洲国产免费| 老熟妇仑乱视频hdxx| 国产精品亚洲av一区麻豆| 久久婷婷人人爽人人干人人爱| 精品久久久久久久久久免费视频| 亚洲人成77777在线视频| 婷婷亚洲欧美| 后天国语完整版免费观看| 午夜福利在线在线| 日韩欧美在线二视频| 黄色视频不卡| 成人高潮视频无遮挡免费网站| 高清毛片免费观看视频网站| 日韩免费av在线播放| 女人被狂操c到高潮| 国产私拍福利视频在线观看| 看黄色毛片网站| 一级片免费观看大全| 免费在线观看影片大全网站| 久久精品国产99精品国产亚洲性色| 国产91精品成人一区二区三区| 波多野结衣巨乳人妻| 亚洲aⅴ乱码一区二区在线播放 | 久99久视频精品免费| 国产一区二区在线观看日韩 | 老汉色av国产亚洲站长工具| 黑人操中国人逼视频| 精品久久久久久久末码|