• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Overall Green Process from Preparation of FeCl3 Modified β Zeolites to Its Use in Catalyzing Direct Hydroxylation of Benzene with Hydrogen Peroxide

    2016-08-05 07:45:55ZHOUJianboFUZaihuiLIUYachunXUChao
    關(guān)鍵詞:苯酚分子篩

    ZHOU Jian-bo, FU Zai-hui, LIU Ya-chun, XU Chao

    (1. Basic Medical College of Changsha Medical University, Changsha 410219, China;2. College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China )

    ?

    An Overall Green Process from Preparation of FeCl3Modified β Zeolites to Its Use in Catalyzing Direct Hydroxylation of Benzene with Hydrogen Peroxide

    ZHOU Jian-bo1, FU Zai-hui2*, LIU Ya-chun2, XU Chao1

    (1. Basic Medical College of Changsha Medical University, Changsha 410219, China;2. College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China )

    AbstractFeCl3modifiedβzeolite catalyst was prepared by using a convenient solid-state ion exchange instead of a traditional ion exchange and characterized by XRD, TG-DSC, and low temperature N2adsorption methods. The catalyst is active and selective for the direct hydroxylation of benzene to phenol with hydrogen peroxide (H2O2). And its phenol selectivity can be further improved through tailoring its surface hydrophobicity/hydrophilicity with dimethyldiethoxysilane (DDS) to restrain the sequent oxidation of phenol. In addition, it can be recovered and reused for three times with little loss of reactivity. Hence, an overall green process from the preparation of the catalyst to its application in catalytic reaction has been establised here.

    Key wordsBenzene; FeCl3modifiedβzeolites; hydroxylation; phenol; solid-state ion exchange

    Phenol is a very important organic intermediate in the field of fine chemicals production[1]. Its traditional production process, so-called cumene process[2], is environmentally unacceptable because it generally involves multi-step syntheses and generates large quantities of waste products. Therefore, one of the foremost challenges currently facing the chemical industry is to look for a cleaner, safer, and more environmentally friendly one-step process to produce phenol. Nowadays, the methods for direct hydroxylation of benzene to phenol with H2O2in the liquid phase[3-4], with N2O[5]or O2[6]in vapor phase have attracted much attention. The methods possess the outstanding merits such as short synthesis route, higher atom efficiency and near non-pollution. So they are considered to be clean and environmentally friendly and likely replace the cumene method in the future. Among the processes, direct hydroxylation of benzene with H2O2to phenol is one of the most promising routes due to water as the only byproduct and the mature technology for production of H2O2[7]. At present, the main attention is focused on seeking the efficient oxidation catalyst for the process. Various catalysts can be applied to the process, mainly including TS zeolite and Cu, Fe, and V containing catalysts[8-10]. The Fe-containing catalyst for the process is of great interest because of its low cost and high efficiency[11].

    The preparation method of catalysts has a significant effect on the performance. The traditional methods such as the framework substitution[12], surface grafting[13], solution ion exchange[14]and impregnation[15]are usually employed to prepare transition metals modified zeolites. These methods commonly have some defects such as a tedious preparation process, low production efficiency and environmental pollution. The solid state dispersion or ion exchange of transition metal compounds on the porous metal oxides and zeolites, which has been widely reported[16], is a suitable preparation method for the unstable compounds in aqueous solution like some metal chlorides. And this modification method is convenient, efficient and environmentally friendly in comparison with the traditional methods. For example, ZnCl2modifiedβ-Al2O3and NaY catalysts prepared by this method were reported to be excellent for vapor phase O-alkylation of catechol with methanol and high regioselective Diels-Alder reaction of myrcene and acrolein, respectively[17].

    In addition, hydroxylation of benzene is a potentially successive reaction, in which phenol as primary target product is more susceptible to oxidation than the reactant benzene. As a result, the selectivity to phenol is reduced. Although the selectivity of the catalysts can often be enhanced by modification of their shape selectivity, this approach is generally ineffective in the hydroxylation of benzene. So, how to control the successive oxidation reactions to increase the phenol selectivity remains to be a challenge for chemists. A method of controlling the selectivity of a successive oxidation process, named chemical affinity selectivity, has been reported in the literature[18]. In this approach, the affinity of the catalyst surface to substrates is controlled by tailoring surface hydrophobicity/hydrophilicy, thereby enhancing the product selectivity. However, the number of related reports on this approach is still very limited.

    Tab.1 The preparation method of phenol

    In this paper, we report an overall green process, which involves the preparation of FeCl3modifiedβzeolites by use of the simple solid state reaction and their catalytic application in the direct hydroxylation of benzene with H2O2as an green oxidant, and explore to improve the selectivity for phenol through tailoring their surface’s hydrophobicity/hydrophilicity with dimethyldiethoxysilane (DDS) and check their catalytic stability by recycling tests.

    1Experimental

    1.1Catalysts preparation

    Hβzeolite support (the molar ratio of Si to Al for 30) was supplied by Changling Petroleum Chemical Engineering Company of Hunan Yueyang of China, and was first calcined in air at 500 ℃ for 6 h prior to use. FeCl3modifiedβcatalysts were prepared by solid state dispersion method with anhydrous ferric chloride (loading of FeCl3for 1.0 mmol.g-1) as the Fe(III) source. Mixing them up with mechanical grind, then calcining them in the nitrogen atmosphere at different temperature gave the modified catalysts (denoted as Fe-β(T)). After that, the Fe-β(500) catalyst calcined at 500 ℃ was further dealt with an appropriate amount of dimethyldiethoxysilane (DDS) in toluene solvent, and then extracted with toluene and washed with ethanol, with the obtained catalyst noted as Fe-β(500,SM).

    1.2Catalysts characterization

    The XRD measurements of the samples were carried out with a Dangong Y-2000 diffractometer with Cu Kα radiation (λ=1.541 75 ?) , a scan speed of 2°·min-1and a 0.06° step size from 4° to 40°. Their TG-DSC measurements were performed on a NETZSCH STA409PC from 25 ℃ to 1 000 ℃ with a heating rate of 10 ℃·min-1in the N2atmosphere (flow rate 20 mL/min). The specific surface area and pore volume of the samples were measured by MICROMERIPICS ASAP 2 400 low temperature N2adsorption apparatus on the basis of the China standard GB/T 5816-1995. The actual iron content of the calcined samples was measured by the chemical titration method.

    1.3Catalytic testing

    Hydroxylation of phenol was carried out in a 150 mL double-necked round-bottom flask fitted with a water condenser and kept in an oil bath. In a typical reaction, 0.025 g of catalysts, 2 mL (22.5 mmol) of benzene and 14 mL of acetonitrile were added successively into the reactor. After the mixture was heated to the reaction temperature (65 ℃) under vigorous magnetic stirring, 2.4 mL of 30 wt.% H2O2(22.5 mmol) was added into the reactor and the reaction was proceeded for 5 h. The reaction products were analyzed by Agilent 1 100 HPLC (Eclipse C18, 4.6×250 mm, eluent methanol/water 55/45, flow rate 0.8 mL/min, UV detectorλ272 and 254 nm).

    2Results and discussion

    2.1Catalyst characterization

    The effects of calcination temperature on the crystal structure and physical properties of parent zeolite were checked by use of XRD and low temperature N2adsorption, and the obtained results were shown in Fig.1 and Tab.2, respectively. Decreasing trends in the characteristic diffraction peaks or the relative crystal degree (see Fig.1 and Tab.2) and the specific area (Sg) and porous volume (PV) of the parent zeolite with the calcination temperature of Fe-βwere observed. For example, when the calcination temperature of Fe-βincreased from 400 ℃ to 600 ℃, the crystal degree of the parent zeolite was reduced by about 80%, which is in accordance with the decrease in itsSgandPV. This indicates that structure deterioration of the zeolite has occurred in the overall solid state reaction process, which is likely due to the formation of HCl in the solid ion exchange process. In addition, the changes in itsSgandPVbefore and after the modification of FeCl3clearly indicate that FeCl3has been introduced inside the pores of Hβ. However, at too high calcination temperature (more than 600 ℃), characteristic diffraction peaks of the parent zeolite (see the Fe-β(950)) have disappeared, indicating that its crystal structure has completely disrupted. This can be further confirmed from the results that the measuredSgandPVare abnormally low (see Tab.2). From the Table, it is found that the lattice volume of all the Fe-βsamples before collapse was larger than that of the Hβand it increased with the increasing calcination temperature. This should be due to the framework incorporation of iron ions, leading to the crystal cell expansion of Hβ.

    The solid state reaction of Hβwith FeCl3was further studied by use of TG-DSC apparatus.Typical TG-DSC curves of uncalcined Fe-βand Hβcalcined at 500 ℃ were presented in Fig. 2. The significant loss of weight in the TG-DSC curves of Fe-βcould be observed in 100~600 ℃, suggesting that the solid state reaction of Hβwith FeCl3mainly occured before 600 ℃. The curves could be clearly divided into three stages (denoted as a1-b1/ a-b, b1-c1/b-c and c1-d1/c-d stages). The first stage (a1-b1/ a-b) with about 5% loss of weight, which is the fast exothermal process, appears in the low temperature range less than the melting point of FeCl3(301 ℃), corresponding to the pure solid state ion exchange process. The second stage (b1-c1/b-c) with about 1% loss of weight, which is the exothermic-endothermic balance process, just appears in the melting range of FeCl3, indicating that the melting, dispersion and ion exchange processes of FeCl3inside the pores of Hβsimultaneously were taking place in this stage. The third stage has the biggest loss of weight (about 9%) and broader and stronger exothermic peak. In this stage, the most important modified process was happening, which corresponded to the melting state ion exchange process. However, after the temperature goes beyond 600 ℃, a broadest and strongest exothermic peak within 650~1 048 ℃ for the Fe-βand 800~1 129 ℃ for the Hβcan be observed in the DSC curves of two samples, and they should correspond to the framework collapse process of the zeolite. But this peak on the Fe-βbecame shifted to the lower temperature range compared to that of Hβ, further confirming that the introduction of FeCl3easily causes the framework collapse of Hβ. Therefore, it should be reasonable to conclude that a relative low calcination temperature (500 ℃) is needed to prepare the catalysts, which can not only enhance the solid state reaction but also efficiently reduce the drop in crystal degree of the Hβ.

    Fig.1    XRD patterns of Fe-β calcined at (a) 400 ℃,           Fig.2    The TG and DSC curves of Hβ (1-1 and 1-2) and    (b) 500 ℃, (c) 600 ℃ and (d) 950 ℃   uncalcined Fe-β (2-1 and 2-2)

    The measured actual iron contents of calcined catalysts are listed in Tab.2. The iron content of the catalyst decreased with the increase of calcination temperature, and the reason may be that FeCl3with a boiling point of 315℃ was volatile during the calcination process, especially when the calcination temperature became higher.

    2.2Hydroxylation of benzene

    Hydroxylation of benzene with H2O2was employed to examine the catalytic property of FeCl3modified catalysts. The obtained results are shown in Tab.2. The pure Hβwas found to be inactive for this reaction, but, after the introduction of FeCl3, it became both reactive and selective to phenol, indicating that the iron site on the Fe-βplayed a key role in the hydroxylation of benzene. And the reactivity and selectivity of the Fe-βare dependent of its preparation temperature. Among them, Fe-βcalcined at 500 ℃ gave the highest reactivity (ETOF of the Fe-β(500) for 84). However, the catalysts prepared at the higher calcination temperature showed poor ETOFs, likely, due to the structure collapses of these samples to make iron active sites embedded, as shown by the above characterized peaks.

    Noteworthy, phenol selectivity is not very excellent over the Fe-βcatalyst because of its deep oxidation. In order to improve phenol selectivity, the Fe-β(500) was further treated with DDS. The results are shown in Tab.2 as well. An obviously improved performance, in which benzene conversion only slightly decreased but phenol selectivity increased about 15%, was observed over the Fe-β(500,SM), indicating that the increase in its surface hydrophobicity should have played a significant role in restraining the deep oxidation of phenol and improving phenol selectivity in agreement with the previous report[20].

    Tab.2 Characterized and benzene hydroxylation results of Hβ and FeCl3 modified catalysts

    2.3Effects of process parameters

    Fe-β(500,SM) with the maximum ETOF was employed to examine the impact of various process parameters such as its amount, molar ratio of benzene to oxidant, reaction temperature and addition of water on its catalytic properties. The results are presented in Tables 3 and 4. A general increasing trend in reactivity with catalyst and oxidant amounts, as well as temperature was observed. Too much catalyst or H2O2or too high temperature does not necessarily lead to the increase in reactivity.In some cases, they even inversely caused slightly worse results. The impact of catalyst amount and temperature on phenol selectivity has similar change patterns. That is, the selectivity firstly ascended and then descended as these process parameters were increased. This implies that these parameters all possess an optimal value (catalyst for 0.025 g and temperature for 65 ℃) for obtaining the highest phenol selectivity. And another decreasing trend in selectivity with increasing H2O2amount is observed. Considering phenol yield and H2O2effective conversion, H2O2amount with equal molar ratio to benzene is found to be suitable. Besides, the effect of adding water on benzene hydroxylation is apparent (shown as Tab.4), and it can result in an increase in conversion but it also lead to the decrease in phenol selectivity with a significant increase in catechol and hydroquinone formed by further hydroxylation of phenol. It is well known that the mechanism of aromatics hydroxylation over the transition metal iron catalysts is a typical free radical one[20], and water is an excellent solvent of phenol hydroxylation because it can play a key role in stabilizing the hydroxyl radicals (·OH) produced by H2O2. Therefore, this can easily be comprehended why adding water could considerably enhance the sequent hydroxylation of the formed phenol.

    Tab.3 Effects of Fe-β(500,SM) and H2O2 amounts as well as reaction temperature on benzene hydroxylation

    Tab.4 Effects of H2O2 amount on benzene hydroxylation over Fe-β(500,SM)a

    aThe typical reaction conditions described in the experimental section were employed for benzene hydroxylation, the obtained products mainly included the aimed product phenol and the by-products such as quinone derivatives, unidentified products and a trace amount of catechol and hydroquninone.

    Finally, the possibility of recycling Fe-β(500,SM) was also checked under the optimal reaction conditions with acetonitrile as solvent. The recycling results showed that about 36.1% of benzene conversion and 89.0% of phenol selectivity could be maintained after three cycles. These results are similar to those over the fresh catalyst, indicating that the active sites (iron ions) on the catalyst are very stable and their leaching occurs little. This could be proved by the measured iron contents of fresh catalyst (0.62 mmol/g) and recycled catalyst (0.60 mmol/g) nearly being the same. This also implies that FeCl3is mainly exchanged in the cationic sites inside the pores of H-βwith abundant exchanged cationic sites, and these exchanged iron ions are not easily washed away in the reaction process. As a result, it can be recovered and reused for three times without observable loss of reactivity.

    3Conclusions

    The solid state ion exchange method as a convenient, high-efficient and practical modification approach has been successfully employed to prepare the FeCl3modified beta zeolite catalyst (Fe-β). XRD, TG-DSC and low temperature N2adsorption measurements all confirmed that the key factor of preparing an excellent Fe-βcatalyst is to select a suitable calcination temperature. And the incorporation of iron ions into the framework ofβzeolite has occurred in the solid-state reaction process. These Fe-βcatalysts are reactive and selective in hydroxylation of benzene to phenol with H2O2. Among them, the Fe-βcalcined at 500 ℃ gives the highest ETOF (84), and its phenol selectivity can further be increased by about 15% after it is treated with DDS, suggesting that the increase in hydrophobicity on the DDS treated catalyst’s surface played a key role in restraining the successive oxidation of phenol and increasing its selectivity. Furthermore, the Fe-βcatalyst is very stable and its active iron sites are little leached away in the reaction process. As a result, it can be recovered and reused for three times without significant loss of reactivity.

    References:

    [1]HOCKING M B, INTIHAR D J. Oxidation of phenol by aqueous hydrogen peroxide catalyzed by ferric ion-catechol complexes [J]. J Chem Technol Biotechnol, 1985,35(7):365-381.

    [2]朱麗娜,李洪濤,姜道華,等.我國苯酚丙酮生產(chǎn)技術(shù)及市場[J].化工技術(shù)與開發(fā), 2014,43(1):35-37.

    [3]MIYAKE T, HAMADA M, SASAKI Y,etal. Direct synthesis of phenol by hydroxylation of benzene with oxygen and hydrogen [J]. Appl Catal A: Gen, 1995,131(1):3342.

    [4]ANTONYCAJ A, SRINIVASAN K. One-step hydroxylation of benzene to phenol over layered double hydroxides and their derived forms[J] .Catal Surv Asia, 2013,17(2):47-70.

    [5]YURANOV I, BULUSHEV D A, RENKEN A,etal. Benzene to phenol hydroxylation with N2O over Fe-Beta and Fe-ZSM-5: Comparison of activity per Fe-site[J]. Appl Catal A: Gen, 2007,319(1):128-136.

    [6]GE H Q , LENG Y, ZHOU C J,etal. Direct hydroxylation of benzene to phenol with molecular oxygen over phase transfer catalysts: cyclodextrins complexes with vanadium-substituted heteropoly acids[J]. Catal Lett, 2008,124(3):324-329.

    [7]RENUKA N K. A green approach for phenol synthesis over Fe3+/MgO catalysts using hydrogen peroxide[J].Mol Catal A: Chem, 2010,316(1-2):126-130.

    [8]KROMER A, RODUNER E. Catalytic oxidation of benzene on liquid ion-exchanged Cu,H(Na)/ZSM-5 and Cu,H(Na)/Y zeolites: spin trapping of transient radical intermediates[J]. Chem Plus Chem, 2013,78(3):268-273.

    [9]GOPALAKRISHNAN S, ZAMPIERI A, W. Schwieger.Mesoporous ZSM-5 zeolites via alkali treatment for the direct hydroxylationof benzene to phenol with N2O[J]. Catalysis, 2008,260(1): 193-197.

    [10]高丙瑩,吳娟,何紅運. 新型 Ti-Co-β沸石的合成、表征及催化性能的研究[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報, 2014,37(2):40-46.

    [11]IMRE B, HALASZ J, FREY K,etal. Oxidative hydroxylation of benzene and toluene by nitrous oxide over Fe-containing ZSM-5 zeolites[J]. React Kinet Catal Lett, 2001,74(2):377-383.

    [13]GANESAN V, PAL M, TIWARI M. Manganese-Schiff base complex immobilized silica materials for electrocatalytic oxygen reduction[J]. Bull Mater Sci, 2014,37(3):623-628.

    [14]SHERRY H S, WALTON H F. The ion-exchange properties of zeolites. II. Ion exchange in the synthetic zeolite Linde 4A[J]. J Phys Chem, 1967, 71(5):1457-1465.

    [15]DORADO F, ROMERO R, CANIZARES P,etal. Influence of palladium incorporation technique onn-butane hydroisomerization over HZSM-5/bentonite catalysts[J]. Appl Catal A: Gen, 2004,274(1/2):79-85.

    [16]DIMITROVA R, NEINSKA Y, MIHLYI M,etal. Reductive solid-state ion exchange as a way to vanadium introduction in BZSM and BBeta zeolites[J]. Appl Catal A: Gen, 2004,266(1):123-127.

    [17]FU Z H, YU Y, YIN D L,etal.Vapor-phase highly selective O-methylation of catechol with methanol over ZnCl2modifiedγ-Al2O3catalysts[J]. Mol Catal A Chem, 2005,232(1):69-75 .

    [18]HE J, GUO Z Y, MA H,etal. Enhancing the selectivity of benzene hydroxylation by tailoring the chemical affinity of the MCM-41 catalyst surface for the reactive molecules[J].J Catal, 2002,212(1):22-32.

    [19]FUJIMOTO K, TOKUDA Y, AEKAWA M,etal. ChemInform abstract: selective and one-pot formation of phenols by anodic oxidation[J].Tetrahedron, 1996,52(11):3889-3896

    [20]LIU C B, SHAN Y K, YANG X G,etal. Iron(II)-8-quinolinol/MCM-41-catalyzed phenol hydroxylation and reaction mechanism[J]. J Catal, 1997,168(1):35-41.

    (編輯WJ)

    DOI:10.7612/j.issn.1000-2537.2016.04.007

    收稿日期:2016-05-03

    基金項目:湖南省自然科學(xué) 項目(10JJ2007;11JJ6008);湖南省教育廳自然科學(xué) 項目(13C1127)

    *通訊作者,E-mail:fzhhnu@tom.com

    中圖分類號TQ203.2;O643.32

    文獻標(biāo)識碼A

    文章編號1000-2537(2016)04-0041-06

    FeCl3改性β沸石的制備過程及在苯的羥基化催化反應(yīng)的應(yīng)用研究

    周建波1, 伏再輝2*, 劉亞純2, 徐超1

    (1.長沙醫(yī)學(xué)院基礎(chǔ)醫(yī)學(xué)院,中國 長沙410219;2.湖南師范大學(xué)化學(xué)化工研究院,中國 長沙410081)

    摘要利用固態(tài)離子交換的方法制備出FeCl3改性的β沸石固相催化劑.采用XRD, TG-DSC及低溫N2吸附法對所制的催化劑進行了表征.用H2O2作氧化劑將苯催化氧化成苯酚考察了催化劑的催化活性和選擇性.通過調(diào)節(jié)二甲基二乙氧基硅烷(DDS)表面的親水基和疏水基可以阻止苯酚進一步發(fā)生氧化反應(yīng)從而提高催化反應(yīng)的選擇性.此外,在催化劑的回收實驗中發(fā)現(xiàn)催化劑可以重復(fù)使用3次,而其催化活性沒有太大的變化.所以從催化劑的制備到催化劑的催化過程都是綠色環(huán)保的.

    關(guān)鍵詞苯;FeCl3改性的β分子篩;羥基化;苯酚;固態(tài)離子交換

    猜你喜歡
    苯酚分子篩
    沸石分子篩發(fā)展簡述
    云南化工(2021年10期)2021-12-21 07:33:24
    5種沸石分子篩的吸附脫碳對比實驗
    煤氣與熱力(2021年9期)2021-11-06 05:22:56
    毛細(xì)管氣相色譜法測定3-氟-4-溴苯酚
    云南化工(2020年11期)2021-01-14 00:50:54
    亞洲將引領(lǐng)全球苯酚產(chǎn)能增長
    負(fù)載型催化劑(CuO/TUD-1,CuO/MCM-41)的制備及其在一步法氧化苯合成苯酚中的應(yīng)用
    煅燒高嶺土吸附Zn2+/苯酚/CTAB復(fù)合污染物的研究
    ZSM-5分子篩膜制備方法的研究進展
    簡述ZSM-5分子篩水熱合成工藝
    SAPO-56分子篩的形貌和粒徑控制
    4-(2,4-二氟苯基)苯酚的合成新工藝
    免费播放大片免费观看视频在线观看| eeuss影院久久| 99热网站在线观看| 国产高清有码在线观看视频| 亚洲欧美中文字幕日韩二区| 夜夜爽夜夜爽视频| 最近中文字幕2019免费版| 美女主播在线视频| 色视频在线一区二区三区| 老司机影院成人| 熟妇人妻不卡中文字幕| 亚洲国产精品999| 欧美最新免费一区二区三区| 亚洲综合色惰| 天美传媒精品一区二区| 免费看日本二区| 联通29元200g的流量卡| 身体一侧抽搐| 国产精品国产三级国产av玫瑰| 亚洲aⅴ乱码一区二区在线播放| 好男人在线观看高清免费视频| 久久精品国产亚洲av天美| 亚洲在久久综合| 三级国产精品欧美在线观看| 国产亚洲91精品色在线| 天堂中文最新版在线下载 | 爱豆传媒免费全集在线观看| 性色avwww在线观看| 亚洲精品中文字幕在线视频 | 色婷婷久久久亚洲欧美| 精品人妻一区二区三区麻豆| 免费观看av网站的网址| 亚洲av.av天堂| 卡戴珊不雅视频在线播放| 嘟嘟电影网在线观看| 高清视频免费观看一区二区| 日本与韩国留学比较| 精品国产乱码久久久久久小说| 日本黄大片高清| 成人漫画全彩无遮挡| av播播在线观看一区| 另类亚洲欧美激情| 亚洲三级黄色毛片| 国产色婷婷99| 国产高清三级在线| 别揉我奶头 嗯啊视频| 国产中年淑女户外野战色| 亚洲国产色片| 亚洲欧美中文字幕日韩二区| 天堂俺去俺来也www色官网| 国产精品久久久久久精品古装| 欧美日韩亚洲高清精品| 99久久精品国产国产毛片| 国产一区二区在线观看日韩| 男人舔奶头视频| 亚洲欧美精品专区久久| 亚洲av中文av极速乱| 男女啪啪激烈高潮av片| 少妇人妻一区二区三区视频| 爱豆传媒免费全集在线观看| 欧美性感艳星| 国语对白做爰xxxⅹ性视频网站| 国产成人aa在线观看| 中文字幕制服av| 久热这里只有精品99| 亚洲色图av天堂| 身体一侧抽搐| 精品久久久久久久久亚洲| 精品午夜福利在线看| av在线播放精品| 在现免费观看毛片| 99热全是精品| 免费在线观看成人毛片| 大片免费播放器 马上看| 18禁裸乳无遮挡动漫免费视频 | 美女xxoo啪啪120秒动态图| 亚洲精品国产色婷婷电影| 一区二区三区免费毛片| 九九爱精品视频在线观看| 成人综合一区亚洲| 涩涩av久久男人的天堂| 亚洲精品日本国产第一区| 国产精品一及| 国产精品久久久久久精品电影| 日韩大片免费观看网站| 少妇的逼好多水| 我要看日韩黄色一级片| 色播亚洲综合网| 亚洲国产色片| 亚洲精品乱码久久久v下载方式| 午夜免费观看性视频| h日本视频在线播放| 91午夜精品亚洲一区二区三区| 国产精品秋霞免费鲁丝片| 欧美少妇被猛烈插入视频| 午夜福利视频精品| 少妇 在线观看| 国产亚洲av片在线观看秒播厂| 久久精品国产亚洲av涩爱| 99精国产麻豆久久婷婷| 只有这里有精品99| 国产精品.久久久| 亚洲av不卡在线观看| 最近手机中文字幕大全| 美女内射精品一级片tv| 禁无遮挡网站| 干丝袜人妻中文字幕| 黄色配什么色好看| 亚洲自偷自拍三级| 国产精品熟女久久久久浪| 久久久久久久国产电影| av黄色大香蕉| 午夜精品国产一区二区电影 | 97精品久久久久久久久久精品| 又爽又黄无遮挡网站| 中文乱码字字幕精品一区二区三区| 成人鲁丝片一二三区免费| 免费黄网站久久成人精品| 国产免费又黄又爽又色| 日本熟妇午夜| 麻豆久久精品国产亚洲av| 男女下面进入的视频免费午夜| 精品一区在线观看国产| 大片免费播放器 马上看| 久久精品久久久久久久性| 一级毛片aaaaaa免费看小| 大陆偷拍与自拍| 美女主播在线视频| 午夜亚洲福利在线播放| 韩国av在线不卡| 国产伦精品一区二区三区四那| 成年版毛片免费区| 黄片无遮挡物在线观看| 亚洲最大成人av| 建设人人有责人人尽责人人享有的 | 麻豆乱淫一区二区| 国产乱来视频区| 美女被艹到高潮喷水动态| 亚洲欧美成人精品一区二区| 禁无遮挡网站| 欧美丝袜亚洲另类| 亚洲在线观看片| videos熟女内射| 欧美变态另类bdsm刘玥| 久久久久久久久久成人| 国产精品99久久久久久久久| 伦理电影大哥的女人| 成年女人看的毛片在线观看| 欧美日韩在线观看h| 亚洲国产欧美在线一区| 午夜亚洲福利在线播放| 在线 av 中文字幕| 建设人人有责人人尽责人人享有的 | 国产精品三级大全| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧洲日产国产| 亚洲aⅴ乱码一区二区在线播放| 久久久久国产精品人妻一区二区| 亚洲国产精品国产精品| 久久这里有精品视频免费| 国产老妇女一区| 亚洲美女搞黄在线观看| 欧美一级a爱片免费观看看| 黄色一级大片看看| 2021天堂中文幕一二区在线观| 少妇裸体淫交视频免费看高清| 成人二区视频| 女人久久www免费人成看片| 久久精品国产自在天天线| av在线播放精品| 99久久人妻综合| 99久久九九国产精品国产免费| 2021天堂中文幕一二区在线观| 美女xxoo啪啪120秒动态图| 乱系列少妇在线播放| 夜夜爽夜夜爽视频| 身体一侧抽搐| 国产精品人妻久久久影院| 午夜福利视频精品| 久热久热在线精品观看| 日本熟妇午夜| 精品一区二区免费观看| 欧美日韩国产mv在线观看视频 | 好男人视频免费观看在线| 青春草国产在线视频| 日韩成人伦理影院| 各种免费的搞黄视频| 日韩一区二区三区影片| 亚洲成色77777| 九色成人免费人妻av| 啦啦啦啦在线视频资源| av在线蜜桃| 午夜免费鲁丝| 亚洲在线观看片| 少妇人妻一区二区三区视频| 国产黄色视频一区二区在线观看| 国产熟女欧美一区二区| 欧美性猛交╳xxx乱大交人| 尤物成人国产欧美一区二区三区| 黄片无遮挡物在线观看| 禁无遮挡网站| 成人高潮视频无遮挡免费网站| 爱豆传媒免费全集在线观看| 亚洲人成网站在线播| 国产免费一级a男人的天堂| 久久精品久久精品一区二区三区| 看黄色毛片网站| 亚洲国产av新网站| 又爽又黄无遮挡网站| 天堂中文最新版在线下载 | 日韩欧美一区视频在线观看 | 国产精品福利在线免费观看| 最后的刺客免费高清国语| 另类亚洲欧美激情| 国产男人的电影天堂91| 丝瓜视频免费看黄片| 日韩一本色道免费dvd| 成人高潮视频无遮挡免费网站| 国产成年人精品一区二区| 一级av片app| 国产午夜福利久久久久久| 深爱激情五月婷婷| av在线老鸭窝| 久久99热这里只有精品18| 国产片特级美女逼逼视频| 五月开心婷婷网| 色哟哟·www| 蜜桃久久精品国产亚洲av| 日韩一本色道免费dvd| 国产免费一区二区三区四区乱码| 亚洲最大成人中文| 我要看日韩黄色一级片| 成人综合一区亚洲| 日韩大片免费观看网站| 91精品国产九色| 男的添女的下面高潮视频| 欧美zozozo另类| 人妻 亚洲 视频| 九九久久精品国产亚洲av麻豆| 国产乱来视频区| 亚洲电影在线观看av| 亚洲精品久久午夜乱码| 日日摸夜夜添夜夜添av毛片| 国产黄a三级三级三级人| 99热这里只有精品一区| 亚洲成人中文字幕在线播放| a级毛色黄片| 欧美日韩一区二区视频在线观看视频在线 | 亚洲成人久久爱视频| 国产男女超爽视频在线观看| 一二三四中文在线观看免费高清| 内射极品少妇av片p| 有码 亚洲区| 精品人妻一区二区三区麻豆| 搡女人真爽免费视频火全软件| 久久人人爽人人片av| 一级毛片黄色毛片免费观看视频| 亚洲婷婷狠狠爱综合网| 久久亚洲国产成人精品v| av又黄又爽大尺度在线免费看| 国产精品蜜桃在线观看| 亚洲欧美精品专区久久| 国产精品国产三级国产专区5o| 最近中文字幕2019免费版| 观看美女的网站| 成人午夜精彩视频在线观看| 亚洲av福利一区| 别揉我奶头 嗯啊视频| 黄片无遮挡物在线观看| 青春草国产在线视频| 三级国产精品欧美在线观看| 午夜福利视频1000在线观看| 久久久久久久久久人人人人人人| 国产成人免费无遮挡视频| 亚洲欧美成人精品一区二区| 日韩av免费高清视频| 亚洲国产精品国产精品| 日韩不卡一区二区三区视频在线| 中文字幕制服av| 亚洲av日韩在线播放| 久久午夜福利片| 亚洲最大成人中文| 嫩草影院新地址| 日韩一区二区视频免费看| 日日撸夜夜添| 丝瓜视频免费看黄片| 少妇人妻一区二区三区视频| 青春草国产在线视频| 午夜福利在线观看免费完整高清在| 欧美zozozo另类| 中文资源天堂在线| 久久久精品欧美日韩精品| 午夜精品一区二区三区免费看| 久久久成人免费电影| 美女视频免费永久观看网站| 午夜福利在线在线| 精品人妻熟女av久视频| 成人毛片a级毛片在线播放| 最后的刺客免费高清国语| 岛国毛片在线播放| 嫩草影院新地址| 国产精品不卡视频一区二区| a级毛片免费高清观看在线播放| videos熟女内射| 亚洲精品日韩av片在线观看| 嘟嘟电影网在线观看| 日日啪夜夜撸| 国产美女午夜福利| 成人毛片60女人毛片免费| 亚洲国产最新在线播放| 欧美区成人在线视频| 在线观看免费高清a一片| 麻豆成人av视频| 国产精品三级大全| 成人综合一区亚洲| 亚洲av福利一区| 色视频www国产| 神马国产精品三级电影在线观看| 一级黄片播放器| 22中文网久久字幕| 精品一区二区三区视频在线| 身体一侧抽搐| av女优亚洲男人天堂| 亚洲第一区二区三区不卡| 在线观看免费高清a一片| 天天一区二区日本电影三级| 综合色丁香网| 亚洲国产日韩一区二区| 欧美激情在线99| 亚洲性久久影院| 精品一区在线观看国产| 看黄色毛片网站| 一级a做视频免费观看| 观看免费一级毛片| 各种免费的搞黄视频| 亚洲精品一区蜜桃| 一级毛片 在线播放| 蜜桃久久精品国产亚洲av| 日韩中字成人| 超碰97精品在线观看| 国产乱人视频| 久久精品夜色国产| 亚洲精品自拍成人| 国产精品国产三级国产专区5o| 日韩人妻高清精品专区| 国产黄色视频一区二区在线观看| 久久久亚洲精品成人影院| 五月天丁香电影| 美女脱内裤让男人舔精品视频| 18禁在线无遮挡免费观看视频| 九草在线视频观看| 91久久精品国产一区二区成人| 欧美激情国产日韩精品一区| 久久97久久精品| 亚洲性久久影院| 欧美性感艳星| 特级一级黄色大片| 久久6这里有精品| 国产探花极品一区二区| 丝袜美腿在线中文| 白带黄色成豆腐渣| 免费观看无遮挡的男女| 国产白丝娇喘喷水9色精品| 亚洲,一卡二卡三卡| 搞女人的毛片| 69av精品久久久久久| 天天一区二区日本电影三级| 色播亚洲综合网| 岛国毛片在线播放| 好男人视频免费观看在线| 亚洲色图av天堂| 国产精品久久久久久av不卡| 色网站视频免费| 一本久久精品| 免费观看av网站的网址| av女优亚洲男人天堂| av在线蜜桃| 精品一区二区三区视频在线| 久久热精品热| 青春草国产在线视频| 国产精品国产三级专区第一集| 少妇人妻精品综合一区二区| 男女边摸边吃奶| 国产中年淑女户外野战色| 日韩av在线免费看完整版不卡| 亚洲欧美日韩另类电影网站 | 欧美bdsm另类| 99热这里只有精品一区| 国产精品久久久久久精品电影| 国产日韩欧美亚洲二区| 日韩三级伦理在线观看| 久久精品熟女亚洲av麻豆精品| 一级片'在线观看视频| 亚洲丝袜综合中文字幕| 日韩强制内射视频| 欧美+日韩+精品| av国产精品久久久久影院| 亚洲欧美日韩东京热| 国产av国产精品国产| 久久久久久久久久久免费av| 18禁在线无遮挡免费观看视频| 人体艺术视频欧美日本| 亚洲精品影视一区二区三区av| 色综合色国产| 最近手机中文字幕大全| 两个人的视频大全免费| 国产乱来视频区| 亚洲熟女精品中文字幕| 在线亚洲精品国产二区图片欧美 | 国产色爽女视频免费观看| 免费不卡的大黄色大毛片视频在线观看| 男女那种视频在线观看| 夫妻午夜视频| av在线亚洲专区| 久久精品久久精品一区二区三区| 人人妻人人澡人人爽人人夜夜| 欧美成人一区二区免费高清观看| 亚洲第一区二区三区不卡| 在线免费十八禁| 日本黄大片高清| 亚洲欧美一区二区三区国产| 午夜福利在线在线| 国产欧美日韩一区二区三区在线 | 国产日韩欧美亚洲二区| 777米奇影视久久| 午夜视频国产福利| 国产精品女同一区二区软件| h日本视频在线播放| 最后的刺客免费高清国语| 在线看a的网站| 男人爽女人下面视频在线观看| 午夜日本视频在线| 国产69精品久久久久777片| 欧美bdsm另类| 丝瓜视频免费看黄片| 97超视频在线观看视频| 免费人成在线观看视频色| 一级毛片电影观看| 国产伦在线观看视频一区| 久久99热这里只频精品6学生| 日韩,欧美,国产一区二区三区| 性插视频无遮挡在线免费观看| 精品国产一区二区三区久久久樱花 | 亚洲欧美日韩卡通动漫| 大陆偷拍与自拍| 国产精品熟女久久久久浪| 日韩av在线免费看完整版不卡| 国产精品一二三区在线看| 五月伊人婷婷丁香| 涩涩av久久男人的天堂| 高清av免费在线| 18+在线观看网站| 久久久久久国产a免费观看| 欧美97在线视频| 久久国产乱子免费精品| 看非洲黑人一级黄片| 国产 精品1| 三级男女做爰猛烈吃奶摸视频| 欧美精品国产亚洲| 啦啦啦啦在线视频资源| 身体一侧抽搐| 国产成人a∨麻豆精品| 免费看不卡的av| 男女下面进入的视频免费午夜| 夜夜爽夜夜爽视频| 国产探花极品一区二区| 97超视频在线观看视频| 又爽又黄无遮挡网站| 国产亚洲5aaaaa淫片| 日韩亚洲欧美综合| 看十八女毛片水多多多| 少妇猛男粗大的猛烈进出视频 | 中国国产av一级| 美女被艹到高潮喷水动态| 大码成人一级视频| 久久精品国产亚洲av天美| 自拍偷自拍亚洲精品老妇| 精品久久久精品久久久| 亚洲在久久综合| 国产亚洲午夜精品一区二区久久 | 欧美亚洲 丝袜 人妻 在线| 男人爽女人下面视频在线观看| 国产高清不卡午夜福利| 最近中文字幕高清免费大全6| 日韩欧美一区视频在线观看 | 亚洲精品视频女| 中文乱码字字幕精品一区二区三区| 制服丝袜香蕉在线| 能在线免费看毛片的网站| 中国美白少妇内射xxxbb| 亚洲欧美成人综合另类久久久| 免费黄色在线免费观看| 亚洲第一区二区三区不卡| 午夜亚洲福利在线播放| kizo精华| 有码 亚洲区| 男女无遮挡免费网站观看| 日本wwww免费看| 免费看日本二区| 2021天堂中文幕一二区在线观| 国产欧美日韩一区二区三区在线 | 青春草视频在线免费观看| 美女xxoo啪啪120秒动态图| 三级男女做爰猛烈吃奶摸视频| 国产成人a∨麻豆精品| 99久久九九国产精品国产免费| 啦啦啦中文免费视频观看日本| 免费少妇av软件| 成人国产麻豆网| 美女高潮的动态| 亚洲精品aⅴ在线观看| av在线播放精品| 亚洲国产精品999| 国产欧美另类精品又又久久亚洲欧美| 在线亚洲精品国产二区图片欧美 | 久久久久久久久大av| 内地一区二区视频在线| 美女主播在线视频| 如何舔出高潮| 精品国产乱码久久久久久小说| 免费看日本二区| eeuss影院久久| 亚洲国产成人一精品久久久| 哪个播放器可以免费观看大片| 干丝袜人妻中文字幕| 婷婷色麻豆天堂久久| 老司机影院成人| 高清午夜精品一区二区三区| 69av精品久久久久久| 特级一级黄色大片| 少妇裸体淫交视频免费看高清| 麻豆成人av视频| 嫩草影院新地址| 麻豆成人av视频| 深爱激情五月婷婷| 97超碰精品成人国产| 国产亚洲最大av| 日日摸夜夜添夜夜添av毛片| 在线观看国产h片| 熟女av电影| 天美传媒精品一区二区| 特级一级黄色大片| 国精品久久久久久国模美| 日韩,欧美,国产一区二区三区| 91在线精品国自产拍蜜月| 日韩,欧美,国产一区二区三区| 一级二级三级毛片免费看| 特级一级黄色大片| 久久99热这里只频精品6学生| 十八禁网站网址无遮挡 | 国产老妇女一区| 亚洲欧美清纯卡通| 在线看a的网站| 人妻少妇偷人精品九色| 日日啪夜夜撸| 婷婷色av中文字幕| 九九久久精品国产亚洲av麻豆| 国产色爽女视频免费观看| 啦啦啦在线观看免费高清www| 小蜜桃在线观看免费完整版高清| 舔av片在线| 不卡视频在线观看欧美| 国产精品女同一区二区软件| 国产探花极品一区二区| 超碰av人人做人人爽久久| 久久这里有精品视频免费| 精品久久久久久久末码| 看十八女毛片水多多多| 18禁在线无遮挡免费观看视频| 精品熟女少妇av免费看| 热99国产精品久久久久久7| 三级国产精品欧美在线观看| 久久久色成人| 永久免费av网站大全| 毛片女人毛片| 午夜福利在线观看免费完整高清在| 亚洲四区av| 国内精品美女久久久久久| 国产老妇伦熟女老妇高清| 亚洲欧美一区二区三区黑人 | 麻豆成人av视频| 国产成人免费无遮挡视频| 插逼视频在线观看| 中文乱码字字幕精品一区二区三区| 在线观看av片永久免费下载| 久久久久性生活片| 97人妻精品一区二区三区麻豆| 亚洲精品成人av观看孕妇| 国产极品天堂在线| 干丝袜人妻中文字幕| 国产真实伦视频高清在线观看| 干丝袜人妻中文字幕| 少妇被粗大猛烈的视频| 亚洲精品国产av蜜桃| 视频区图区小说| 又爽又黄a免费视频| 日韩三级伦理在线观看| 国产色婷婷99| 一级a做视频免费观看| 欧美老熟妇乱子伦牲交| 国产黄片视频在线免费观看| 亚洲色图av天堂| 久久久色成人| 久久99蜜桃精品久久| 成年av动漫网址| 日韩三级伦理在线观看| 欧美变态另类bdsm刘玥| 免费观看无遮挡的男女| 熟女电影av网| 免费黄色在线免费观看| 日本午夜av视频| 99热这里只有精品一区| 国产精品人妻久久久影院| 亚洲丝袜综合中文字幕| 久久久精品欧美日韩精品|