曹樂(lè) 周遠(yuǎn)國(guó) 付周興
摘 要:針對(duì)復(fù)雜半空間格林函數(shù)難以計(jì)算的問(wèn)題,提出一種改進(jìn)的半空間時(shí)域有限差分(FDTD)方法,實(shí)現(xiàn)有耗半空間上方細(xì)縫金屬腔的時(shí)域屏蔽效能的高效計(jì)算和分析。首先,采用廣義傳播矩陣法計(jì)算半空間復(fù)反射系數(shù),再結(jié)合傅里葉變換得到半空間時(shí)域反射回波。其次,將直接入射波和半空間反射波共同引入到FDTD計(jì)算區(qū)域,半空間的影響通過(guò)反射波體現(xiàn),從而回避計(jì)算形式復(fù)雜的半空間格林函數(shù),實(shí)現(xiàn)金屬腔內(nèi)部觀察點(diǎn)的耦合場(chǎng)及時(shí)域屏蔽效能的快速計(jì)算。與傳統(tǒng)半空間FDTD方法相比,計(jì)算方法的誤差在0.5%以內(nèi),而計(jì)算效率提升52%,證明了計(jì)算方法的正確性及有效性。結(jié)果表明,由于半空間的反射效應(yīng),細(xì)縫腔體內(nèi)部觀察點(diǎn)的場(chǎng)強(qiáng)增大,時(shí)域屏蔽效能顯著下降。計(jì)算方法可用于半空間背景下腔體時(shí)域屏蔽效能的快速分析,從而為電子系統(tǒng)電磁耦合效應(yīng)的評(píng)估提供參考。關(guān)鍵詞:時(shí)域屏蔽效能;有耗半空間;半空間FDTD;屏蔽腔;電磁脈沖中圖分類號(hào):TM 154
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-9315(2020)06-01096-06
DOI:10.13800/j.cnki.xakjdxxb.2020.0621開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Evaluation of time-domain shielding effectiveness for
metallic cavities above lossy half-space
CAO Le1,2,ZHOU Yuan-guo2,F(xiàn)U Zhou-xing1
(1.
College of Electrical and Control Engineering,Xian University of Science and Technology,Xian 710054,China;
2.School of Electrical Engineering,Xian Jiaotong University,Xian 710049,China;
3.College of Communication and Information Engineering,Xian University of Science and Technology,Xian 710054,China)
Abstract:In order to solve the problem that the half-space Green function of complex media is difficult to calculate,an improved half-space FDTD algorithm that avoids the half-space Green function is proposed to achieve the efficient computation analysis of the time-domain shielding effectiveness(SE)of the metallic cavities above the lossy half-space.Firstly,the generalized transition matrix method and Fourier transform are used to calculate the reflected wave of half-space.Secondly,with the direct incident wave and the reflected wave? introduced into the calculation region,the coupling field of the observation point inside the cavity under different incident conditions is calculated and analyzed.Compared with the traditional half-space FDTD method,the calculation error here is within 0.5%,and the calculation efficiency is increased by 52%,which proves the correctness and effectiveness of this method.The numerical results show that due to the reflection effect in the half space,the field strength increases,and the time-domain shielding effectiveness decreases significantly.The method in this paper can be used to quickly analyze the shielding effectiveness of the cavity in the time domain in the half-space background,thus providing a reference for the evaluation of the electromagnetic coupling effects of electronic systems.
Key words:time-domain shielding effectiveness;lossy half-space;FDTD method;shielding enclosure;electromagnetic pulse
0 引 言
金屬屏蔽腔是電磁兼容設(shè)計(jì)與防護(hù)中保護(hù)電子設(shè)備、器件不被電磁脈沖干擾的重要手段。然而,為了保障電子設(shè)備的正常工作,屏蔽腔往往需要開(kāi)各種類型的孔縫,而這些孔縫將使得電磁脈沖能量得以進(jìn)入到電子設(shè)備內(nèi)部。通過(guò)這樣的“后門(mén)”耦合方式進(jìn)入到電子設(shè)備的能量分布在整個(gè)系統(tǒng)內(nèi)部,在特定頻率下易發(fā)生共振而引起強(qiáng)耦合。相比“前門(mén)”耦合,“后門(mén)”耦合對(duì)系統(tǒng)的影響更大且難以消除。因此,開(kāi)展金屬腔體屏蔽效能的研究具有十分重要的意義[1-5]。以往屏蔽效能研究多在頻域展開(kāi),主要包括MoM方法[6-8],F(xiàn)DTD方法[9-12],F(xiàn)EM方法[13-14],及傳輸線方程方法等[15-16],然而頻域屏蔽效能并不能完全表征屏蔽體對(duì)時(shí)域脈沖場(chǎng)的屏蔽作用。基于此,時(shí)域屏蔽效能的概念被提出[17-19]。
同時(shí),在實(shí)際應(yīng)用中屏蔽腔往往放置在地面上方,因此屏蔽腔的電磁特征分析屬于半空間及其上方目標(biāo)的復(fù)合電磁問(wèn)題。對(duì)于處于空氣-地面2種介質(zhì)分界面附近的腔體,其照射波不僅包含直接入射波,還包括半空間分界面的反射波[20-22]。鑒于此,在半空間背景下,電磁脈沖對(duì)屏蔽腔體內(nèi)部產(chǎn)生的耦合效應(yīng)必然與自由空間有所不同。文中采用改進(jìn)的半空間FDTD方法計(jì)算了有耗介質(zhì)上方含孔縫屏蔽腔體內(nèi)部的3種典型的時(shí)域屏蔽效能,分析了不同條件下屏蔽效能的變化規(guī)律,最
后討論了半空間及自由空間情形下屏蔽效能的變化。
針對(duì)半空間及其上方目標(biāo)的復(fù)合電磁問(wèn)題,目前存在2種求解思路。一種將半空間和目標(biāo)等視為整體,進(jìn)行整體的剖分建模,采用同一種數(shù)值方法求解;另一種對(duì)目標(biāo)和半空間采用分別求解,再利用半空間格林函數(shù)計(jì)算兩者的耦合。第1種方案計(jì)算需求會(huì)隨目標(biāo)高度升高急劇增大,計(jì)算效率不高;第2種方案需要引入半空間格林函數(shù)體現(xiàn)半空間的影響。然而,半空間格林函數(shù)形式復(fù)雜、計(jì)算繁瑣,尤其是對(duì)多層平面介質(zhì)和粗糙面介質(zhì),其半空間格林函數(shù)的推導(dǎo)和求解更加困難。
針對(duì)上述問(wèn)題,文中提出一種解決半空間問(wèn)題新思路。如圖1所示,將總?cè)肷洳ǚ纸鉃橹苯尤肷洳鞍肟臻g反射波2部分,下半空間對(duì)目標(biāo)電磁特性的影響通過(guò)反射波的引入而體現(xiàn),避免使用形式復(fù)雜、難以計(jì)算的半空間格林函數(shù),從而提高半空間問(wèn)題的解決效率。
1 改進(jìn)的半空間FDTD方法
1.1 半空間反射波的計(jì)算
本文采用傳播矩陣方法計(jì)算半空間復(fù)反射系數(shù),具體計(jì)算過(guò)程如下:首先,給出分層介質(zhì)情形下的本征波;其次,定義狀態(tài)方程并給出其解,最后,對(duì)分層介質(zhì)的傳播矩陣進(jìn)行計(jì)算后就可以求解反射系數(shù)。
將入射電磁波分解為對(duì)z軸的TE波和TM波。根據(jù)傳播矩陣方法,半空間情形下,反射系數(shù)表達(dá)式可寫(xiě)為[23]
RTE
=1-pTE01
1+pTE01
,
RTM
=1-pTM01
1+pTM01
(1)
式中 k1z,ε0,
ε1和μ0,μ1分別為真空及半空間介質(zhì)的介電常數(shù)和磁導(dǎo)系數(shù);
k0z
和k1z分別表示真空及半空間介質(zhì)中波矢量k的z軸分量。
由反射系數(shù)可得到反射波水平極化分量和垂直極化分量為
Erh=|RTM|Efcosα0,Erv=|RTE|Efsinα0
(2)
式中 α0為入射波極化角,Ef為指定頻率下入射電場(chǎng)的幅值。由以上公式計(jì)算出反射波的頻譜再經(jīng)過(guò)逆傅里葉變換,就得到了反射波的時(shí)域波形。
1.2 總?cè)肷洳ㄒ?/p>
在得到半空間反射回波后,文中基于等效原理,將直接入射波和半空間反射波共同引入到FDTD計(jì)算區(qū)域中。FDTD方法通常將計(jì)算區(qū)域分為總場(chǎng)區(qū)和散射場(chǎng)區(qū),空間中的場(chǎng)為入射場(chǎng)和散射場(chǎng)之和。
Etot
=Einc+Escat
Htot
=Hinc+Hscat
(3)
式中 下角標(biāo)tot,inc及scat分別表示總場(chǎng)、入射場(chǎng)、及散射場(chǎng)。如圖2所示,F(xiàn)DTD方法一般根據(jù)等效原理,通過(guò)總場(chǎng)-散射場(chǎng)(total field-scatter field,TF-SF)邊界直接在傳播方向上投影并插值,從而將入射平面波源引入計(jì)算區(qū)域[24]。
半空間背景下目標(biāo)的總?cè)肷洳ò苯尤肷洳鞍肟臻g反射波,相當(dāng)于在自由空間中加入2個(gè)方向不同的入射源。在自由空間散射問(wèn)題的FDTD計(jì)算中,可以預(yù)先設(shè)置一個(gè)一維FDTD迭代,然后利用等效原理將一維節(jié)點(diǎn)上的場(chǎng)值通過(guò)投影和插值的方法投影到FDTD的連接邊界上獲得入射平面波。在半空間情形下,多方向入射波引入時(shí)可以采用相同方法,可預(yù)先設(shè)置多個(gè)一維FDTD迭代,然后通過(guò)投影和插值獲得多方向入射平面波,如圖3所示。
這樣通過(guò)2個(gè)一維FDTD迭代,就將直接入射波和界面反射波引入到了FDTD的總場(chǎng)邊界,通過(guò)時(shí)域迭代計(jì)算,就可得到任意觀察點(diǎn)的場(chǎng)值。
2 數(shù)值結(jié)果
2.1 算法驗(yàn)證及與傳統(tǒng)半空間FDTD方法對(duì)比
算例1:為了驗(yàn)證文中方法中反射波計(jì)算方法的正確性,圖4分別給出一維麥克斯韋方程方法[25]和文中方法計(jì)算有耗介質(zhì)反射波的對(duì)比情況。一維麥克斯韋方程方法剖分網(wǎng)格δ=5×10-3m,時(shí)間步Δt=0.005×10-7 s.入射波為HEMP
E=kE0[exp(-αt′)-exp(-βt′)
]
(4)
式中 k=1.05,α=4.0×10-6 s,β=4.76×10-8 s
,由圖4可見(jiàn),文中方法與一維麥克斯韋方程方法結(jié)果吻合較好。
算例2:為了證明文中方法退化至自由空間情形下的正確性,分別采用商業(yè)軟件CST Microwave Studio及文中方法計(jì)算了介質(zhì)立方體
(
εr=4.0)內(nèi)部觀察點(diǎn)場(chǎng)值隨時(shí)間的變化情況。入射波是脈沖寬度為1 ns的高斯脈沖。立方體邊長(zhǎng)0.32 m,F(xiàn)DTD剖分網(wǎng)格δ=8 mm,時(shí)間間隔Δt=0.006 25 ns,F(xiàn)DTD計(jì)算中CPML吸收邊界節(jié)點(diǎn)為:-23∶23(
x方向);-23∶23(y方向);-23∶23(z方向),連
接邊界為:-33∶33(x方向);-33∶33(y方向);-33∶33(z方向),觀察點(diǎn)坐標(biāo)為(0 m,0 m,0.2 m)。如圖5所示,2種方法結(jié)果吻合較好,從而證明文中方法的正確性。
算例3:為了進(jìn)一步證明文中方法的正確性及有效性,分別采用傳統(tǒng)半空間FDTD方法和文中方法計(jì)算目標(biāo)附近場(chǎng)強(qiáng)大小。目標(biāo)為距離半空間分界面1 m,邊長(zhǎng)為0.64 m的介質(zhì)立方體(
εr=4.0),下半空間為有耗介質(zhì),在計(jì)算區(qū)域內(nèi)部設(shè)3個(gè)觀察點(diǎn),分別采用2種方法計(jì)算觀察點(diǎn)的場(chǎng)值。FDTD剖分網(wǎng)格δ=8 mm,時(shí)間間隔Δt=0.005 ns,CPML吸收邊界節(jié)點(diǎn)為:-43∶43(x方向);-43∶43(y方向);-83∶83(z方向),連接邊界為:-53∶53(x方向);-53∶53(y方向)-93∶93(z方向)。3個(gè)觀察點(diǎn)坐標(biāo)分別為EP1(0 m,0.16 m,0.16 m),EP2(0 m,-0.16 m,0.16 m),EP3(0 m,0 m,0.16 m),圖6(a)和圖6(b)分別給出采用傳統(tǒng)半空間FDTD方法和文中方法的計(jì)算結(jié)果及文中方法相比于傳統(tǒng)方法的計(jì)算誤差。
由圖6可見(jiàn),2種方法結(jié)果吻合較好,相比于傳統(tǒng)方法,文中方法的計(jì)算誤差在0.5%之內(nèi),證明了文中方法的正確性。根據(jù)FDTD計(jì)算中的Courant stability condition,可對(duì)三維FDTD迭代所需計(jì)算內(nèi)存及時(shí)間步數(shù)進(jìn)行估算[24]。以算例3中目標(biāo)為例,采用傳統(tǒng)半空間FDTD方法和文中方法所需要的內(nèi)存及時(shí)間對(duì)比情況見(jiàn)表1.
由表1可見(jiàn),文中方法在計(jì)算內(nèi)存和時(shí)間上均具有明顯的優(yōu)勢(shì)。在當(dāng)前計(jì)算參數(shù)下,文中方法所需計(jì)算內(nèi)存及時(shí)間分別減少到傳統(tǒng)方法的52%和56%,且該優(yōu)勢(shì)會(huì)隨著目標(biāo)電尺寸的增大及目標(biāo)距地面高度的升高而愈加明顯。
2.2 有耗半空間上方金屬腔時(shí)域的屏蔽效能
通常電子或電氣設(shè)備會(huì)對(duì)3類物理量敏感:電場(chǎng)或磁場(chǎng)瞬時(shí)響應(yīng)的最大值、磁通或電通密度隨時(shí)間變化引起的感應(yīng)效應(yīng)最大值、和傳輸?shù)狡骷系目偰芰?。依?jù)不同的敏感類型,時(shí)域SE有3種不同的定義[26]:峰值下降(peak value reduction,PR)屏蔽效能、導(dǎo)數(shù)下降(derivative reduction,DR)屏蔽效能和能量密度下降(energy density reduction,ER)屏蔽效能。
式中 E0-max和Es-max分別表示屏蔽腔不存在和存在時(shí)空間某個(gè)位置電場(chǎng)瞬時(shí)最大值,
E·0-max
和
E·s-max
分別表示屏蔽腔不存在和存在時(shí)空間某個(gè)
位置電場(chǎng)變化率的最大絕對(duì)值,
W0和Ws分別表示屏蔽腔不存在和存在時(shí)觀察點(diǎn)的能量流密度。
根據(jù)(5)式,可計(jì)算出(4)式照射下有耗半空間(εr=3,σ=0.1 S/m)上方腔體的時(shí)域屏蔽效能。圖7給出不同極化角的入射波照射下,自由空間和半空間情形腔體中心3種時(shí)域屏蔽效能的對(duì)比情況。
由圖7可見(jiàn),由于SEPR計(jì)算的根據(jù)觀察點(diǎn)瞬態(tài)場(chǎng)的最大值進(jìn)行計(jì)算得到的,而通常反射波的幅值小于直接入射波幅值,因此半空間環(huán)境下的SEPR保持與自由空間相同的變化趨勢(shì);而SEDR,SEWR與自由空間相比均有所下降,下降的幅度在α0=30°達(dá)到最大。由此可見(jiàn),由于半空間的存在,界面反射波給目標(biāo)新一輪的沖擊,造成屏蔽腔的屏蔽效能下降。
3 結(jié) 論
針對(duì)現(xiàn)有方法計(jì)算效率不高的問(wèn)題,提出了一種無(wú)需使用半空間格林函數(shù)的改進(jìn)半空間FDTD方法,實(shí)現(xiàn)了半空間上方金屬屏蔽腔內(nèi)場(chǎng)強(qiáng)分布及時(shí)域屏蔽效能的快速計(jì)算。由于半空間的存在,細(xì)縫屏蔽腔的時(shí)域屏蔽效能顯著下降。由于文中方法無(wú)需求解形式復(fù)雜、計(jì)算困難的半空間格林函數(shù),可方便地應(yīng)用在復(fù)雜半空間及其上方目標(biāo)的復(fù)合電磁問(wèn)題中。
參考文獻(xiàn)(References):
[1] IEEE Standard method for measuring the effectiveness of electromagnetic shielding enclosures[S].IEEE Stanstard,IEEE,2007.
[2]SHOURVARZI A,JOODAKI M.Shielding effectiveness measurement for extremely small dimension enclosures[J].IEEE Transactions on Electromagnetic Compatibility,2019,61(6):1740-1745.
[3]安靜,吳敏,高建強(qiáng),等.金屬腔體多耦合通道電磁特性研究[J].微波學(xué)報(bào),2019,35(5):63-66.AN Jing,WU Min,GAO Jian-qiang,et al.Study on electromagnetic characteristics of multi-coupling channels for the metal cavity[J].Journal of Microwaves,2019,35(5):63-66.
[4]CELOZZI S,ARANEO R,Lovat G.Electromagnetic shielding[M].Hoboken,NJ,USA:Wiley,2008.
[5]周澤倫.帶孔縫箱體電磁屏蔽效能的研究[J].西安科技大學(xué)學(xué)報(bào),2016,36(1):122-126.ZHOU Ze-lun.Research on the shielding effectiveness of the box with apertures[J].Journal of Xian University of Science and Technology,2016,36(1):122-126.
[6]CERRI G,DE L R,PRIMIANI V M.Theoretical and experimental evaluation of the electromagnetic radiation from apertures in shielded enclosures[J].IEEE Transactions on Electromagnetic Compatibility,1992,34(4):423-432.
[7]ARANEO R,LOVAT G.Fast MoM analysis of the shielding effectiveness of rectangular enclosures with apertures,metal plates,and conducting objects[J].IEEE Transactions on Electromagnetic Compatibility,2009,51(2):274-283.
[8]楊福榮,李鵬,許萬(wàn)業(yè),等.線纜-機(jī)箱電磁兼容分析的PEEC-MoM混合方法[J].西安電子科技大學(xué)學(xué)報(bào),2016,43(6):147-152.YANG Fu-rong,LI Peng,XU Wan-ye,et al.PEEC-MoM hybrid method for electromagnetic compatibility analysis of the cable-enclosure system[J].Journal of Xidian University,2016,43(6):147-152.
[9]MAI H X,CHEN J,ZHANG A X.A hybrid algorithm based on FDTD and HIE-FDTD methods for simulating shielding enclosure[J].IEEE Transactions on Electromagnetic Compatibility,2018,60(5):1393-1399.
[10]李俊辛,張曉萍,閆麗萍,等.基于JASMIN的并行CP-FDTD建模與屏蔽效能評(píng)估應(yīng)用[J].強(qiáng)激光與粒子束,2019,31(5):42-48.LI Jun-xin,ZHANG Xiao-ping,YAN Li-ping,et al.JASMIN-based parallel CP-FDTD modeling and application to shielding effectiveness prediction[J].High Power Laser and Particle Beams,2019,31(5):42-48.
[11]周平.TSF算法及其在機(jī)箱屏蔽效應(yīng)分析中的應(yīng)用[J].西安科技大學(xué)學(xué)報(bào),2006,26(2):259-262.ZHOU Ping.TSF algorithm for analysis of the effect of a shielding box[J].Journal of Xian University of Science and Technology,2006,26(2):259-262.
[12]CHEN J,GUO J Y,TIAN C M.Analyzing the shielding effectiveness of a graphene-coated shielding sheet by using the HIE-FDTD method[J].IEEE Transactions on Electromagnetic Compatibility,2018,60(2):362-367.
[13]CARPES W P,PICHON L,RAZEK A.Analysis of the coupling of an incident wave with a wire inside a cavity using an FEM in frequency and time domains[J].IEEE Transactions on Electromagnetic Compatibility,2002,44(3):470-475.
[14]BENHASSINE S,PINCHON L,TABBARA W.An efficient finite-element time-domain method for the analysis of the coupling between wave and shielded enclosure[J].IEEE Transactions on Magnetics,2002,38(2):709-712.
[15]LUO W,LIAO Y,ZHAO Z G,et al.Accurate simulation of shielding effectiveness of metallic cabins using an improved calderon preconditioner-based time-domain integral equation method[J].IEEE Transactions on Electromagnetic Compatibility,2019,60(1):200-208.
[16]NIE B L,DU P A,YU Y T,et al.Study of the shielding properties of enclosures with apertures at higher frequencies using the transmission-line modeling method[J].IEEE Transactions on Electromagnetic Compatibility,2011,53(1):73-81.
[17]MOLLER C,KLINKENBUSCH L.Electromagnetic and transient shielding effectiveness for near-field sources[J].Advances in Radio Science,2007(5):57-62.
[18]CELOZZI S,ARANEO R.Alternative definitions for the time-domain shielding effectiveness of enclosures[J].IEEE Transactions on Electromagnetic Compatibility,2014,56(2):482-485.
[19]ARANEO R,CELOZZI S.Toward a definition of the shielding effectiveness in the time-domain[J].IEEE International Symposium on Electromagnetic Compatibility,2013,5(9):113-117.
[20]曹樂(lè),魏兵,朱湘琴.高功率微波照射下半空間上方天線罩耦合特性[J].強(qiáng)激光與粒子束,2015,27(8):136-141.CAO Le,WEI Bing,ZHU Xiang-qin.Electromagnetic energy coupling analysis of radome over lossy half space under High Power Microwave[J].High Power Laser and Particle Beams,2015,27(8):136-141.
[21]綦鑫,聶在平,闕肖峰,等.半空間環(huán)境下跨界金屬目標(biāo)電磁散射快速分析研究[J].電子科技大學(xué)學(xué)報(bào),2018,47(4):521-525.QI Xin,NIE Zai-ping,QUE Xiao-feng,et al.Fast analysis of EM scattering from PEC bodies straddling a half-space interface[J].Journal of University of Electronic Science and Technology of China,2018,47(4):521-525.
[22]NAZARI M E,HUANG W M.An analytical solution of electromagnetic radiation of a vertical dipole over a layered half-space[J].IEEE Transactions on Antennas and Propagation,2020,68(2):1181-1185.
[23]CHEW W C.Waves and fields in inhomogeneous media[M].New York:Van Nostrand Reinhold,1990.
[24]葛德彪,閆玉波.電磁波時(shí)域有限差分方法[M].西安:西安電子科技大學(xué)出版社,2011.
[25]TAFLOVE A,HAGNESS S C.Computational electrodynamics:the finite-difference time-domain method[M].Norwood,MA:Artech House,2005.
[26]CELOZZI S.ARANEO R.Alternative definitions for the time-domain shielding effectiveness of enclosures[J].IEEE Transactions on Electromagnetic Compatibility,2014,56(2):482-485.