• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revisiting the Concentration Observations and Source Apportionment of Atmospheric Ammonia

    2020-08-19 08:56:46YuepengPANMengnaGUYuexinHEDianmingWUChunyanLIULinlinSONGShiliTIANXuemeiYangSUNTaoSONGWendellWALTERSXuejunLIUNicholasMARTINQianqianZHANG0YuntingFANGValerioFERRACCI2andYuesiWANG
    Advances in Atmospheric Sciences 2020年9期

    Yuepeng PAN, Mengna GU, Yuexin HE, Dianming WU, Chunyan LIU, Linlin SONG,Shili TIAN, Xuemei Lü, Yang SUN, Tao SONG, Wendell W. WALTERS, Xuejun LIU,Nicholas A. MARTIN, Qianqian ZHANG0, Yunting FANG,,Valerio FERRACCI2, and Yuesi WANG,3

    1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

    3Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment,Chinese Academy of Sciences, Xiamen 361021, China

    4Key Laboratory of Geographic Information Sciences, Ministry of Education, School of Geographic Sciences,East China Normal University, Shanghai 200241, China

    5CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology,Chinese Academy of Sciences, Shenyang 110016, China

    6Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912, USA

    7Institute at Brown for Environment and Society, Brown University, Providence, RI 02912, USA

    8College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

    9National Physical Laboratory, Air Quality and Aerosol Metrology Group, Environment Department,Hampton Road, Teddington, Middlesex, TW11 0LW, UK

    10National Satellite Meteorological Center, China Meteorological Administration, Beijing, 100081, China

    11Key Laboratory of Stable Isotope Techniques and Applications, Shenyang 110016, China

    12Centre for Environmental and Agricultural Informatics, Cranfield University, College Road, MK43 0AL, UK

    While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on whether agricultural or non-agricultural emissions dominate the urban ammonia budget. Identifying the ammonia source by nitrogen isotope helps in designing a mitigation strategy for policymakers, but existing methods have not been well validated. Revisiting the concentration measurements and identifying source apportionment of atmospheric ammonia is thus an essential step towards reducing ammonia emissions.

    1. The need for ammonia monitoring in the atmosphere

    Ammonia (NH3) is the most abundant alkaline gas in the atmosphere. While NH3has a beneficial role in buffering acid rain (Wang et al., 2012), after deposition it can detrimentally affect Earth’s ecosystems through soil acidification, water eutrophication, and biodiversity loss (Liu et al., 2019). The overabundance of NH3in the lower atmosphere is suggested to promote the formation of secondary ammoniated aerosol particles (Wang et al., 2016), with significant impacts on visibility deterioration and human health (An et al., 2019). Recently, NH3and ammonium nitrate particles were also found in the upper troposphere during the Asian monsoon and play a hitherto neglected role in ice cloud formation and aerosol indirect radiative forcing (H?pfner et al., 2019). However, the severe lack of NH3measurements with sufficient spatial and temporal coverage is currently a barrier to understanding the vital role of NH3in air pollution, ecosystem protection, and climate change. It has resulted in unclear regulatory guidelines for mitigating these effects (Pan et al., 2020b).

    2. Current status of ammonia observations and limitations

    Anthropogenic emissions of NH3in China are more significant than the total emissions of the U.S. and the European Union (Liu et al., 2019). To date, there is still no national NH3concentration monitoring network operated by the Chinese government. Following the guidelines of the National Atmospheric Deposition Program in the U.S., the Institute of Atmospheric Physics, Chinese Academy of Sciences, established a Regional Atmospheric Deposition Observation Network in the North China Plain (READ-NCP). This network, including 10 sites covering different land-use types, started monitoring NH3concentrations in 2007, and has also obtained significant results with respect to the atmospheric deposition of nitrogen,carbon, sulfate, and metals. Based on the observations of READ-NCP from 2008 to 2010, NH3was found to be a significant contributor to nitrogen deposition in this region (Pan et al., 2012). Thus, clarification of NH3levels in China can aid policymakers in the protection of ecosystems from excess nitrogen deposition. Due to the lack of data, however, the whole picture of NH3distribution in China was poorly understood. In 2015, READ-NCP was extended to a spatially dense and costefficient network focusing on NH3observations in China (AMoN-China) (Pan et al., 2018). The system currently consists of approximately 100 sites, which is similar to that of the U.S. AMoN (Fig. 1). While the NH3concentration was relatively low in the U.S., there is an increasing importance of deposition of reduced nitrogen due to the significant reduction in oxidized nitrogen (Li et al., 2016).

    Besides AMoN in China (Pan et al., 2018) and the U.S. (http://nadp.slh.wisc.edu/AMoN), the monitoring of surface NH3is also conducted by other networks (Fig. 1), e.g., EANET (The Acid Deposition Monitoring Network in East Asia;https://www.eanet.asia), EMEP (the Co-operative Programme for Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants; http://ebas.nilu.no/Default.aspx) and the IDAF (IGAC-DEBITS-AFRICA) program for African ecosystems (Adon et al., 2010). Most of these networks employed a cost-effective approach by using passive samplers, including ALPHA, Analyst, Radiello, and Ogawa, which have advantages in characterizing the spatial distribution and long-term trends of NH3. However, the accuracy of these passive NH3sampling techniques is not well validated in the field, which represents one of the biggest challenges in NH3monitoring (Martin et al., 2019). For example, it is reported that the NH3concentrations collected by Radiello passive samplers are approximately 40% lower than the denuder-based reference method(Puchalski et al., 2011). The low NH3concentration bias in the passive collection samplers was suggested to be the result of inaccurate effective sampling rates due to incorrect mass transfer correction factors for the environmental conditions (Pan et al., 2020a). Thus, questions remain as to whether the NH3concentrations from different networks can be directly compared if they employed different passive samplers. Concurrent measurements of the passive samplers used in various networks are thus further needed, with a collocated reference method, e.g., annular denuders and continuous real-time instruments employing the wet chemistry technique (von Bobrutzki et al., 2010; Martin et al., 2019; Pan et al., 2020a).

    3. Debate on ammonia sources in the urban atmosphere

    The need for source apportionment has increased in recent years as atmospheric NH3concentrations and deposition fluxes have shown little change or even increased following more stringent air pollutant controls (Liu et al., 2018). Longterm satellite observation from the Atmospheric Infrared Sounder (AIRS) aboard NASA’s Aqua satellite also implied that NH3levels over agricultural regions had experienced significant increasing trends between 2002 and 2013, with an annual increase rate of 2.6%, 1.8% and 2.3% in the U.S., the European Union, and China, respectively (Warner et al., 2017). The increment of atmospheric NH3concentrations tended to continue between 2013 and 2017, as observed from space with the Cross-track Infrared Sounder (CrIS) (Shephard et al., 2020). While agricultural activities (fertilization and livestock volatilization) are known to dominate the emissions of NH3, accounting for over 60% and 80% of the global and Asian inventory(Bouwman et al., 1997; Huang et al., 2012), non-agricultural sources have been suggested as a major NH3source at the urban scale (Felix et al., 2014; Pan et al., 2016; Sun et al., 2017; Chang et al., 2019; Walters et al., 2020a).

    Ammonia emissions in developing cities are especially important because of their high emissions ratios to CO2and rapidly expanding vehicle fleets (Sun et al., 2017). For example, vehicular emissions were found to be a critical NH3source in urban Beijing (Ianniello et al., 2010; Meng et al., 2011). Industrial NH3emissions, rather than those from vehicles, were also identified in the megacity of Shanghai (Wang et al., 2015). However, in contrast to previous results, Teng et al. (2017)suggested that urban green spaces and evaporation of deposited NHx(NH3+NH4+) on wet surfaces, rather than traffic and agricultural emissions, were the primary source for NH3in an urban environment during winter in NCP. Thus, there is still no consensus on whether these emissions are among the major sources of urban atmospheric NH3. Currently, the rapid development of isotope techniques is promising (Liu et al., 2014) and may provide scientists and policymakers with a more robust methodology and reliable evidence to track atmospheric NH3sources (Felix et al., 2014; Pan et al., 2016; Chang et al.,2019; Walters et al., 2020a).

    Fig. 1. Surface ammonia concentrations during 2015?16 observed by AMoN in (a) the U.S.(http://nadp.slh.wisc.edu/AMoN/), (b) the UK (https://uk-air.defra.gov.uk/), and (c) East Asia(https://www.eanet.asia) including China (Pan et al., 2018). (d) Long-term surface measurements of ammonia in Africa within the framework of the IDAF (IGAC-DEBITSAFRICA) program (mean values from 1998 to 2007) (Adon et al., 2010). Global ammonia morning column measurements (2008-16) observed from space by IASI are also shown(https://doi.pangaea.de/10.1594/PANGAEA.894736).

    4. Constraining ammonia sources utilizing nitrogen isotopes

    The use of nitrogen isotopic composition of NH3(δ15N-NH3) as a fingerprint identification of NH3emissions sources requires distinguishable isotopic signatures (Felix et al., 2013). While this technique has been widely used in Chinese cities,e.g., Beijing (Pan et al., 2016; Zhang et al., 2020) and Shanghai (Chang et al., 2019), considerable uncertainties remain in characterizing the endmembers. In particular, current collection methods are almost exclusively based on passive samplers,which have not been verified for their suitability to characterize δ15N-NH3accurately. Recently, Walters and Hastings(2018) validated an active sampling collection technique using an acid-coated honeycomb denuder to characterize δ15NNH3under a variety of laboratory-controlled conditions as well as under field conditions. As a reference to this new verified method, Walters et al. (2020a) also found a substantial low bias of 15‰ in the ALPHA passive sampler in characterizing δ15N-NH3from traffic plumes. Such a low bias of passive samplers in characterizing δ15N-NH3was also confirmed in field observations in urban Beijing by Pan et al. (2020a). Thus, previous source apportionment needs to be reevaluated if using an inventory of δ15N-NH3based on passive samplers, especially the ALPHA sampler.

    To evaluate the potential influences of the low bias of δ15N-NH3by passive samplers, we revisited the sources of atmospheric NH3in urban Beijing using a Bayesian isotope mixing model (SIAR, Stable Isotope Analysis in R) (Kendall et al.,2007). Two scenarios were performed based on an isotopic inventory with and without correction for the passive collection δ15N-NH3bias (Fig. 2). Accordingly, the model was run with δ15N-NH3values of ?18.2‰ (corrected) and ?33.2‰ (original uncorrected) as input for ambient samples. The latter value represented an annual mean δ15N-NH3value in urban Beijing based on a year-round and weekly collection by the passive ALPHA sampler (Zhang et al., 2020).

    Figure 3a demonstrates that non-agricultural sources contributed only 57% of NH3using the inventory without correction (Fig. 2), which is lower than the original estimation of ~72% by Zhang et al. (2020). This difference implied the impacts of different selection of source signatures in these two studies. Also, we have apportioned the source of NH3with corrected δ15N-NH3values of both inventories and samples by adding 15‰ to the corresponding passive sampler measurement data. The results showed that 66% of NH3was from non-agricultural emissions (Fig. 3b). This attribution may be more reliable due to the updated inventory. The different contributions between Figs. 3a and b for each source, in particular for fertilizers, industry, and vehicles, indicated the uncertainty introduced by the low δ15N-NH3bias of passive samplers.

    Fig. 2. The nitrogen isotopic composition of ammonia characterized at various endmembers. Recent reported isotopic signatures from traffic plumes, fertilizer and livestock (Ti et al., 2018; Kawashima, 2019; Walters et al., 2020a) were updated based on the previous summary by Walters and Hastings (2018). Note that the field sampling was conducted by different collection methods (legend) and is grouped by passive against active samplers (symbols with colors). To correct the low bias of passive data (gray symbols), 15‰ was added to the original values and is shown as corrected (symbols with colors) accordingly. Symbols with the same color and shape represent a series of observations during the same campaign. Data sources: (a) Freyer(1978); (b) Hristov et al. (2009); (c) Heaton (1987); (d) Savard et al. (2017); (e) Smirnoff et al. (2012); (f) Ti et al. (2018); (g) Felix et al. (2013); (h) Walters et al. (2020b); (i) Kawashima (2019); (j) Felix et al. (2014);(k) Chang et al. (2016).

    Fig. 3. Source apportionment of atmospheric ammonia in urban Beijing based on isotopic inventory (a)without and (b) with correction for the passive collection bias in characterizing nitrogen isotopic composition of ammonia, as shown in Fig. 2. The nitrogen isotopic values of ?18.2‰ (corrected) and ?33.2‰ (original)were selected as input for ambient ammonia samples. The original isotope data of ?33.2‰ were the annual mean values observed between March 2016 and March 2017 by Zhang et al. (2020).

    5. Outlook

    It is important to note that tropospheric NH3concentrations can be reduced through tight control measures; else they will continue to increase. Constraining NH3sources utilizing stable nitrogen isotopes can aid policymakers to draft a mitigation strategy for NH3emissions, but this method depends on an accurate characterization of δ15N-NH3from both source and receptor sites. While the isotopic inventory has significant impacts on the source apportionment, a verified collection technique is warranted to improve the source inventory of δ15N-NH3. Due to the different lifetime of NH3and NH4+in the atmosphere, the sources of NH3and NH4+at a given site may also be different. Thus, a better knowledge of nitrogen fractionation via atmospheric processes, e.g., gas-to-particle conversion, also helps in source apportionment of atmospheric NH3and NH4+. To address this concern, the concurrent determination of different chemical speciation (i.e., δ15N-NH3and δ15NNH4+) is highly needed.

    Acknowledgements.This study was supported by the National Key Research and Development Program of China (Grant No.2017YFC0210100), National Research Program for Key Issues in Air Pollution Control (Grant No. DQGG0208) and the National Natural Science Foundation of China (Grant No. 41405144). WWW acknowledges support from the Atmospheric and Geospaces Sciences U.S. National Science Foundation (Grant No. AGS 1351932). We acknowledge the U.K. Department for Environment Food & Rural Affairs (uk-air.defra.gov.uk) as the source of the UK ammonia data (? Crown 2020 copyright Defra via uk-air.defra.gov.uk, licenced under the Open Government Licence). ? Crown copyright 2020 and reproduced by permission of the Controller of HMSO and the Queen’s Printer for Scotland.

    国产深夜福利视频在线观看| 五月开心婷婷网| 人人妻人人澡人人爽人人夜夜| 欧美日韩一区二区视频在线观看视频在线| 免费观看a级毛片全部| 又粗又硬又长又爽又黄的视频| 日韩成人av中文字幕在线观看| a级毛片黄视频| 黑人巨大精品欧美一区二区蜜桃 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 啦啦啦啦在线视频资源| 日韩一区二区视频免费看| 日韩熟女老妇一区二区性免费视频| 最新的欧美精品一区二区| 日韩精品有码人妻一区| 22中文网久久字幕| kizo精华| 中文字幕久久专区| 欧美一级a爱片免费观看看| 日韩欧美一区视频在线观看| 美女中出高潮动态图| 97在线人人人人妻| 亚洲国产成人一精品久久久| 国产深夜福利视频在线观看| 男人爽女人下面视频在线观看| 日本午夜av视频| .国产精品久久| 精品国产一区二区三区久久久樱花| 九九在线视频观看精品| 日韩av在线免费看完整版不卡| 国产熟女欧美一区二区| 人人妻人人爽人人添夜夜欢视频| 久久久久久久大尺度免费视频| 秋霞在线观看毛片| 热re99久久精品国产66热6| 麻豆乱淫一区二区| 国产成人精品久久久久久| 亚洲av成人精品一区久久| 中文字幕免费在线视频6| 久久精品国产a三级三级三级| 又黄又爽又刺激的免费视频.| 日日摸夜夜添夜夜添av毛片| 日韩av不卡免费在线播放| 亚洲综合色网址| 一本一本综合久久| 男女无遮挡免费网站观看| 国产成人精品在线电影| 色吧在线观看| 久久国内精品自在自线图片| 麻豆乱淫一区二区| 日韩 亚洲 欧美在线| 久久久久网色| 好男人视频免费观看在线| 激情五月婷婷亚洲| 免费av中文字幕在线| 又粗又硬又长又爽又黄的视频| 大码成人一级视频| 五月玫瑰六月丁香| 国产男人的电影天堂91| 国国产精品蜜臀av免费| 97在线视频观看| 国产精品人妻久久久影院| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久视频综合| 国产一区亚洲一区在线观看| 伦理电影免费视频| 日韩大片免费观看网站| 免费观看a级毛片全部| 在线观看www视频免费| av不卡在线播放| 亚洲人与动物交配视频| 欧美 亚洲 国产 日韩一| 国产免费一区二区三区四区乱码| 亚洲国产最新在线播放| 久久午夜福利片| 亚洲欧洲精品一区二区精品久久久 | 99久久综合免费| 王馨瑶露胸无遮挡在线观看| 欧美 亚洲 国产 日韩一| 国产精品99久久99久久久不卡 | 全区人妻精品视频| 国产亚洲午夜精品一区二区久久| 国产成人aa在线观看| 成人午夜精彩视频在线观看| 国产午夜精品久久久久久一区二区三区| 青春草亚洲视频在线观看| 欧美丝袜亚洲另类| 免费av不卡在线播放| 美女国产视频在线观看| 亚洲人与动物交配视频| 欧美激情极品国产一区二区三区 | 国产精品久久久久久av不卡| 又黄又爽又刺激的免费视频.| 久久99一区二区三区| 日韩av免费高清视频| 亚洲欧美中文字幕日韩二区| 日韩一区二区视频免费看| 久久久午夜欧美精品| 搡老乐熟女国产| 在线观看www视频免费| 看免费成人av毛片| 桃花免费在线播放| 最近2019中文字幕mv第一页| 99re6热这里在线精品视频| 日韩中字成人| 嫩草影院入口| 老女人水多毛片| 午夜福利网站1000一区二区三区| 人人澡人人妻人| 18禁观看日本| 久久人妻熟女aⅴ| 色哟哟·www| 99热这里只有是精品在线观看| 久久久久久久久久成人| 我的女老师完整版在线观看| 下体分泌物呈黄色| 国产在线视频一区二区| 亚洲精品色激情综合| 亚洲国产色片| 欧美人与善性xxx| 精品国产乱码久久久久久小说| 午夜91福利影院| 欧美97在线视频| 91午夜精品亚洲一区二区三区| 青春草亚洲视频在线观看| 飞空精品影院首页| 亚洲欧美一区二区三区黑人 | 女人精品久久久久毛片| 午夜激情福利司机影院| 国产高清不卡午夜福利| 大片电影免费在线观看免费| 国产精品久久久久久久久免| 日本黄大片高清| 黑人猛操日本美女一级片| 建设人人有责人人尽责人人享有的| 欧美激情国产日韩精品一区| 97超视频在线观看视频| 天堂俺去俺来也www色官网| 免费大片黄手机在线观看| 极品人妻少妇av视频| 老司机亚洲免费影院| 国产不卡av网站在线观看| 哪个播放器可以免费观看大片| 男男h啪啪无遮挡| 一个人免费看片子| 一级,二级,三级黄色视频| 天堂8中文在线网| 久久精品国产a三级三级三级| 大话2 男鬼变身卡| 成人影院久久| 精品人妻一区二区三区麻豆| 在线观看免费日韩欧美大片 | 久久99一区二区三区| 亚洲精品国产av蜜桃| 久久久久久人妻| 亚洲第一区二区三区不卡| 亚洲精品国产色婷婷电影| 中文字幕亚洲精品专区| 日本黄大片高清| 丰满迷人的少妇在线观看| 国产欧美日韩一区二区三区在线 | 国产亚洲精品久久久com| 亚洲少妇的诱惑av| 国产深夜福利视频在线观看| 十分钟在线观看高清视频www| 蜜臀久久99精品久久宅男| 黄片无遮挡物在线观看| 日本vs欧美在线观看视频| 久久国产亚洲av麻豆专区| 大香蕉97超碰在线| 少妇 在线观看| 高清在线视频一区二区三区| 亚洲在久久综合| 日本免费在线观看一区| 91午夜精品亚洲一区二区三区| 夜夜看夜夜爽夜夜摸| 中国美白少妇内射xxxbb| av线在线观看网站| 一边亲一边摸免费视频| 一本色道久久久久久精品综合| 99久久中文字幕三级久久日本| av天堂久久9| 亚洲国产最新在线播放| 最近的中文字幕免费完整| 日日啪夜夜爽| av专区在线播放| 久久久久国产网址| 成人毛片60女人毛片免费| 搡女人真爽免费视频火全软件| 欧美另类一区| 午夜福利影视在线免费观看| 女的被弄到高潮叫床怎么办| 日韩成人伦理影院| 男人操女人黄网站| 久久国产亚洲av麻豆专区| 国产一级毛片在线| av在线老鸭窝| 亚洲国产最新在线播放| 日韩一区二区三区影片| 超碰97精品在线观看| 乱人伦中国视频| 麻豆成人av视频| 满18在线观看网站| 国产成人91sexporn| 国产亚洲最大av| 一本大道久久a久久精品| 99热全是精品| 国产乱人偷精品视频| 国产精品人妻久久久久久| 欧美日韩一区二区视频在线观看视频在线| 国产精品偷伦视频观看了| 日韩三级伦理在线观看| 最近中文字幕高清免费大全6| 最近2019中文字幕mv第一页| 久久精品国产鲁丝片午夜精品| 91精品三级在线观看| 国产精品 国内视频| 久久久国产一区二区| 精品久久久精品久久久| 在线播放无遮挡| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美一区二区三区国产| 国产高清不卡午夜福利| 亚洲,一卡二卡三卡| 欧美一级a爱片免费观看看| 69精品国产乱码久久久| 久久99热6这里只有精品| 国产av精品麻豆| 国产精品一区二区在线不卡| 在线观看一区二区三区激情| 国产精品秋霞免费鲁丝片| 午夜激情福利司机影院| 高清黄色对白视频在线免费看| 日本av手机在线免费观看| 大又大粗又爽又黄少妇毛片口| 亚洲熟女精品中文字幕| 亚洲精品第二区| 全区人妻精品视频| av在线播放精品| av视频免费观看在线观看| 精品国产一区二区久久| 另类精品久久| 男女边摸边吃奶| 18禁在线无遮挡免费观看视频| 日韩在线高清观看一区二区三区| 亚洲综合色网址| 熟妇人妻不卡中文字幕| 欧美日韩成人在线一区二区| 亚洲欧美一区二区三区国产| 久久99一区二区三区| 国产成人a∨麻豆精品| 国产午夜精品一二区理论片| 亚洲综合色网址| 免费黄网站久久成人精品| 男女边摸边吃奶| 夜夜骑夜夜射夜夜干| 国产成人freesex在线| xxx大片免费视频| 内地一区二区视频在线| 婷婷色综合大香蕉| 久久精品久久久久久久性| 成人毛片60女人毛片免费| 99久久综合免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久久久亚洲中文字幕| 色婷婷av一区二区三区视频| 婷婷成人精品国产| 视频在线观看一区二区三区| 久久久久精品性色| 国产av精品麻豆| 国产av国产精品国产| 免费看不卡的av| 久久精品国产自在天天线| 51国产日韩欧美| 九九在线视频观看精品| av国产久精品久网站免费入址| 亚洲在久久综合| 丰满乱子伦码专区| 两个人免费观看高清视频| 我的女老师完整版在线观看| 国产乱人偷精品视频| 国产熟女午夜一区二区三区 | 最黄视频免费看| 少妇 在线观看| 寂寞人妻少妇视频99o| 国产免费视频播放在线视频| 岛国毛片在线播放| 最近中文字幕高清免费大全6| 国产精品国产av在线观看| xxx大片免费视频| 夫妻午夜视频| 丝袜喷水一区| 草草在线视频免费看| 久久99热6这里只有精品| 成人毛片a级毛片在线播放| 国产免费一区二区三区四区乱码| 国产免费现黄频在线看| 高清不卡的av网站| 国产精品一区二区三区四区免费观看| 激情五月婷婷亚洲| 免费人成在线观看视频色| 成人国语在线视频| 久久久久久久久久久丰满| 国产精品无大码| 一级黄片播放器| 欧美精品一区二区大全| 久久久久精品性色| 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| 美女脱内裤让男人舔精品视频| av国产精品久久久久影院| 亚洲精华国产精华液的使用体验| 成人影院久久| 国产精品人妻久久久久久| 久久久国产一区二区| 久久久a久久爽久久v久久| 又大又黄又爽视频免费| 自线自在国产av| 五月伊人婷婷丁香| 欧美日韩亚洲高清精品| 一区二区三区精品91| 国产精品99久久99久久久不卡 | 一个人免费看片子| 秋霞伦理黄片| 国产成人精品无人区| 男女国产视频网站| 欧美日韩亚洲高清精品| 国产av码专区亚洲av| 在线观看三级黄色| 51国产日韩欧美| 亚洲精品美女久久av网站| 亚洲国产精品专区欧美| 女性被躁到高潮视频| 国产又色又爽无遮挡免| 最黄视频免费看| 国产精品熟女久久久久浪| 亚洲欧美成人精品一区二区| 精品国产乱码久久久久久小说| 欧美 亚洲 国产 日韩一| h视频一区二区三区| 黄片无遮挡物在线观看| 春色校园在线视频观看| 久久久久国产网址| 美女福利国产在线| 亚洲成人av在线免费| 精品少妇内射三级| 五月开心婷婷网| 亚洲欧美日韩卡通动漫| 免费看光身美女| 久久人人爽av亚洲精品天堂| 十八禁网站网址无遮挡| 亚洲,一卡二卡三卡| 久久鲁丝午夜福利片| 人人澡人人妻人| 高清视频免费观看一区二区| 校园人妻丝袜中文字幕| 少妇高潮的动态图| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久久电影| 一区二区三区乱码不卡18| .国产精品久久| 亚洲高清免费不卡视频| 99视频精品全部免费 在线| 能在线免费看毛片的网站| 色网站视频免费| 欧美日韩国产mv在线观看视频| 久久精品人人爽人人爽视色| 精品久久久精品久久久| 日本黄大片高清| 女性被躁到高潮视频| 国产免费一级a男人的天堂| 久久国内精品自在自线图片| 中文天堂在线官网| 久久人人爽人人片av| 亚洲精品自拍成人| 久久久精品区二区三区| 国产一区二区在线观看日韩| 老熟女久久久| 久久久久视频综合| 午夜免费观看性视频| 精品久久久久久久久av| 国产精品人妻久久久久久| 久久影院123| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 女性生殖器流出的白浆| 一区二区三区乱码不卡18| 你懂的网址亚洲精品在线观看| 国产在视频线精品| 亚洲国产精品一区二区三区在线| 国产黄色视频一区二区在线观看| 国产精品偷伦视频观看了| 成人二区视频| 草草在线视频免费看| 亚洲不卡免费看| 久久久久久伊人网av| 一个人免费看片子| 国产亚洲午夜精品一区二区久久| 久久亚洲国产成人精品v| 青青草视频在线视频观看| 99re6热这里在线精品视频| 久久青草综合色| 伦理电影大哥的女人| 18禁在线无遮挡免费观看视频| 九九在线视频观看精品| 曰老女人黄片| 日韩av在线免费看完整版不卡| 日韩一区二区三区影片| 3wmmmm亚洲av在线观看| 国产日韩欧美亚洲二区| 亚洲内射少妇av| 国产成人午夜福利电影在线观看| 日本av手机在线免费观看| 少妇高潮的动态图| 久久午夜福利片| 日本-黄色视频高清免费观看| 男人爽女人下面视频在线观看| 中文天堂在线官网| 久久人人爽人人片av| 如日韩欧美国产精品一区二区三区 | 人人妻人人爽人人添夜夜欢视频| 观看美女的网站| 欧美日本中文国产一区发布| 久久韩国三级中文字幕| 一级毛片黄色毛片免费观看视频| 亚洲国产精品成人久久小说| 亚洲精品,欧美精品| 欧美 日韩 精品 国产| 久久精品久久久久久噜噜老黄| 亚洲少妇的诱惑av| 亚洲国产欧美在线一区| 80岁老熟妇乱子伦牲交| 天堂8中文在线网| 成人免费观看视频高清| 热99国产精品久久久久久7| 天天躁夜夜躁狠狠久久av| 免费黄色在线免费观看| 观看av在线不卡| 精品亚洲乱码少妇综合久久| 大码成人一级视频| 欧美老熟妇乱子伦牲交| 中文字幕亚洲精品专区| 欧美三级亚洲精品| videossex国产| 黑丝袜美女国产一区| 日韩不卡一区二区三区视频在线| 最近中文字幕高清免费大全6| 久久精品熟女亚洲av麻豆精品| 免费久久久久久久精品成人欧美视频 | 午夜福利,免费看| 丰满乱子伦码专区| 99久久精品一区二区三区| 亚洲熟女精品中文字幕| 熟女电影av网| av免费观看日本| 国产精品一二三区在线看| 汤姆久久久久久久影院中文字幕| 九色亚洲精品在线播放| 国产爽快片一区二区三区| 久久久久精品久久久久真实原创| 亚洲av不卡在线观看| 国产极品粉嫩免费观看在线 | av视频免费观看在线观看| 日本猛色少妇xxxxx猛交久久| 91在线精品国自产拍蜜月| 欧美人与善性xxx| 日韩成人av中文字幕在线观看| 国产成人午夜福利电影在线观看| 免费久久久久久久精品成人欧美视频 | 综合色丁香网| 亚洲无线观看免费| 在线观看国产h片| 大香蕉久久网| 国产在线视频一区二区| 国产精品一二三区在线看| 99久久人妻综合| 中国美白少妇内射xxxbb| 国产精品不卡视频一区二区| 中文字幕人妻丝袜制服| 色哟哟·www| 亚洲人与动物交配视频| kizo精华| 男人操女人黄网站| av国产精品久久久久影院| 国产乱来视频区| 另类亚洲欧美激情| 久久久午夜欧美精品| 夫妻午夜视频| 久久久久国产精品人妻一区二区| 午夜免费观看性视频| av播播在线观看一区| 综合色丁香网| 国产色爽女视频免费观看| 成人毛片60女人毛片免费| 久久久久人妻精品一区果冻| 日韩 亚洲 欧美在线| 尾随美女入室| 免费播放大片免费观看视频在线观看| videossex国产| 精品一区二区三卡| 免费人妻精品一区二区三区视频| 午夜福利视频精品| av在线老鸭窝| 久久免费观看电影| 国产高清有码在线观看视频| 久久久久久久大尺度免费视频| 国产探花极品一区二区| 十分钟在线观看高清视频www| 精品一区二区三区视频在线| 少妇的逼水好多| av在线观看视频网站免费| 免费观看性生交大片5| av黄色大香蕉| 日韩av不卡免费在线播放| 成人漫画全彩无遮挡| 黑人巨大精品欧美一区二区蜜桃 | 女人久久www免费人成看片| 色婷婷av一区二区三区视频| 国产亚洲精品久久久com| 尾随美女入室| 亚洲国产av新网站| av不卡在线播放| 国产成人午夜福利电影在线观看| 国产午夜精品久久久久久一区二区三区| 啦啦啦视频在线资源免费观看| 国产高清三级在线| 熟女电影av网| 青春草亚洲视频在线观看| 精品亚洲成a人片在线观看| 国产黄频视频在线观看| 免费观看无遮挡的男女| 在线观看免费视频网站a站| 久久久午夜欧美精品| 美女福利国产在线| 日本91视频免费播放| 国产精品秋霞免费鲁丝片| 国产 精品1| 熟女av电影| 亚洲怡红院男人天堂| 亚洲国产精品成人久久小说| 岛国毛片在线播放| 久久国产精品大桥未久av| 国产亚洲午夜精品一区二区久久| 婷婷色av中文字幕| 国产男女超爽视频在线观看| 又粗又硬又长又爽又黄的视频| 国产精品国产三级国产专区5o| 久久精品人人爽人人爽视色| 777米奇影视久久| 丰满饥渴人妻一区二区三| 夫妻性生交免费视频一级片| 有码 亚洲区| 国产一级毛片在线| 亚洲精品自拍成人| 一本大道久久a久久精品| 高清视频免费观看一区二区| 色婷婷av一区二区三区视频| 久久人人爽人人片av| 天堂中文最新版在线下载| 亚洲精品国产色婷婷电影| 亚洲少妇的诱惑av| 亚洲精品日韩av片在线观看| 99久国产av精品国产电影| 黄色一级大片看看| 色吧在线观看| 丝袜在线中文字幕| 哪个播放器可以免费观看大片| 久久人人爽人人片av| 欧美亚洲 丝袜 人妻 在线| 久久久久精品性色| 精品酒店卫生间| 丰满乱子伦码专区| 久久久a久久爽久久v久久| av免费观看日本| 青春草国产在线视频| 一级毛片黄色毛片免费观看视频| 亚洲色图综合在线观看| 欧美变态另类bdsm刘玥| 亚洲国产av新网站| 亚洲精品中文字幕在线视频| a级毛片在线看网站| 插阴视频在线观看视频| 国产精品99久久久久久久久| 亚洲一级一片aⅴ在线观看| 亚洲国产欧美日韩在线播放| a级毛片在线看网站| 人妻人人澡人人爽人人| 国产精品国产av在线观看| 国产精品国产三级国产av玫瑰| 日韩 亚洲 欧美在线| 三级国产精品欧美在线观看| 国模一区二区三区四区视频| 国产在线免费精品| 视频中文字幕在线观看| 亚洲人成网站在线观看播放| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩一区二区三区在线 | 天美传媒精品一区二区| 18+在线观看网站| 黑人猛操日本美女一级片| 男人添女人高潮全过程视频| 2018国产大陆天天弄谢| 久久精品熟女亚洲av麻豆精品| 九色成人免费人妻av| av专区在线播放| 国产国拍精品亚洲av在线观看| 国产av一区二区精品久久| 色哟哟·www| 亚洲精华国产精华液的使用体验| 狂野欧美激情性xxxx在线观看| 欧美变态另类bdsm刘玥| 狂野欧美激情性xxxx在线观看| 久久亚洲国产成人精品v| 青春草亚洲视频在线观看| 欧美人与善性xxx| 青青草视频在线视频观看|