• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Logic that Captures βP on Ordered Structures*

    2020-08-01 10:20:54KexuWangXishunZhao
    邏輯學(xué)研究 2020年3期

    Kexu Wang Xishun Zhao

    Abstract.We extend the inflationary fixed-point logic,IFP,with a new kind of second-order quantifiers which have(poly-)logarithmic bounds.We prove that on ordered structures the new logic IFP captures the limited nondeterminism class βP.In order to study its expressive power,we also design a new version of Ehrenfeucht-Fra?ssé game for this logic and show that our capturing result will not hold in the general case,i.e.,on all the finite structures.

    1 Introduction

    In descriptive complexity theory,it is the most interesting task to find a logical characterization of a complexity class.But why do we need logics to characterize(or capture)complexity classes?

    Logics speak directly about graphs and structures,whereas most other formalisms operate on encodings of structures by strings or terms.Hence a logical characterization of a complexity class is representation-independent.

    —Martin Grohe([8])

    We know in graph theory or database theory,more essentially we care aboutgraph properties(orBoolean queries),i.e.,the properties which do not depend on encoding.A graph property is always closed under isomorphism.This coincides with that the model class of a logic sentence is closed under isomorphism.Descriptive complexity theory intends to consider every logic sentence as a machine and vice versa.Thus every model of a sentence could be associated with an input of a corresponding machine and the logic(actually a class of sentences)would be related to a complexity class (actually a class of Turing machines).The precise definition will be given in 2.2.

    In this paper,let’s turn to somelimited(orbounded)nondeterminismclasses,which are included in NP while including P.The idea of limited nondeterminism was first defined by Kintala et al.in[13].Then in[3]Cai et al.discussed a more general case,i.e.,the“Guess-then-Check”model.

    Definition 1.1([3])

    We care more about the second-order quantifiers with a logarithmic bound,written as.We call theselog-quantifiers.The new logicIFP is obtained by extending theinflationary fixed-point logicIFP with all the log-quantifiers.The main theorem will show thatIFP capturesβP on ordered structures.Anordered structureis a structure whose domain has a built-in linear order.One can notice that the log-quantifiers will act as the part“?v ∈{0,1}?,|v| ≤c·s(|u|)”in definition 1.1.The log-quantifiers“guess”and then the IFP formula will“check”.

    Our characterization is a natural extension of the famousFagin’s theoremandImmerman-Vardi’s theorem.R.Fagin([5])showed that NP is captured by the existential second-order logic,which consists of formulas in the form

    where?is first order andX1...Xmare relation variables.As a corollary of Fagin’s theorem,every layer of the polynomial time hierarchy,PH,is captured by a layer of the second-order logic.([4])The fundamental result of capturing P is Immerman-Vardi’s theorem.([11,16])It shows that IFP captures P on ordered structures.

    The restriction on ordered structures is vital.Actually so far we do not know what logic can capture P without a built-in order.Logics are free from encoding,but when we intend to simulate a Turing machine with a logic sentence,it cannot be helped using a linear order to encode graphs or structures.This is related to a more fundamental and sophisticated problem,canonization(orcanonical labeling)of graphs(or structures).A canonization is an algorithm which returns the unique labeling of a graph no matter how we label the vertices of the graph initially.The P-computable canonizations do exist on some certain classes of graphs,for instance,trees([14]),planar graphs([14]),graphs of bounded treewidth([2]),graphs of bounded degree([1]).Researchers are also interested in using logics to define a canonization.There are IFP-definable canonizations on cycles([4]),grids([4])or 3-connected planar graphs([6]).That means on these classes IFP can provide a canonical linear order and captures P.An important approach is to extend IFP to capture P on some more general classes.For example,IFP with counting,denoted by IFP+#,on trees ([12]),planar graphs([6]),graphs of bounded treewidth([9]),graphs of bounded rank width([10]).

    Neither IFP nor IFP+# can capture P in the most general case,i.e.,on all the finite structures.They were originally proved via the game method.Alongside this notion we will design a new Ehrenfeucht-Fra?ssé game and proveIFP fails to captureβP in the most general case,too.

    2 Preliminaries

    We assume that the readers are familiar with the basic concepts of computational complexity theory and mathematical logic.Asignature τis a finite class of relation symbols.For convenience we do not talk about constant symbols and function symbols.L[τ]is the formulas of logicLformed with symbols inτ.Aτ-structure(or structure overτ)Bexplains the symbols inτon a domainB.In this paper we only considerfinitestructures,i.e.,whose domain is a finite set.STRUC[τ]is the class of allτ-structures.Agraphis a structure over signature{E}whose domainVis a set of vertices.STRUC[τ]

    where

    “#”is used to separate two concatenated strings,for instance,“u#v”.are used for encoding in definition 2.1.None of the three auxiliary symbols are theoretically necessary and all strings can be represented binarily,i.e.,just with 0 and 1.However their attendance makes our proofs much easier.

    A Boolean queryQonτis a class of structures over the same signatureτ,and closed under isomorphism,i.e.,for anyA,B ∈STRUC[τ],if,then,

    For example,languages(classes of strings)are Boolean queries onτstr.

    In the following context,we often use the logarithmic function log(n),whose value is expected to be an integer,so we let log(n)=.Let[n]={0,1,...,n ?1}.Note that log(n+1)is the minimal length ofn’s binary expression.In this paper,for any formula?(x,X),means the valuea(resp.R)is substituted intox(resp.X)ifx(resp.X)is free.We abuse the notation|·|.Ifuis a string,|u|is its length.IfAis a set,|A|is its cardinal.Ifis ak-tuple,then=k.

    2.1 Encoding structures

    In order to represent the structures in a Turing machine,we need to encode structures as strings.W.l.o.g.,we take the following way of encoding:

    Definition 2.1(Enumerating encoding) For any signatureτ={R1,...,Rm},wherearity(Ri)=ri(1≤i ≤m),anyA ∈STRUC[τ]

    The length|enc(A)|is related to every cardinal.The machine needs the auxiliary symbols to parseenc(A)because it cannot know ahead of time how longis.The extra length of auxiliary symbols can be ignored in a big-Oh notation.

    2.2 Logic characterization of complexity

    Definition 2.2([7])

    A logicL capturesa complexity classCon a classKof structures,if the following conditions are satisfied,

    1.L[τ]is decidable,for any signatureτ.

    2.There is an effective procedure to associate with eachL-sentence?aC-bounded Turing machine M,such that,for anyA ∈K,M can decide whether

    3.For any Boolean queryQinC,there is anL-sentence?such that for anyA ∈K,

    (We assume thatKis closed under isomorphism.)

    IfKis the class of all structures,we simply sayLcapturesC.

    There are two most classical theorems in descriptive complexity theory.

    Theorem 2.3(Fagin’s Theorem,[5])captures NP.

    Theorem 2.4(Immerman-Vardi Theorem,[11,16]) IFP captures P on ordered structures.

    IFP is gotten by extending the first-order logic FO with the inflationary fixed-point operator.IFP inherits the formation rules of FO besides

    ? Ifψis a formula,then so iswhereYis a relation variable and=arity(Y)

    In logic we needn’t even study structures over all different signatures.We particularly care about STRING and graphs,which the structures over other signatures can be interpreted to.

    Definition 2.5LetLbe a logic.Letτ,σbe two signatures.σ={R1,R2,...,Rm},wherearity(Ri)=ri(1≤i ≤m).Ank-ary L-interpretationfromτtoσis a sieres ofL[τ]-formulas

    Lemma 2.6For any signatureτ,there is an FO-reductionIfrom STRUC[τ]

    Lemma 2.7Let?be a formula of IFP[σ],

    is ank-ary reduction from STRUC[τ]to STRUC[σ].?Iis obtained by

    ? replacing every variablexoccuring in?by a newk-tuple(which consists of all new variables,let’s denote it byxI),

    ? replacing every relationRiin?by,

    ? changing the subformula?x...in?to?xI(?uni(xI)→...),

    ? changing the subformula?x...in?to?xI(?uni(xI)∧...),

    whereY Iis anl·k-ary new relation variable.

    Then forA ∈STRUC[τ],

    These two lemmas tell us STRING and ordered structures are deeply related.LcapturesCon STRING if and only ifLcapturesCon ordered structures.In the following context,we will first prove our theorem on STRING,and naturally it holds on ordered structures.

    3 Capturing Results

    Here is an alternative definition ofβP prepared for our later proofs:

    Definition 3.1A languageLis in the classβkif there is a languageL′ ∈P together with an integerc >0 such that for any stringu,u ∈ Lif and only if?v ∈,u#v ∈L′.(whereis all the 0-1 strings of length at mostc·logk(|u|).)

    Sinceβ1=GC(log,P),in fact the“guess”part can be computed in time 2c·log,which is a polynomial.Thus we have

    3.1 Logarithmic-bounded quantifiers

    It doesn’t matter how largearity(X) is.As long asarity(X) is a nonzero natural number,can be applied.Naturally

    Definition 3.2An formula ofIFP is in the form,

    wherem ≥0;k1,k2,...km >0;ψis an IFP-formula.

    Those formulas without any occurrences of log-quantifiers arelog-quantifierfree.

    Here are three parameters we will use.Themaximal variable arityof a formula,mva(?)=max{arity(X)| Xis a relation variable,free or bounded by a log-quantifier,in?}.Theheightof a formula,height(?)=max{k |occurs in?}.Thelog-quantifier rankof a formula,

    ?lqr(?)=0,if?is atomic

    ?lqr(?)=lqr(ψ),if?=?ψ

    ?lqr(?)=max(lqr(ψ1),lqr(ψ2)),if?=ψ1→ψ2

    ?lqr(?)=lqr(ψ),if?=?xψ

    ?lqr(?)=lqr(ψ)+1,if?=Xψfork >0.

    Fork >0,IFP is the sublogic ofIFP,the heights of whose formulas are no larger thank.

    3.2 Main theorem

    Theorem 3.3IFP capturesβP on STRING.

    Proof IdeaActually we will prove fork ≥1,IFP capturesβk+1on STRING.Note that anIFP[τstr]-sentence corresponds to aβk+1-bounded Turing machine,not aβk-bounded one.It is because for anyu ∈STRING and any relation varibleX,when we encode the value ofX,as we did in definition 2.1,|enc(X)|=|O(logk+1|U|)|.According to definition 2.2,our proof consists of three parts.The main idea is simple:we use“X”to simulate“?v ∈”in definition 3.1 and vice versa;then we apply Immerman-Vardi’s theorem.

    But here is a problem:for anyvin “?v ∈” in definition 3.1,can we have an IFP-reductionIsuch that there existsXin“X”andI(X)=v?

    Lemma 3.4Letk ∈N?{0}

    There is an encodingJsuch that for any stringuwith domainU,JUis asurjectionfrom{S |S ?U2and|S|≤logk(|U|)}to.

    And letτr=τstr∪{R1,R2,...Rr},whereR1,...Rrare binary relation symbols.There is an IFP-reductionIfrom STRUC[τr]to STRING such that for anyu ∈STRING and binary relations∈{S |S ?U2and|S|≤logk(|U|)},

    Proof(of lemma 3.4)

    For anyS ∈{S | S ?U2and|S| ≤logk(|U|)},JU(S)is gotten by doing as follows

    1.gettingenc(S);

    2.removing the first element of each tuple ofSfromenc(S);

    3.removing the log(|U|)-th bit of each consecutive binary substrings in the encoding;

    SoJU(S)=110000 in this example.

    It is easy to verify thatJUis a surjection.

    Now we construct the IFP-reductionI.With the help of the linear order

    Let=x1x2x3x4x5yz1...zlog(r).It’s an(log(r)+6)-ary tuple of variables.Now we define:

    Proof (of theorem 3.3)

    By definition 2.2,our proof consists of three parts.Letk >0.

    In the above proof,we can see only binary relation symbolsR1,...Rrare bounded by the log-quantifiers.So we obtain

    Corollary 3.5On ordered structures,every formula ofIFP is equivalent to a formula ofIFP whose bounded relation variables are binary.

    4 The Expressive Power

    IFP fails on a very important P-decidable Boolean query,EVEN.([4])For any graphG,G ∈EVEN if and only if domain|V|is even.There isnosentence?of IFP[{E}]such that

    (EVEN is not definable in IFP.) So IFP fails to capture P (on all finite structures).Unfortunately,our strengthened versionIFP fails,too.

    Theorem 4.1EVEN is not definable inIFP.

    IFP’s failure was proven via the failure of the infinitary logic.The logicis similar to FO,but every formula incan have infinite length or infinite quantifier depth and contains at mostsvariables(free or bounded).Then

    For the details readers can turn to [4,ch.3].For every single IFP-formula,we can always construct an equivalentfor somes.So IFP is a sublogic of.Now we define a new logicL(Beware! It is notL!) as follows:for any formula?

    In order to prove theorem 4.1,we turn to the game method

    Definition 4.2Lis any logic.G is a game played by two players,the spoiler and the duplicator,on two structures.we say G is an Ehrenfeucht-Fra?ssé game forL,if for anyτ,anyAandB ∈STRUCT[τ],the following are equivalent,

    1.A ≡L B

    2.the duplicator wins G(A,B)

    where“A ≡L B”means for anyL[τ]-sentence?,A??if and only ifB??.

    The Ehrenfeucht-Fra?ssé game foris the pebble game withspairs of pebbles,denoted by PGs.In a play of PGs(A,B),there ares(or less)vertices in each ofAandBcovered by pebbles.In each move,each player can do nothing,move one pebble or add a new pebble(but on each structures there can be at mostspebbles).If the duplicator can make sure the two covered substructures are always isomorphic,then she wins PGs(A,B).For the details readers can turn to[4,ch.3].

    Now letLm,r,k,sbe the sublogic ofLsuch that for any?in it,

    ?lqr(?)≤m,

    ?mva(?)≤r,

    ?height(?)≤k,

    ? at mostselement variables occur in?.

    Proposition 4.3Form ≥0,r,k,s >0,Gm,r,k,sis an Ehrenfeucht-Fra?ssé game forLm,r,k,s.

    ProofLetAandBbe two structures over a given signatureτ.

    Theorem 4.4EVEN is not definable inL.

    ProofIf EVEN is defined by a sentence?ofL[{E}],?should also work on empty graphs,namely on the graphs that have no edges.Now we assumeE=?in order to get a contradiction.There arem ≥0 andr,k,s>0 such that? ∈Lm,r,k,s[{E}].LetAandBbe two empty graphs such that|A|is a sufficiently large even number satisfying

    5 Furthur Discussion

    Readers might have noticed that the results can be extended onto other complexity classes.For example the existential and universal log-quantifiers can alternate several times in the formula so as to capture a correspondinglimited alternation class.Furthermore,not only log-quantifiers,we can also consider other second-order quantifier with a bound of cardinality.Letfbe a sublinear function on N.One can easily prove on ordered structures a logic“?fIFP”can captureβ(f·log),i.e.,the complexity classGC(f(n)·log(n),P),where the parameter“l(fā)og(n)”seems unavoidable.However none of the above can capture the corresponding complexity classes without a linear order.The proofs could be analogous to our theorem 4.4.

    We are not sure

    ? on whatnaturalclass of graphs,IFP can captureβP while IFP cannot capture P.

    ? whether there is a problem in P whichIFP can define while IFP cannot.

    These questions could be interesting.

    国产1区2区3区精品| 一级黄色大片毛片| 久热爱精品视频在线9| 在线a可以看的网站| 一级黄色大片毛片| 久久精品91蜜桃| 亚洲电影在线观看av| 欧美日本亚洲视频在线播放| 久久99热这里只有精品18| 美女午夜性视频免费| 亚洲自拍偷在线| 国产亚洲精品第一综合不卡| 国产在线观看jvid| 亚洲全国av大片| 欧美一区二区精品小视频在线| 老汉色∧v一级毛片| 全区人妻精品视频| 欧美三级亚洲精品| 一区二区三区高清视频在线| 亚洲专区中文字幕在线| 日本免费一区二区三区高清不卡| 国产三级中文精品| 亚洲真实伦在线观看| 此物有八面人人有两片| 欧美+亚洲+日韩+国产| 嫩草影视91久久| 2021天堂中文幕一二区在线观| 亚洲国产精品sss在线观看| 女人高潮潮喷娇喘18禁视频| 婷婷精品国产亚洲av在线| 97碰自拍视频| 亚洲国产精品sss在线观看| 亚洲美女视频黄频| 久久中文看片网| 中文字幕熟女人妻在线| 亚洲熟妇熟女久久| 在线观看舔阴道视频| 国产麻豆成人av免费视频| 国产视频内射| 桃红色精品国产亚洲av| 久久久久久久午夜电影| 国产视频一区二区在线看| 婷婷精品国产亚洲av| 成人特级黄色片久久久久久久| 精品一区二区三区视频在线观看免费| 久久婷婷成人综合色麻豆| 999久久久国产精品视频| 少妇粗大呻吟视频| 亚洲成人精品中文字幕电影| 国产又色又爽无遮挡免费看| 国产91精品成人一区二区三区| 亚洲精品美女久久av网站| 午夜福利免费观看在线| 91av网站免费观看| 69av精品久久久久久| 在线观看免费日韩欧美大片| 国产成人一区二区三区免费视频网站| 女人被狂操c到高潮| 精品日产1卡2卡| 国内久久婷婷六月综合欲色啪| 一级毛片女人18水好多| 国产亚洲精品综合一区在线观看 | 亚洲av五月六月丁香网| 久热爱精品视频在线9| 久久婷婷成人综合色麻豆| 免费看a级黄色片| 国内揄拍国产精品人妻在线| 久久久久久久久久黄片| 久久久久久大精品| 大型av网站在线播放| 久久九九热精品免费| 非洲黑人性xxxx精品又粗又长| 国产单亲对白刺激| 两个人看的免费小视频| 色综合婷婷激情| 免费无遮挡裸体视频| 亚洲电影在线观看av| av中文乱码字幕在线| 亚洲美女视频黄频| 哪里可以看免费的av片| 久久中文字幕人妻熟女| 亚洲国产欧美一区二区综合| 午夜老司机福利片| 欧美另类亚洲清纯唯美| 免费在线观看日本一区| 老司机深夜福利视频在线观看| 精品少妇一区二区三区视频日本电影| 亚洲成人久久性| 丁香欧美五月| 久久中文看片网| 欧美性猛交╳xxx乱大交人| 免费人成视频x8x8入口观看| 成年人黄色毛片网站| 桃色一区二区三区在线观看| 国产精品 欧美亚洲| 99精品在免费线老司机午夜| 成人高潮视频无遮挡免费网站| 夜夜看夜夜爽夜夜摸| 婷婷精品国产亚洲av在线| 久久99热这里只有精品18| 久久久久久大精品| 一级片免费观看大全| 99精品久久久久人妻精品| 成年女人毛片免费观看观看9| 国产又黄又爽又无遮挡在线| 亚洲av片天天在线观看| av福利片在线观看| 精品电影一区二区在线| 婷婷六月久久综合丁香| 久久久国产精品麻豆| 老鸭窝网址在线观看| 狂野欧美白嫩少妇大欣赏| 欧美国产日韩亚洲一区| 男男h啪啪无遮挡| 777久久人妻少妇嫩草av网站| 波多野结衣高清无吗| 日韩欧美一区二区三区在线观看| 午夜福利免费观看在线| 欧美成人一区二区免费高清观看 | 妹子高潮喷水视频| 亚洲成人精品中文字幕电影| 一二三四社区在线视频社区8| 午夜福利免费观看在线| 欧美成人一区二区免费高清观看 | 精品欧美一区二区三区在线| 免费观看精品视频网站| 老熟妇乱子伦视频在线观看| 成人国产一区最新在线观看| 男女做爰动态图高潮gif福利片| 午夜福利免费观看在线| 又大又爽又粗| 少妇的丰满在线观看| 丁香六月欧美| 亚洲国产高清在线一区二区三| 美女大奶头视频| 床上黄色一级片| 日韩av在线大香蕉| 非洲黑人性xxxx精品又粗又长| 正在播放国产对白刺激| 一本大道久久a久久精品| 日本黄大片高清| 午夜福利欧美成人| 国产一区二区激情短视频| 男女视频在线观看网站免费 | 又粗又爽又猛毛片免费看| 免费电影在线观看免费观看| 俄罗斯特黄特色一大片| 毛片女人毛片| 蜜桃久久精品国产亚洲av| 99国产精品一区二区三区| 欧美一区二区精品小视频在线| 在线永久观看黄色视频| 极品教师在线免费播放| 禁无遮挡网站| 一卡2卡三卡四卡精品乱码亚洲| 天堂av国产一区二区熟女人妻 | 在线免费观看的www视频| av视频在线观看入口| 黄色片一级片一级黄色片| 国产成人啪精品午夜网站| 好看av亚洲va欧美ⅴa在| 999久久久精品免费观看国产| 国产又色又爽无遮挡免费看| 精品久久久久久久毛片微露脸| 成人手机av| 欧洲精品卡2卡3卡4卡5卡区| 欧美乱码精品一区二区三区| 深夜精品福利| 啪啪无遮挡十八禁网站| x7x7x7水蜜桃| 亚洲av成人精品一区久久| 757午夜福利合集在线观看| 91字幕亚洲| 日韩欧美三级三区| 欧美黑人巨大hd| 狂野欧美激情性xxxx| 精品高清国产在线一区| 999精品在线视频| 久久天堂一区二区三区四区| 岛国在线免费视频观看| 日本撒尿小便嘘嘘汇集6| 黄色a级毛片大全视频| 国产精品一区二区精品视频观看| 午夜福利18| 亚洲精品粉嫩美女一区| 俺也久久电影网| 日本在线视频免费播放| 欧美日韩国产亚洲二区| 日本免费一区二区三区高清不卡| 少妇被粗大的猛进出69影院| 舔av片在线| av在线天堂中文字幕| 两性夫妻黄色片| 国产亚洲av嫩草精品影院| 99热这里只有精品一区 | 99热这里只有精品一区 | www.熟女人妻精品国产| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇人妻一区二区三区视频| 国产黄a三级三级三级人| 一本久久中文字幕| 欧美中文综合在线视频| 免费在线观看视频国产中文字幕亚洲| 欧美+亚洲+日韩+国产| 国产精品一区二区三区四区久久| a级毛片在线看网站| 欧美日韩亚洲国产一区二区在线观看| 一本综合久久免费| 99国产极品粉嫩在线观看| 国产黄a三级三级三级人| 两性夫妻黄色片| 91大片在线观看| 一级黄色大片毛片| 国产精品香港三级国产av潘金莲| 一个人免费在线观看电影 | 久久草成人影院| 中文资源天堂在线| 好男人电影高清在线观看| 99在线人妻在线中文字幕| 国产欧美日韩一区二区精品| 亚洲av成人精品一区久久| 全区人妻精品视频| 亚洲激情在线av| 俺也久久电影网| 高清在线国产一区| 黑人巨大精品欧美一区二区mp4| 久久精品aⅴ一区二区三区四区| 人成视频在线观看免费观看| 久久久久国产一级毛片高清牌| 韩国av一区二区三区四区| 老熟妇仑乱视频hdxx| 亚洲av成人av| 最近在线观看免费完整版| 亚洲人成网站高清观看| 久久香蕉精品热| 久久精品aⅴ一区二区三区四区| 日韩av在线大香蕉| 法律面前人人平等表现在哪些方面| 日韩精品中文字幕看吧| av国产免费在线观看| 一夜夜www| 欧美黄色淫秽网站| 久久久久免费精品人妻一区二区| av中文乱码字幕在线| 天天添夜夜摸| 97超级碰碰碰精品色视频在线观看| 99久久99久久久精品蜜桃| 日韩精品青青久久久久久| 欧美一区二区国产精品久久精品 | 9191精品国产免费久久| 日本五十路高清| 最近视频中文字幕2019在线8| 国产视频内射| 国产精品亚洲美女久久久| 村上凉子中文字幕在线| 欧美日韩乱码在线| 少妇的丰满在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲aⅴ乱码一区二区在线播放 | 亚洲 国产 在线| 亚洲熟妇中文字幕五十中出| 最近在线观看免费完整版| 国产激情欧美一区二区| 午夜福利高清视频| 亚洲无线在线观看| 国内精品久久久久久久电影| 亚洲午夜理论影院| 亚洲精品一区av在线观看| 舔av片在线| 狂野欧美激情性xxxx| www日本在线高清视频| 日韩 欧美 亚洲 中文字幕| 国产成人精品无人区| 国产久久久一区二区三区| 婷婷精品国产亚洲av| 丰满的人妻完整版| 国产精华一区二区三区| 观看免费一级毛片| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品在线美女| 美女高潮喷水抽搐中文字幕| 1024手机看黄色片| 50天的宝宝边吃奶边哭怎么回事| 99久久久亚洲精品蜜臀av| 亚洲精品粉嫩美女一区| 国产成人av教育| 91九色精品人成在线观看| 欧美日本亚洲视频在线播放| 亚洲av第一区精品v没综合| 国产精品久久电影中文字幕| 又紧又爽又黄一区二区| 在线免费观看的www视频| 欧美乱妇无乱码| 一级毛片女人18水好多| 亚洲专区中文字幕在线| 欧美性猛交╳xxx乱大交人| 色综合欧美亚洲国产小说| 亚洲精品一卡2卡三卡4卡5卡| 草草在线视频免费看| 男插女下体视频免费在线播放| 国产成人av激情在线播放| 日韩免费av在线播放| 欧美性猛交╳xxx乱大交人| 精品久久蜜臀av无| 国产精品99久久99久久久不卡| 在线免费观看的www视频| 成人av在线播放网站| 亚洲av中文字字幕乱码综合| 神马国产精品三级电影在线观看 | 好看av亚洲va欧美ⅴa在| 国产又色又爽无遮挡免费看| 十八禁人妻一区二区| 可以在线观看毛片的网站| 精品人妻1区二区| 精品免费久久久久久久清纯| svipshipincom国产片| 精品一区二区三区视频在线观看免费| 亚洲精品美女久久av网站| 国产视频内射| 国产黄片美女视频| 人人妻,人人澡人人爽秒播| 极品教师在线免费播放| 国产成人啪精品午夜网站| 精品国产亚洲在线| 午夜福利免费观看在线| 欧美一级毛片孕妇| 日本黄色视频三级网站网址| 女生性感内裤真人,穿戴方法视频| 成年免费大片在线观看| 免费无遮挡裸体视频| 国产高清视频在线观看网站| 老司机午夜十八禁免费视频| www日本在线高清视频| 亚洲成人国产一区在线观看| 久久香蕉激情| 欧美乱色亚洲激情| 久久99热这里只有精品18| 久9热在线精品视频| 国产午夜精品论理片| 少妇被粗大的猛进出69影院| 亚洲一卡2卡3卡4卡5卡精品中文| 成人永久免费在线观看视频| 久久99热这里只有精品18| 在线观看日韩欧美| 欧美日韩国产亚洲二区| 久久精品aⅴ一区二区三区四区| 1024手机看黄色片| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久人人做人人爽| 日韩有码中文字幕| 亚洲国产精品合色在线| 亚洲18禁久久av| av片东京热男人的天堂| 婷婷精品国产亚洲av| 19禁男女啪啪无遮挡网站| 精品久久蜜臀av无| 动漫黄色视频在线观看| 久久久久久久午夜电影| 91麻豆av在线| 国产一级毛片七仙女欲春2| 欧美性猛交╳xxx乱大交人| 国产av一区在线观看免费| 成人av一区二区三区在线看| 国产亚洲精品久久久久5区| 久久午夜综合久久蜜桃| 99国产极品粉嫩在线观看| 最近最新免费中文字幕在线| 国产激情欧美一区二区| 国产精品久久久av美女十八| 香蕉国产在线看| 欧美日本视频| 久久婷婷人人爽人人干人人爱| 麻豆成人午夜福利视频| 天天一区二区日本电影三级| 免费在线观看完整版高清| av片东京热男人的天堂| 在线观看66精品国产| 淫秽高清视频在线观看| 亚洲国产中文字幕在线视频| ponron亚洲| 久久久久久久精品吃奶| 欧美最黄视频在线播放免费| 五月伊人婷婷丁香| 亚洲色图 男人天堂 中文字幕| 国产成+人综合+亚洲专区| 在线免费观看的www视频| 欧美黄色淫秽网站| 全区人妻精品视频| 久久中文字幕一级| 日本一本二区三区精品| 少妇人妻一区二区三区视频| 久久九九热精品免费| 两性午夜刺激爽爽歪歪视频在线观看 | a级毛片在线看网站| 99国产精品99久久久久| 黄色女人牲交| 久久这里只有精品19| 日本黄色视频三级网站网址| 国产主播在线观看一区二区| 亚洲成av人片免费观看| 色老头精品视频在线观看| 日韩三级视频一区二区三区| 精品欧美一区二区三区在线| 黄色 视频免费看| 亚洲一码二码三码区别大吗| 黄色a级毛片大全视频| 日韩 欧美 亚洲 中文字幕| 麻豆成人午夜福利视频| 757午夜福利合集在线观看| 亚洲熟妇熟女久久| √禁漫天堂资源中文www| 国产精品久久久久久亚洲av鲁大| 国模一区二区三区四区视频 | 国产亚洲精品一区二区www| 久久久久久久久久黄片| 久久精品国产99精品国产亚洲性色| 人妻夜夜爽99麻豆av| 免费搜索国产男女视频| 国产成人精品久久二区二区免费| 久久天堂一区二区三区四区| 国产视频内射| 人妻夜夜爽99麻豆av| 啪啪无遮挡十八禁网站| 在线国产一区二区在线| 欧美黑人欧美精品刺激| 一卡2卡三卡四卡精品乱码亚洲| 天天躁夜夜躁狠狠躁躁| 国产精品 国内视频| 好看av亚洲va欧美ⅴa在| www.999成人在线观看| 人妻久久中文字幕网| 99久久久亚洲精品蜜臀av| 国产精品一区二区免费欧美| 999久久久精品免费观看国产| 国产黄色小视频在线观看| 看免费av毛片| 久久婷婷人人爽人人干人人爱| 日本撒尿小便嘘嘘汇集6| 国产99白浆流出| 精品免费久久久久久久清纯| 可以在线观看毛片的网站| 他把我摸到了高潮在线观看| 久久久久性生活片| 国产99白浆流出| 欧美黑人巨大hd| 欧美乱色亚洲激情| 黄色视频不卡| 亚洲欧洲精品一区二区精品久久久| 无遮挡黄片免费观看| 1024手机看黄色片| 一二三四在线观看免费中文在| 91av网站免费观看| 天堂av国产一区二区熟女人妻 | 国产精品久久视频播放| 熟妇人妻久久中文字幕3abv| 黄色视频不卡| 国产片内射在线| 97人妻精品一区二区三区麻豆| av福利片在线| 熟女电影av网| 一个人观看的视频www高清免费观看 | 露出奶头的视频| 午夜精品一区二区三区免费看| 99久久精品热视频| 免费在线观看成人毛片| 色哟哟哟哟哟哟| www.www免费av| 激情在线观看视频在线高清| 亚洲九九香蕉| 中文字幕av在线有码专区| www.999成人在线观看| 久久久久精品国产欧美久久久| 搡老岳熟女国产| 桃色一区二区三区在线观看| 国产爱豆传媒在线观看 | 黄色成人免费大全| 日本免费a在线| 看黄色毛片网站| 久久精品影院6| 亚洲在线自拍视频| 欧美午夜高清在线| 亚洲精品国产一区二区精华液| 村上凉子中文字幕在线| 亚洲欧美激情综合另类| 18禁观看日本| 1024手机看黄色片| 亚洲中文字幕日韩| 日本 欧美在线| 欧美激情久久久久久爽电影| 香蕉丝袜av| 在线观看舔阴道视频| av有码第一页| 一级毛片女人18水好多| 18禁国产床啪视频网站| www.精华液| 搡老岳熟女国产| 性欧美人与动物交配| 亚洲真实伦在线观看| 午夜老司机福利片| 午夜视频精品福利| 最近在线观看免费完整版| 精品一区二区三区视频在线观看免费| 18美女黄网站色大片免费观看| 白带黄色成豆腐渣| 一夜夜www| 熟妇人妻久久中文字幕3abv| 中文字幕熟女人妻在线| 丁香六月欧美| 国产三级黄色录像| 国产精品电影一区二区三区| 岛国视频午夜一区免费看| 在线播放国产精品三级| 婷婷六月久久综合丁香| 国产激情久久老熟女| 日韩 欧美 亚洲 中文字幕| 国产单亲对白刺激| 亚洲美女黄片视频| 成人国语在线视频| 人人妻人人澡欧美一区二区| 狂野欧美白嫩少妇大欣赏| 午夜福利高清视频| 精品熟女少妇八av免费久了| 亚洲精品中文字幕在线视频| 禁无遮挡网站| 妹子高潮喷水视频| 禁无遮挡网站| 国产一区二区三区视频了| 欧美乱妇无乱码| 在线观看www视频免费| 久久性视频一级片| 欧美三级亚洲精品| 在线观看免费日韩欧美大片| 久久久久久免费高清国产稀缺| 在线观看免费日韩欧美大片| 日韩中文字幕欧美一区二区| 禁无遮挡网站| 我的老师免费观看完整版| tocl精华| 99久久久亚洲精品蜜臀av| 99精品久久久久人妻精品| 日韩欧美 国产精品| 亚洲成人久久爱视频| 国产精品久久久久久亚洲av鲁大| 久久这里只有精品19| 伊人久久大香线蕉亚洲五| 久久亚洲真实| 91在线观看av| 一个人免费在线观看的高清视频| 亚洲国产欧美网| 天天添夜夜摸| 国产亚洲精品av在线| 一二三四社区在线视频社区8| 亚洲国产中文字幕在线视频| 91麻豆精品激情在线观看国产| 亚洲精品国产一区二区精华液| 又粗又爽又猛毛片免费看| 久久久久九九精品影院| 变态另类成人亚洲欧美熟女| 成年人黄色毛片网站| 少妇粗大呻吟视频| 中文字幕精品亚洲无线码一区| 在线十欧美十亚洲十日本专区| 日韩av在线大香蕉| 国产99白浆流出| e午夜精品久久久久久久| 久久这里只有精品19| 亚洲自拍偷在线| 色av中文字幕| 欧美黑人精品巨大| 亚洲在线自拍视频| 最近视频中文字幕2019在线8| 成人高潮视频无遮挡免费网站| 日韩大码丰满熟妇| 中文亚洲av片在线观看爽| 制服诱惑二区| 亚洲精品在线观看二区| 亚洲av电影不卡..在线观看| 国产精品久久久人人做人人爽| 国产精品久久电影中文字幕| 国产精品久久久久久精品电影| 成人一区二区视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 久久久国产成人精品二区| 美女大奶头视频| 午夜成年电影在线免费观看| 男女做爰动态图高潮gif福利片| xxx96com| 哪里可以看免费的av片| 国产熟女xx| 亚洲欧美一区二区三区黑人| 国产黄片美女视频| 欧美成人性av电影在线观看| 手机成人av网站| 18禁裸乳无遮挡免费网站照片| 日本黄色视频三级网站网址| 午夜精品久久久久久毛片777| 午夜福利18| 色av中文字幕| 久久精品国产清高在天天线| 人妻丰满熟妇av一区二区三区| 变态另类丝袜制服| 91在线观看av| 极品教师在线免费播放| 日韩国内少妇激情av| 午夜免费激情av| 亚洲一区二区三区色噜噜| tocl精华| 亚洲精品中文字幕在线视频| 18禁黄网站禁片午夜丰满| 精品电影一区二区在线| www国产在线视频色| 国产精品香港三级国产av潘金莲| 午夜久久久久精精品| АⅤ资源中文在线天堂| 91在线观看av|