李玲,徐舒,曹如霞,陳玲玲,崔鵬,呂尊富,陸國(guó)權(quán)
基于PCA-Entropy TOPSIS的甘薯品種塊根質(zhì)構(gòu)品質(zhì)評(píng)價(jià)
李玲,徐舒,曹如霞,陳玲玲,崔鵬,呂尊富,陸國(guó)權(quán)
(浙江農(nóng)林大學(xué)農(nóng)業(yè)與食品科學(xué)學(xué)院/浙江省農(nóng)產(chǎn)品品質(zhì)改良重點(diǎn)實(shí)驗(yàn)室,杭州 311300)
【】質(zhì)構(gòu)品質(zhì)是甘薯塊根品質(zhì)評(píng)價(jià)的重要指標(biāo),直接影響其鮮食和產(chǎn)后加工。質(zhì)構(gòu)品質(zhì)評(píng)價(jià)是甘薯綜合利用過(guò)程和品質(zhì)育種的重要環(huán)節(jié)。完善甘薯塊根質(zhì)構(gòu)品質(zhì)評(píng)價(jià)體系,為其利用和育種提供參考。應(yīng)用物性分析儀質(zhì)地多面分析法對(duì)45個(gè)甘薯品種塊根的硬度、黏附性、內(nèi)聚性、彈性、膠黏性和咀嚼性進(jìn)行測(cè)定,分析各質(zhì)構(gòu)參數(shù)間的相關(guān)性,采用主成分分析確定各個(gè)參數(shù)權(quán)重,并結(jié)合TOPSIS法對(duì)45個(gè)甘薯品種塊根的質(zhì)構(gòu)品質(zhì)進(jìn)行綜合評(píng)價(jià)。45個(gè)甘薯品種的質(zhì)構(gòu)參數(shù)均有一定差異,咀嚼性和黏附性變異系數(shù)較大,分別為35.23%和49.15%。咀嚼性變化范圍為60.30—284.66 N,平均為149.29 N,浙薯13的咀嚼性最大,為284.66 N,166-7和龍薯14的咀嚼性較小,分別為60.30和77.28 N;黏附性變化范圍為-10.4—-0.80 J,平均為-4.71 J,龍薯31的黏附性最大,為-1.34 J,冀紫薯2號(hào)和普薯32的黏附性較小,分別為-9.34和-10.40 J。內(nèi)聚性和彈性的變異系數(shù)較小,分別為14.27%和15.75%。內(nèi)聚性變化范圍為0.15—0.28,平均為0.21,商薯19的內(nèi)聚性最大,為0.28,紅皮白心的內(nèi)聚性最小,為0.15;彈性變化范圍為5.01—8.93 mm,平均為6.59 mm,西農(nóng)431的彈性最大,為8.93 mm,166-7的彈性最小,為5.01 mm。膠黏性變異系數(shù)為23.84%,變化范圍為11.97—32.78 N,平均為22.20 N,普薯32的膠黏性最大,為32.78 N,166-7的膠黏性最小,為11.97 N;硬度變異系數(shù)為19.47%,變化范圍為59.79—143.41 N,平均為105 N,綿粉1號(hào)、商徐紫1號(hào)和蘇薯29的塊根硬度大于140.00 N,166-7的塊根硬度最小,為59.79 N。相關(guān)性分析表明,塊根硬度與膠黏性、咀嚼性均呈極顯著正相關(guān),膠黏性與咀嚼性呈極顯著正相關(guān),內(nèi)聚性與彈性、膠黏性、咀嚼性均呈極顯著正相關(guān),彈性與膠黏性、咀嚼性均呈極顯著正相關(guān)。6個(gè)質(zhì)構(gòu)參數(shù)經(jīng)主成分分析,被提取的3個(gè)主成分累計(jì)方差貢獻(xiàn)率達(dá)94.674%,硬度、黏附性、內(nèi)聚性、彈性、膠黏性和咀嚼性的權(quán)重分別為0.121、0.161、0.102、0.232、0.162和0.223。明確了淀粉型甘薯質(zhì)構(gòu)品質(zhì)優(yōu)良的品種為龍薯31、商薯19和冀薯982;鮮食型甘薯質(zhì)構(gòu)品質(zhì)優(yōu)良的品種為蘇薯16、紫羅蘭和徐薯32。
甘薯;質(zhì)構(gòu)多面分析;相關(guān)性;主成分分析-熵值法;TOPSIS法
【研究意義】甘薯((L.) Lam)是繼小麥、水稻、玉米、馬鈴薯、大麥和木薯之后世界排名第七的糧食作物[1],具有產(chǎn)量高、穩(wěn)產(chǎn)性好、耐瘠薄等優(yōu)點(diǎn),可在多種生態(tài)環(huán)境下種植,種植地遍布世界100多個(gè)國(guó)家,年總產(chǎn)量約1億噸[2]。與大多數(shù)塊根、塊莖作物相比,甘薯具有豐富的營(yíng)養(yǎng)價(jià)值、特殊的風(fēng)味和質(zhì)構(gòu)特性,是胡蘿卜素、維生素、膳食纖維、淀粉等的極好來(lái)源[3-4]。隨著中國(guó)薯類(lèi)主糧化戰(zhàn)略的實(shí)施,作為鮮食和休閑食品加工的甘薯比例將不斷提高[5]。甘薯加工特性和品質(zhì)的影響因素眾多,質(zhì)構(gòu)品質(zhì)作為品質(zhì)評(píng)價(jià)的重要指標(biāo),直接影響甘薯塊根鮮食和產(chǎn)后加工適應(yīng)性[6-7]。質(zhì)構(gòu)品質(zhì)是一個(gè)復(fù)雜的性狀,由硬度、咀嚼性、黏附性、彈性等多種參數(shù)表示[7],甘薯質(zhì)構(gòu)品質(zhì)評(píng)價(jià)需采用多指標(biāo)綜合評(píng)價(jià)的方法?!厩叭搜芯窟M(jìn)展】多指標(biāo)綜合評(píng)價(jià)的方法很多,國(guó)內(nèi)外學(xué)者對(duì)此進(jìn)行了大量研究,例如層次分析法(the analytic hierarchy process,AHP)、模糊綜合評(píng)價(jià)法(fuzzy comprehensive evaluation,F(xiàn)CH)、主成分分析法(principal component analysis,PCA)等數(shù)理統(tǒng)計(jì)方法[8-11]。最近,逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)廣泛應(yīng)用于有限方案多目標(biāo)決策和多指標(biāo)綜合評(píng)價(jià)等方面,降低了分析過(guò)程中多指標(biāo)對(duì)評(píng)價(jià)的干擾,提高了評(píng)價(jià)的科學(xué)性與準(zhǔn)確性,其特點(diǎn)是專家確定指標(biāo)權(quán)重,把每一個(gè)指標(biāo)都量化為可比較的規(guī)范化標(biāo)準(zhǔn),且對(duì)每一指標(biāo)都找出其理想解和負(fù)理想解,能詳細(xì)地比較各指標(biāo)間的差異,使品種的綜合性狀這一模糊指標(biāo)量化為該品種對(duì)理想解的相對(duì)接近度,為育種者提供量化標(biāo)準(zhǔn),從而全面地反映品種的優(yōu)劣[12]。徐小萬(wàn)等[13]應(yīng)用TOPSIS法對(duì)不同辣椒品種耐高溫多濕性進(jìn)行了評(píng)價(jià),表明評(píng)價(jià)結(jié)果與田間實(shí)際結(jié)果基本一致,該方法操作簡(jiǎn)單,便于實(shí)際應(yīng)用。ZHOU等[14]應(yīng)用TOPSIS法對(duì)原始牡丹皮品質(zhì)構(gòu)建了評(píng)價(jià)模型,表明模型評(píng)價(jià)與客觀評(píng)價(jià)的品質(zhì)結(jié)果一致,該法可靠、穩(wěn)定?!颈狙芯壳腥朦c(diǎn)】目前,TOPSIS法在甘薯品質(zhì)評(píng)價(jià)方面的應(yīng)用仍鮮見(jiàn)報(bào)道,且該方法中的主觀賦權(quán)法易受個(gè)人偏好影響,主觀隨意性較大?!緮M解決的關(guān)鍵問(wèn)題】本研究選取中國(guó)45個(gè)重要的甘薯品種,應(yīng)用質(zhì)地多面分析(texture profile analysis,TPA)法測(cè)定其質(zhì)構(gòu)參數(shù)(硬度、黏附性、內(nèi)聚性、彈性、膠黏性和咀嚼性),分析各質(zhì)構(gòu)參數(shù)之間的相關(guān)性,采用TOPSIS法結(jié)合主成分分析確定熵值法(PCA-Entropy),對(duì)45個(gè)甘薯品種的質(zhì)構(gòu)品質(zhì)進(jìn)行綜合評(píng)價(jià),旨在為甘薯質(zhì)構(gòu)品質(zhì)評(píng)價(jià)提供客觀、科學(xué)的技術(shù),進(jìn)一步完善甘薯質(zhì)構(gòu)品質(zhì)評(píng)價(jià)體系,為選育優(yōu)質(zhì)的甘薯品種及綜合利用提供依據(jù)。
試驗(yàn)材料為從全國(guó)各地引種的45個(gè)甘薯品種(電子附表1),各品種均于2018年5月在浙江省杭州市臨安區(qū)板橋生產(chǎn)基地進(jìn)行統(tǒng)一種植,同年10月收獲。選擇無(wú)病蟲(chóng)害、大小一致、形狀相似的薯塊,經(jīng)清洗后進(jìn)行質(zhì)構(gòu)參數(shù)測(cè)定。
采用物性分析儀(美國(guó)FTC公司型號(hào)為T(mén)MS-PRO)參考Alessandrini等[15]方法在甘薯塊根上進(jìn)行TPA測(cè)試。在整薯中部切取1 cm厚的圓片,采用物性分析儀P/5圓柱形探頭(直徑5 mm)在圓片的赤道部位進(jìn)行TPA試驗(yàn),由質(zhì)構(gòu)特征曲線得到薯塊硬度、黏附性、內(nèi)聚性、彈性、膠黏性和咀嚼性等參數(shù)。
硬度是第一次擠壓循環(huán)的最大力量峰值,表示薯塊越過(guò)生物屈服點(diǎn)后,外界繼續(xù)施加一定程度的壓力,薯塊所受力大小,反映了薯塊對(duì)變形抵抗的性質(zhì)。
黏附性是第一次擠壓的負(fù)峰面積,是探頭脫離薯塊表面所做的功。
內(nèi)聚性是指甘薯塊根在破裂之前可以變形的水平,是內(nèi)部凝聚強(qiáng)度的量度,反映了塊根內(nèi)部結(jié)合力的大小和保持完整性的能力。
彈性是指甘薯塊根在第一次擠壓結(jié)束后,第二次擠壓開(kāi)始前樣品恢復(fù)的高度。
膠黏性是指甘薯塊根被吞咽前破碎它所需要的力。
咀嚼性反映了薯塊對(duì)咀嚼的持續(xù)抵抗性,是硬度、彈性和內(nèi)聚性三者的乘積,綜合反映了其對(duì)咀嚼的持續(xù)抵抗性。
測(cè)試參數(shù)為測(cè)試前速度30 mm·min-1,測(cè)試速度60 mm·min-1,測(cè)試后速度90 mm·min-1,壓縮比50%,2次停頓時(shí)間為5 s,觸發(fā)力0.2 N。每個(gè)薯塊測(cè)定一次,每個(gè)品種重復(fù)測(cè)定15次。
參考LIANG等[16]方法進(jìn)行計(jì)算分析,設(shè)有個(gè)品種個(gè)指標(biāo)建立矩陣,將無(wú)量綱化處理,成為可相互比較的規(guī)范化矩陣。
①和②均為中間型指標(biāo)(=1,2,…,;=1,2,…,)。
建立加權(quán)的規(guī)范化決策矩陣:
R=WZ(3)
式中,W是第個(gè)指標(biāo)的權(quán)重(=1,2,…,;= 1,2,…,)。
權(quán)重的確定:根據(jù)各指標(biāo)在各個(gè)主成分的載荷向量、特征值,算出各指標(biāo)在線性組合中的系數(shù)F,利用F計(jì)算出各指標(biāo)在綜合得分模型中的系數(shù)P,利用P求出各指標(biāo)的權(quán)重:
式中,V為選出主成份的方差貢獻(xiàn)率。
計(jì)算理想解X+和負(fù)理想解X-:理想解是一個(gè)虛擬的最佳對(duì)象,其每個(gè)指標(biāo)值都是所有評(píng)價(jià)品種中該指標(biāo)的最好值;而負(fù)理想解與之相反。
X+=(1+,2+,… …n+),其中X+= max(R)(7)
X-=(1-,2-,… …n-),其中X-= min(R)(8)
采用歐幾里德范數(shù)作為距離的測(cè)定,得到各品種與理想解、負(fù)理想解的距離:
計(jì)算各品種與理想解的相對(duì)接近度C,將其作為該品種的綜合評(píng)分,并按綜合評(píng)分對(duì)各品種進(jìn)行排序。
試驗(yàn)數(shù)據(jù)以平均值±標(biāo)準(zhǔn)差表示,平均值為每個(gè)品種15次重復(fù)數(shù)據(jù)的平均值。采用IBM.SPSS Statistics 19.0對(duì)質(zhì)構(gòu)參數(shù)進(jìn)行相關(guān)性分析和主成分分析。
由表1可知,甘薯塊根硬度范圍為59.79—143.41 N,平均為105.00 N,變異系數(shù)為19.47%,其中,塊根硬度大于140.00 N的品種有綿粉1號(hào)、商徐紫1號(hào)和蘇薯29,分別為143.41、140.14和142.25 N;166-7、紅香蕉、寧薯10號(hào)和豫薯10號(hào)的塊根硬度小于80.00 N,分別為59.79、78.72、71.35和77.86 N。
甘薯塊根的黏附性為-10.4—-0.80 J,平均為-4.71 J,變異系數(shù)為49.15%,黏附性大于-2.00 J的品種有4個(gè),分別為龍薯31(-1.34 J)、商薯8號(hào)(-1.46 J)、湘薯98(-1.27 J)和浙薯13(-0.80 J);黏附性小于-9.00 J的品種有冀紫薯2號(hào)(-9.34 J)和普薯32(-10.40 J)。
甘薯塊根內(nèi)聚性為0.15—0.28,平均為0.21,變異系數(shù)為14.27%,其中,商薯19的內(nèi)聚性最大,為0.28,紅皮白心的內(nèi)聚性最小,為0.15。
甘薯塊根彈性為5.01—8.93 mm,平均為6.59 mm,變異系數(shù)為15.75%,塊根彈性大于8 mm的品種有6個(gè),分別為南薯007(8.78 mm)、商薯8號(hào)(8.81 mm)、西農(nóng)431(8.93 mm)、湘薯98(8.92 mm)、浙薯13(8.89 mm)和浙紫薯1號(hào)(8.52 mm);166-7的塊根彈性最小,為5.01 mm。
甘薯塊根膠黏性為11.97—32.78 N,平均為22.20 N,變異系數(shù)為23.84%,其中,膠黏性超過(guò)30 N的品種有普薯32、秦紫2號(hào)、浙薯13和浙紫薯1號(hào),分別為32.78、30.33、32.03和30.63 N;膠黏性小于15 N的品種有3個(gè),分別為166-7(11.97 N)、紅皮白心(14.26 N)和龍薯14(14.16 N)。
甘薯塊根咀嚼性為60.30—284.66 N,平均為149.29 N,變異系數(shù)為35.23%,咀嚼性大于250.00 N的品種有4個(gè),分別為商薯8號(hào)(255.61 N)、湘薯98(261.86 N)、浙薯13(284.66 N)和浙紫薯1號(hào)(260.41 N);咀嚼性小于100.00 N的有166-7(60.30 N)、紅皮白心(91.76 N)、龍薯14(77.28 N)、龍薯515(96.68 N)和寧薯10號(hào)(85.61 N)。
Pearson相關(guān)系數(shù)分析表明,甘薯塊根硬度與膠黏性、咀嚼性均呈極顯著正相關(guān),膠黏性與咀嚼性呈極顯著的正相關(guān),內(nèi)聚性與彈性、膠黏性、咀嚼性均呈極顯著正相關(guān),彈性與膠黏性、咀嚼性均呈極顯著的正相關(guān)(表2)。
2.2.1 主成分分析確定各參數(shù)權(quán)重 由表3可知,將45個(gè)甘薯品種的6個(gè)質(zhì)構(gòu)參數(shù)轉(zhuǎn)化為6個(gè)主成分,根據(jù)各主成分的特征值和方差貢獻(xiàn)率進(jìn)行主成分提取,前3個(gè)主成分的累積方差貢獻(xiàn)率達(dá)94.674%,能代表所有參數(shù)的絕大部分信息。第一主成分的特征值為3.378,方差貢獻(xiàn)率為56.303%;第二主成分的特征值為1.246,方差貢獻(xiàn)率為20.766%;第三主成分的特征值為1.056,方差貢獻(xiàn)率為17.605%。
載荷值的大小反映各參數(shù)在主成分中的重要程度。第一主成分中,咀嚼性、膠黏性和彈性的載荷值分別為0.991、0.942和0.789,作為第一主成分的代表參數(shù);第二主成分中,硬度、黏附性、彈性對(duì)第二主成分的貢獻(xiàn)較大,其載荷值分別為0.432、0.832和0.086;第三主成分中,黏附性、內(nèi)聚性、彈性的載荷值分別為0.494、0.326和0.490(表4)。
綜合分析3個(gè)主成分中6個(gè)參數(shù)的載荷值,硬度、黏附性、內(nèi)聚性、彈性、膠黏性、咀嚼性的權(quán)重分別是0.121、0.161、0.102、0.232、0.162和0.223(表4)。
2.2.2 建立加權(quán)的規(guī)范化決策矩陣、計(jì)算相對(duì)接近度C值 由表5和表6可知,決策矩陣中各品種的理想解X+為0.1188、0.1560、0.0923、0.2288、0.1590和0.2167;負(fù)理想解X-均為0。
表1 不同甘薯品種塊根TPA試驗(yàn)質(zhì)構(gòu)參數(shù)
表2 不同甘薯品種塊根TPA質(zhì)構(gòu)參數(shù)相關(guān)性
*表示<0.05顯著水平,**表示<0.01極顯著水平*and**indicate significant linear correlation of 0.05 and 0.01 levels, respectively
表3 主成分的特征值、方差貢獻(xiàn)率和累計(jì)方差貢獻(xiàn)率
表4 質(zhì)構(gòu)參數(shù)的載荷向量及權(quán)重
表5 淀粉型甘薯TOPSIS決策矩陣R和分析結(jié)果
表6 鮮食型甘薯TOPSIS決策矩陣R和分析結(jié)果
淀粉型甘薯的質(zhì)構(gòu)品質(zhì)前3位為龍薯31、商薯19和冀薯982(表5);鮮食型甘薯的質(zhì)構(gòu)品質(zhì)前3位為蘇16、紫羅蘭和徐32(表6)。
TPA測(cè)試通常被稱為“雙咬測(cè)試”,是通過(guò)模擬人的牙齒咀嚼運(yùn)動(dòng),對(duì)樣品進(jìn)行2次壓縮,利用電腦輸出的測(cè)試曲線判斷樣品質(zhì)構(gòu)狀況和組織結(jié)構(gòu),能夠全面反映樣品硬度、黏附性、咀嚼性等質(zhì)構(gòu)特性[17-18]。本研究采用TPA法測(cè)定不同甘薯品種塊根質(zhì)構(gòu)品質(zhì),發(fā)現(xiàn)不同甘薯品種質(zhì)構(gòu)參數(shù)差別較大,其中黏附性和咀嚼性的變異系數(shù)較大,品種間差異較大;內(nèi)聚性和彈性的變異系數(shù)較小,品種間差異較小。陳麗[19]對(duì)19個(gè)鮮薯品種進(jìn)行TPA試驗(yàn),結(jié)果表明,彈性和內(nèi)聚性的變異系數(shù)較小,咀嚼性的變異系數(shù)最大。劉丙花等[8]對(duì)22個(gè)藍(lán)莓品種進(jìn)行TPA測(cè)試,發(fā)現(xiàn)黏附性、咀嚼性的變異系數(shù)大,彈性和內(nèi)聚性的變異系數(shù)小,與本研究結(jié)果一致。
研究表明,質(zhì)構(gòu)參數(shù)之間具有較高的相關(guān)性[20-21]。本研究中,甘薯塊根咀嚼性與硬度、彈性、內(nèi)聚性、膠黏性均呈極顯著正相關(guān),膠黏性與硬度、彈性呈極顯著正相關(guān),內(nèi)聚性與彈性呈極顯著正相關(guān),黏附性與其他質(zhì)構(gòu)參數(shù)無(wú)明顯相關(guān)性。楊玲等[22]研究發(fā)現(xiàn)‘華紅’蘋(píng)果果肉內(nèi)聚性與彈性呈極顯著正相關(guān),不同蘋(píng)果品種果實(shí)黏附性與其他質(zhì)構(gòu)參數(shù)呈不顯著相關(guān),與本研究結(jié)果一致。陳麗[19]研究發(fā)現(xiàn)薯塊咀嚼性與硬度、彈性、內(nèi)聚性均呈極顯著正相關(guān),咀嚼性和內(nèi)聚性與營(yíng)養(yǎng)指標(biāo)之間存在較好的相關(guān)性。劉莉等[23]研究發(fā)現(xiàn)甜瓜果實(shí)咀嚼性與硬度、內(nèi)聚性均呈顯著正相關(guān);在感官上,人牙齒所感覺(jué)出來(lái)的甜瓜果肉致密度和嚼勁越大,牙齒需要咀嚼果肉成吞咽狀態(tài)的能量越大,口感也越好。以上表明咀嚼性、黏附性、硬度和膠黏性與薯塊的適口感和加工適應(yīng)性關(guān)系極為密切。
主成分分析是最優(yōu)選的簡(jiǎn)化多變量技術(shù),將多個(gè)指標(biāo)簡(jiǎn)化為少量綜合指標(biāo)的一種統(tǒng)計(jì)分析方法,用少數(shù)變量盡可能多地解釋原來(lái)變量的信息,保證原信息損失小且變量數(shù)目盡可能少[24-25]。本研究將質(zhì)構(gòu)數(shù)據(jù)標(biāo)準(zhǔn)化后,應(yīng)用主成分分析法計(jì)算其綜合得分模型,應(yīng)用權(quán)重公式計(jì)算出各參數(shù)的權(quán)重,提高了評(píng)價(jià)指標(biāo)權(quán)重分配的科學(xué)性和客觀性。本研究應(yīng)用主成分分析確定權(quán)重結(jié)合TOPSIS對(duì)45個(gè)甘薯品種的質(zhì)構(gòu)品質(zhì)進(jìn)行了綜合評(píng)價(jià),質(zhì)構(gòu)品質(zhì)優(yōu)良的淀粉型甘薯品種為龍薯31、商薯19和冀薯982;質(zhì)構(gòu)品質(zhì)優(yōu)良的鮮食型甘薯品種為蘇薯16、紫羅蘭和徐薯32。
研究表明,甘薯塊根質(zhì)構(gòu)品質(zhì)與淀粉含量、口感及感官特性密切相關(guān)。Nakamura等[26-27]通過(guò)研究甘薯塊根質(zhì)構(gòu)品質(zhì)與淀粉含量的關(guān)系,結(jié)果表明,甘薯塊根質(zhì)構(gòu)品質(zhì)與淀粉含量顯著相關(guān)。Ando等[28]研究發(fā)現(xiàn)甘薯的淀粉含量與質(zhì)構(gòu)評(píng)價(jià)結(jié)果具有極顯著的相關(guān)性。Yoon等[29]研究表明甘薯塊根質(zhì)構(gòu)品質(zhì)與淀粉含量顯著相關(guān)且質(zhì)構(gòu)參數(shù)可預(yù)測(cè)甘薯品種特性。Truong等[30]通過(guò)研究甘薯質(zhì)構(gòu)品質(zhì)與感官評(píng)價(jià)的關(guān)系,結(jié)果表明,質(zhì)構(gòu)參數(shù)與口感和感官特性顯著相關(guān),質(zhì)構(gòu)參數(shù)可以很好地預(yù)測(cè)甘薯品種的適口性。生產(chǎn)試驗(yàn)表明,龍薯31、商薯19、冀薯982鮮薯產(chǎn)量高,薯干產(chǎn)量和淀粉產(chǎn)量顯著高于對(duì)照品種徐薯22,是較好的淀粉加工型品種[31-33]。蘇薯16、徐薯32、紫羅蘭商品性、適口性好,粗纖維少,且紫羅蘭食用品質(zhì)優(yōu)于國(guó)內(nèi)其他紫薯品種,是優(yōu)質(zhì)鮮食型品種[34-36]。本研究評(píng)價(jià)結(jié)果與甘薯生產(chǎn)表現(xiàn)情況較為一致,具有一定的參考意義,該評(píng)價(jià)方法可作為甘薯質(zhì)構(gòu)品質(zhì)體系構(gòu)建的重要手段。
甘薯的質(zhì)構(gòu)品質(zhì)存在品種間差異。質(zhì)構(gòu)品質(zhì)優(yōu)良的淀粉型甘薯品種為龍薯31、商薯19和冀薯982;質(zhì)構(gòu)品質(zhì)優(yōu)良的鮮食型甘薯品種為蘇薯16、紫羅蘭和徐薯32。
[1] Laryea D, Koomson D, Oduro I, Carey E. Evaluation of 10 genotypes of sweetpotato for fries., 2019, 7(2): 589-598.
[2] 吳銀亮, 王紅霞, 楊俊, 范維娟, 楊楠, 殷旻昊, 張鵬.甘薯儲(chǔ)藏根形成及其調(diào)控機(jī)制研究進(jìn)展. 植物生理學(xué)報(bào), 2017, 53(5): 749-757.
Wu Y L, Wang H X, Yang J, Fan W J, Yang N, Yin W H, Zhang P. Advances in storage root development and regulation in sweetpotato [(L.) Lam.]., 2017, 53(5): 749-757.(in Chinese)
[3] Flis B, Tatarowska B, Milczarek D, Plich J. Effect of location on starch content and tuber texture characteristics in potato breeding lines and cultivars.,, 2017, 67(5): 453-461.
[4] Sato A, Truong V D, Johanningsmeier S D, Reynolds R, Pecota K V, Yencho G C. Chemical constituents of sweetpotato genotypes in relation to textural characteristics of processed french fries., 2018, 83(1): 60-73.
[5] 潘超, 陳春曉, 葉夏芳, 吳鑫, 陳麗, 陸國(guó)權(quán). 甘薯塊根質(zhì)構(gòu)特性的檢測(cè)方法優(yōu)化. 保鮮與加工, 2018, 18(2): 94-99.
Pan C, Chen C X, Ye X F, Wu X, Chen L, Lu G Q. Optimization of detection method of the texture properties of sweetpotato root tuber., 2018, 18(2): 94-99. (in Chinese)
[6] Szczesniak A. Texture is a sensory property., 2002, 13(4): 215-225.
[7] Taniwaki M, Kohyama K. Mechanical and acoustic evaluation of potato chip crispness using a versatile texture analyzer., 2012, 112(4): 268-273.
[8] 劉丙花, 王開(kāi)芳, 王小芳, 梁靜, 白瑞亮, 謝小鋒, 孫蕾. 基于主成分分析的藍(lán)莓果實(shí)質(zhì)地品質(zhì)評(píng)價(jià). 核農(nóng)學(xué)報(bào), 2019, 33(5): 93-101.
Liu B H, Wang K F, Wang X F, Liang J, Bai R L, Xie X F, Sun L. Evaluation of fruit texture quality of blueberry based on principal component analysis., 2019, 33(5): 93-101. (in Chinese)
[9] Samuel O W, Asogbon G M, Sangaiah A K, Peng F, Guanglin L. An integrated decision support system based on ANN and fuzzy AHP for heart failure risk prediction., 2017, 68(2017): 163-172.
[10] 駱汝九, 胡治球, 宋雯, 徐辰武. 多性狀綜合評(píng)定的秩和差測(cè)驗(yàn)方法. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(10): 2008-2015.
Luo R J, Hu Z Q, Song W, Xu C W. A rank-sum-difference testing method for multi-trait comprehensive ranking., 2010, 43(10): 2008-2015. (in Chinese)
[11] Sousa C C, Damasceno-Silva K J, Bastos E A, Rocha M M. Selection of cowpea progenies with enhanced drought-tolerance traits using principal component analysis., 2015, 14(4): 1598-1605.
[12] 駱汝九, 胡治球, 宋雯, 徐辰武. 多性狀綜合評(píng)定的秩和測(cè)驗(yàn)方法及其應(yīng)用. 中國(guó)農(nóng)業(yè)科學(xué), 2009, 42(8): 2686-2694.
Luo R J, Hu Z Q, Song W, Xu C W. A rank-sum testing method for multi-trait comprehensive ranking and its application., 2009, 42(8): 2686-2694. (in Chinese)
[13] 徐小萬(wàn), 雷建軍, 李穎, 羅少波, 王恒明, 徐曉美, 李濤. 現(xiàn)蕾期辣椒耐高溫多濕性CA-TOPSIS綜合評(píng)定. 熱帶作物學(xué)報(bào), 2013, 34(9): 1747-1751.
Xu X W, Lei J J, Li Y, Luo S B, Wang H M, Xu X M, Li T. Comprehensive evaluation for high temperature and humidity resistance in pepper(L.)budding., 2013, 34(9): 1747-1751. (in Chinese)
[14] Zhou S, Liu B, Meng J. Quality evaluation of raw moutan cortex using the AHP and gray correlation-TOPSIS method., 2017, 13(51): 528-533.
[15] Alessandrini L, Balestra F, Romani S, Rocculi P, Rosa M D. Physicochemical and sensory properties of fresh potato-based pasta (gnocchi)., 2010, 75(9): 542-547.
[16] LIANG X D, LIU C m, LI Z. Measurement of scenic spots sustainable capacity based on PCA-entropy TOPSIS: A case study from 30 provinces, China., 2017, 15(1): 10-29.
[17] Singh V, Guizani N, Al-Alawi A, Claereboudtb M, Rahmana M S. Instrumental texture profile analysis (TPA) of date fruits as a function of its physico-chemical properties., 2013, 50(10): 866-873.
[18] Lanza B, Amoruso F. Measurement of kinaesthetic properties of in-brine table olives by microstructure of fracture surface, sensory evaluation, and texture profile analysis (TPA)., 2018, 98(11): 4142-4150.
[19] 陳麗. 甘薯塊根質(zhì)構(gòu)特性的評(píng)價(jià)研究[D]. 杭州: 浙江農(nóng)林大學(xué), 2013.
Chen L. Evaluation of the texture characteristics of sweetpotato roots[D]. Hangzhou: Zhejiang Agriculture and Forestry University, 2013. (in Chinese)
[20] Bianchi T, Guerrero L, Gratacós-Cubarsí M, Claret A, Argyris J, Garcia-Mas L, Hortós M. Textural properties of different melon (L.) fruit types: sensory and physical-chemical evaluation., 2016, 201(30): 46-56.
[21] Li C Y, Luo J W, MacLean D. A novel instrument to delineate varietal and harvest effects on blue berry fruit texture during storage., 2011, 91(9): 1653-1658.
[22] 楊玲, 肖龍, 王強(qiáng), 張彩霞, 叢佩華, 田義. 質(zhì)地多面分析(TPA)法測(cè)定蘋(píng)果果肉質(zhì)地特性. 果樹(shù)學(xué)報(bào), 2014, 31(5): 977-985.
Yang L, Xiao L, Wang Q, Zhang C X, Cong P H, Tian Y. Study on texture properties of apple flesh by using texture profile analysis., 2014, 31(5): 977-985. (in Chinese)
[23] 劉莉, 高星, 華德平, 劉翔, 李志文, 張平, 李三培, 張少慧. 不同的質(zhì)構(gòu)檢測(cè)方法對(duì)甜瓜果肉質(zhì)構(gòu)的評(píng)價(jià). 天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版), 2016, 49(8): 875-881.
Liu L, Gao X, Hua D P, Liu X, Li Z W, Zhang P, Li S P, Zhang S H. Evaluation of texture of melon pulp by different texture detection methods., 2016, 49(8): 875-881. (in Chinese)
[24] 公麗艷, 孟憲軍, 劉乃僑, 畢金峰. 基于主成分與聚類(lèi)分析的蘋(píng)果加工品質(zhì)評(píng)價(jià). 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(13): 276-285.
Gong L Y, Meng X J, Liu N Q, Bi J F. Evaluation of apple quality based on principal component and hierarchical cluster analysis., 2014, 30(13): 276-285. (in Chinese)
[25] Goyeneche R, Roura S, Di Scala K. Principal component and hierarchical cluster analysis to select hurdle technologies for minimal processed radishes., 2014, 57(2): 522-529.
[26] Nakamura Y, Kuranouchi T, Akiko O T, Ishida N, Koda I, Iwasawa N, Matsuda T, Kumagai T. Cell structure, water status and starch properties in tuberous root tissue in relation to the texture of steamed sweetpotato ((L.) Lam)., 2010, 79(3): 284-295.
[27] Nakamura Y, Akiko O T, Kuranouchi T, Katayama K. Disintegration of steamed root tissues of sweetpotato and its relation to texture and the contents of starch, calcium and pectic substances., 2015, 62(12): 555-562.
[28] Ando T, Yasuda M, Hisaka H. Effect of storage period on free sugar and starch contents of six sweetpotato varieties with different taste on baking, and quantification of sweetness and texture., 2018, 17(4): 449-457.
[29] Yoon H, No J, Kim W, Shin M. Textural character of sweetpotato root of Korean cultivars in relation to chemical constituents and their properties., 2018, 27(6): 1627-1637.
[30] Truong V D, Hamann D D, Walter W M. Relationship between instrumental and sensory parameters of cooked sweetpotato texture., 1997, 28(2): 163-185.
[31] 林子龍, 郭其茂, 陳根輝, 黃艷霞, 楊立明. 高產(chǎn)優(yōu)質(zhì)兼用型甘薯新品種龍薯31號(hào)的選育[J]. 福建農(nóng)業(yè)學(xué)報(bào), 2018, 172(3): 34-39.
Lin Z L, Guo Q M, Chen G H, Huang Y X, Yang L M. Breeding a new sweetpotato variety, Longshu 31., 2018, 172(3): 34-39. (in Chinese)
[32] 唐忠厚, 魏猛, 陳曉光, 史新敏, 張愛(ài)君, 李洪民, 丁艷鋒. 不同肉色甘薯塊根主要營(yíng)養(yǎng)品質(zhì)特征與綜合評(píng)價(jià). 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(9): 1705-1714.
Tang Z H, Wei M, Chen X G, Shi X M, Zhang A J, Li H M, Ding Y F. Characters and comprehensive evaluation of nutrient quality of sweetpotato storage root with different flesh colors., 2014, 47(9): 1705-1714. (in Chinese)
[33] 鞠棟. 薯渣復(fù)配粉營(yíng)養(yǎng)與功能特性分析及饅頭加工工藝研究[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2017.
Ju D. Study on the nutritional and functional properties of potato/ sweetpotato residue compound flour and steamed bread processing technology thereof[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[34] 謝一芝, 郭小丁, 賈趙東, 馬佩勇, 邊小峰. 食用甘薯新品種蘇薯16號(hào)的選育及栽培技術(shù). 江蘇農(nóng)業(yè)科學(xué), 2012, 40(7): 104-105.
Xie Y Z, Guo X D, Jia Z D, Ma P Y, Bian X F. Breeding and cultivation techniques of edible sweetpotato variety Sushu 16., 2012, 40(7): 104-105. (in Chinese)
[35] 尹艷, 梁艷梅, 林善夢(mèng), 羅小梅, 宋冠華, 段純. 熱浸提“紫羅蘭”紫薯花青素的工藝條件優(yōu)化研究. 北方園藝, 2015(18): 136-139.
Yin Y, Liang Y M, Lin S M, Luo X M, Song G H, Duan C. Optimization of hot extraction conditions of anthocyanins from ‘Violet’ purple sweetpotato., 2015(18): 136-139. (in Chinese)
[36] 唐忠厚, 張愛(ài)君, 陳曉光, 魏猛, 靳容, 李洪民. 優(yōu)質(zhì)鮮食型甘薯新品種‘徐薯32’的選育及特性分析. 植物科學(xué)學(xué)報(bào), 2016, 34(5): 781-789.
Tang Z H, Zhang A J, Chen X G, Wei M, Jin R, Li H M. Breeding and appraisal of new sweetpotato cultivar ‘Xushu 32’with high quality., 2016, 34(5): 781-789. (in Chinese)
Evaluation of Texture Quality of Sweetpotato storage roots Based on PCA-Entropy TOPSIS
LI Ling, XU Shu, CAO RuXia, CHEN LingLing, CUI Peng, Lü ZunFu, LU GuoQuan
(College of Agriculture and Food Science, Zhejiang A&F University/The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Hangzhou 311300)
【】Texture quality are important indicators for the evaluation of sweetpotato root quality, which directly affects its fresh food and post-harvest processing. Texture quality evaluation is not only an important procedure of sweetpotato variety breeding and comprehensive utilization, but also to provide an important reference for sweetpotato breeding and its utilization.【】Texture qualities (hardness、adhesiveness, cohesiveness, springiness, gumminess, and chewiness) of 45 sweetpotato varieties were analyzed with texture profile analysis method by using texture analyzer, and the correlation among the texture parameters was analyzed. The weight index of each parameter was determined by principal component analysis, and the texture quality of 45 sweetpotato tubers was evaluated by TOPSIS.【】The results showed that textural parameters of 45 sweetpotato varieties were different from each other. The variation coefficient of chewiness and adhesiveness were 35.23% and 49.15%, respectively. Chewiness ranged from 60.30 to 284.66 N, with an average values of 149.29 N. Zheshu 13 has the maximum value of 284.66 N, while 166-7 and Longshu 14 have the minimum values of 60.30 N, 77.28 N, respectively. Adhesiveness ranged from -10.40 to -0.80 J, with an average value of -4.71 J. Longshu 31 has maximum value of -1.34 J, while Jizishu 2 and Pushu 32 have minimum values of -9.34 J, -10.40 J, respectively. The variation coefficient of cohesiveness and springiness were 14.27% and 15.75%, respectively. Cohesiveness ranged from 0.15 to 0.28, with an average value of 0.21. Shangshu 19 has maximum value of 0.28, while Hongpibaixin has minimum value of 0.15. Springiness ranged from 5.01 to 8.93 mm, with an average value of 6.59 mm. Xinong 431 has the maximum value of 8.93 mm, while 166-7 has the minimum value of 5.01 mm. The variation coefficient of hardness and gumminess were 19.47% and 23.84%, respectively. Gumminess ranged from 11.97 to 32.78 N, with an average value of 22.20 N. Pushu 32 has maximum value of 32.78 N, while 166-7 has minimum value of 11.97 N. Hardness ranged from 59.79 to 143.41 N, with an average value of 105 N. The value of Mianfen 1, Shangxuzi 1 and Sushu29 was more than 140.00 N, and 166-7 has minimum value of 59.79 N. Correlation analysis showed that hardness was significantly positively correlated with gumminess and chewiness. Gumminess had significant positively correlation with chewiness. Cohesiveness was significantly positively correlated with springiness, gumminess, and chewiness. Springiness had significant positive correlation with gumminess and chewiness. Six texture parameters were analyzed by principal component analysis method. The cumulative variance contribution rate of the three principal components was 94.674%. The weight index of hardness, adhesiveness, cohesion, elasticity, adhesiveness and mastication were 0.121, 0.161, 0.102, 0.232, 0.162 and 0.223, respectively.【】According to the comprehensive evaluation, starch-type sweetpotato varieties with better texture quality were Longshu 31, Shangshu 19 and Qishu 982. Fresh-type sweetpotato varieties with better texture quality were Sushu 16, Ziluolan and Xushu32.
sweetpotato; texture profile analysis; correlation; PCA-Entropy; TOPSIS
10.3864/j.issn.0578-1752.2020.11.003
2019-09-23;
2019-12-16
國(guó)家自然科學(xué)基金面上項(xiàng)目(31671750)、國(guó)家甘薯產(chǎn)業(yè)技術(shù)體系產(chǎn)后深加工崗位科學(xué)家專項(xiàng)資金項(xiàng)目(CARS-11-B19)、浙江省農(nóng)業(yè)(糧食)新品種選育重大科技專項(xiàng)子專題(2016C02050-7-5)、浙江農(nóng)林大學(xué)人才啟動(dòng)項(xiàng)目(2017FR026)
李玲,E-mail:2931656595@qq.com。通信作者陸國(guó)權(quán),E-mail:lugq10@zju.edu.cn
(責(zé)任編輯 李莉)
中國(guó)農(nóng)業(yè)科學(xué)2020年11期