• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MSIsensor-pro:Fast,Accurate,and Matchednormal-sample-free Detection of Microsatellite Instability

    2020-07-29 05:34:44PengJiaXiaofeiYangLiGuoBowenLiuJiadongLinHaoLiangJianyongSunChengshengZhangKaiYe
    Genomics,Proteomics & Bioinformatics 2020年1期

    Peng Jia ,Xiaofei Yang ,Li Guo ,4,Bowen Liu ,Jiadong Lin ,5,Hao Liang ,Jianyong Sun ,Chengsheng Zhang ,Kai Ye ,4,9,*

    1 School of Automation Science and Engineering,Faculty of Electronic and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    2 MOE Key Laboratory for Intelligent Networks&Networks Security,Faculty of Electronic and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    3 School of Computer Science and Technology,Faculty of Electronic and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    4 School of Life Science and Technology,Xi’an Jiaotong University,Xi’an 710049,China

    5 Leiden Institute of Advanced Computer Science,Leiden University,Leiden 2311 ZE,Netherlands

    6 School of Mathematics and Statistics,Xi’an Jiaotong University,Xi’an 710049,China

    7 Precision Medicine Center,the First Affiliated Hospital of Xi’an Jiaotong University,Xi’an 710061,China

    8 Jackson Laboratory for Genomic Medicine,Farmington,CT 06032,USA

    9 Genome Institute,the First Affiliated Hospital of Xi’an Jiaotong University,Xi’an 710061,China

    KEYWORDS Microsatellite;Polymerase slippage;Multinomial distribution;Microsatellite instability;Tumor

    Abstract Microsatellite instability(MSI)is a key biomarker for cancer therapy and prognosis.Traditional experimental assays are laborious and time-consuming,and next-generation sequencingbased computational methods do not work on leukemia samples,paraffin-embedded samples,or patient-derived xenografts/organoids,due to the requirement of matched normal samples.Herein,we developed MSIsensor-pro,an open-source single sample MSI scoring method for research and clinical applications.MSIsensor-pro introduces a multinomial distribution model to quantify polymerase slippages for each tumor sample and a discriminative site selection method to enable MSI detection without matched normal samples.We demonstrate that MSIsensor-pro is an ultrafast,accurate,and robust MSI calling method.Using samples with various sequencing depths and tumor purities,MSIsensor-pro significantly outperformed the current leading methods in both accuracy and computational cost.MSIsensor-pro is available at https://github.com/xjtu-omics/msisensor-pro and free for non-commercial use,while a commercial license is provided upon request.

    Introduction

    Microsatellite instability(MSI)is a form of hypermutation in the microsatellites of malignancies due to a deficient DNA mismatch repair(MMR)system[1].Significant proportions of tumor samples with MSI status are observed in colorectal cancer(CRC),stomach adenocarcinoma(STAD),and uterine corpus endometrial carcinoma(UCEC)[2,3].Given that MSI is an important molecular phenotype for cancers and a key biomarker for cancer immunotherapy[4-6],two gold standard detection methods,MSI-PCR and MSI-IHC,are widely used for identifying MSI clinically[7,8].However,both methods are laborious, time-consuming, and expensive [7,8].Recently, several next-generation-sequencing (NGS)-based methods have been developed,which show improved time and cost efficiency,and are highly consistent with both gold standards[2,3,9-13].For instance,MSIsensor[10],an FDAauthorized MSI detection solution based on MSK-IMPACT[14],achieved 99.4%concordance and high sensitivity[15].However,these NGS methods have several limitations,such as requiring matched normal samples as control(sometimes inaccessible),computational expense,and being affected by low sequencing depths and low tumor purities[7].Particularly,due to the requirement of matched normal samples,NGS-based methods do not work on leukemia samples,paraffin embedded samples or patient-derived xenografts/organoids.

    A hallmark of MSI is the enrichment of insertions or deletions in microsatellite regions initiated by polymerase slippage[16,17](Figure S1),which we have argued is an iterative process and described using a multinomial distribution(MND)model(Figure S2),providing promising improvements for MSI detection efficacy using NGS data.Here,we report a novel MSI calling method,MSIsensor-pro,which addresses the aforementioned limitations of current NGS-based MSI detection tools by applying an MND model to capture the intrinsic properties of polymerase slippages in a single sample.We demonstrated that MSIsensor-pro is an ultrafast,accurate,and normal sample-free MSI calling method.Moreover,it outperforms all current MSI detection methods and is robust for samples with various sequencing depths,tumor purities,and target sequencing regions.

    Method

    Data preprocessing

    Whole-exome sequencing data and clinical MSI status of 1532 tumor-normal pairs were downloaded from The Cancer Genome Atlas (TCGA) [18]. The sequencing data were aligned against a human reference genome(GRCh38),and MSI was determined using the gold standards[19].The scan module(default parameters)in MSIsensor[10]was used to retrieve the microsatellite regions from the human reference genome.Then,the allelic distribution of each microsatellite for each sample was extracted and used in subsequent analyses.

    Multinomial distribution model for polymerase slippage

    To detect MSI without matched normal samples,we evaluated the stability of microsatellites using single samples.Based on the characteristics of allelic distribution of microsatellites in normal samples(Figures S1 and S2),we proposed that the polymerase slippage during DNA replication is an iterative process and that each step is independently accumulative.Therefore,we use multinomial distribution to model the slippage process in microsatellite sites.We use variable x to denote hysteresis synthesis(causing deletions;x =0),pre-synthesis(causing insertions;x =2),and normal synthesis(x =1)of each step of repeat unit synthesis,and the corresponding probabilities are denoted by p,q,and 1-p-q,respectively.Then,x is subjected to a multinoulli distribution,and the probability distribution function is as follows:

    Thus,for a microsatellite site with n repeats on the reference genome,we assume that y is the repeat length observed from the data.Therefore,we have:

    and the probability distribution function of y is:

    where:

    Here,proNDand proNIdenote the probability of acquiring the observed repeat length due to deletion and insertion,respectively,with the minimum number of steps,while Δ is the probability of using more steps. Since Δ is much smaller and difficult to calculate,we ignore it in practice to preserve computational resources. For a microsatellite region spanned by m reads,we denote the observed repeat length as y1,y2,...yi...,ymand its distribution as Y ={y1,y2,...yi...,ym}. Based on Y, we use the maximum likelihood estimation to compute p and q in Equation(6).

    Finally,p and q can be estimated as follows:

    The values of p and q are positively correlated with the magnitude of polymerase slippages.

    Validation of the MND model

    To evaluate how well parameters p and q from the MND mimic polymerase slippages for microsatellites with various repeat lengths,we randomly selected 27,200 microsatellites from normal control samples of three cancer types in TCGA and estimated the parameters p and q for each microsatellite site.Then,the calculated p and q values(also known as the probabilities of deletion and insertion)were used to simulate allele length distribution. The sites with no significant difference (P <0.05, Kolmogorov-Smirnov test) between real and simulated distribution are defined as fitted sites.Then,the percentage of fitted sites to all test sites was used to evaluate the fitness of the MND model.To investigate polymerase slippages in tumor samples,we estimated p and q for 1532 TCGA tumor samples and compared the differences between MSI and microsatellite stable(MSS)samples.In this study,only samples with status of MSI-H as determined by MSI-PCR are classified as MSI samples,whereas cancer samples with status MSS or MSIL are classified as MSS samples, as reported previously[3].We found that p discriminates between MSI and MSS samples while q does not,indicating that p is an effective metric for MSI classification.

    MSI calling of MSIsensor-pro

    We used p(probability of deletion)from the MND model to evaluate the stability of microsatellites. To distinguish unstable sites from stable ones we determined the mean(μi)and standard deviation(σi)of p in the i-th microsatellite site in normal samples.Specifically,a microsatellite is classified as unstable with p >μi+3σi.We used 1532 normal control samples from three cancer types to build the baseline. The MSI score, defined as the percentage of unstable sites within all detected sites in a sample,is used for MSI calling.

    Discriminative microsatellite site selection

    To find discriminative microsatellite(DMS)sites for MSI calling,we computed the contribution of each site to MSI classification.For a given microsatellite site,the parameter p was used for MSI classification,and then the area under the receiver operating characteristic curve(AUC)was calculated to evaluate the contribution of this site to MSI calling.Finally,sites with AUC >0.65 were defined as DMS sites and used for MSI calling.In this study,340 TCGA samples were used to discover DMS sites, and all 1532 samples were used to test the performance of MSIsensorpro.

    MSIsensor-pro performance evaluation

    To assess the performance of MSIsensor-pro,we benchmarked MSIsensor-pro against MSIsensor[10],MANTIS[12],and mSINGS[11]using the 1532 TCGA tumor samples.The MSI score was used to rank sites for MSI classification,and AUC was used to evaluate the performance of each method(File S1).CPU usage,memory,and runtime for all these methods were tested on a TCGA sample,TCGA-AD-A5EJ,using a Linux machine running Ubuntu18.04 OS with Intel(R)Core(TM)i5-7500 CPU@3.40 GHz and 32-GB memory.

    To compare the performances of the four methods on samples with low sequencing depths or low tumor purities,we used 178 CRC(78 MSI and 100 MSS)tumor-normal paired samples from TCGA to simulate test data.We downsampled the raw sequencing data to 5×,10×,20×,40×,60×,and 80×sequencing depths and mixed different proportions of tumor and normal sequencing data to generate samples with tumor purities ranging from 5%to 80%.We called MSI for all simulated data and calculated the AUC for each method.To assess the performance of MSIsensor-pro using fewer sites,we selected microsatellite sets containing the top 1,2,5,10,20,50,100,200,500,and 1000 DMS sites for MSI calling.In addition, we randomly selected various number of microsatellites from DMS sites for MSI calling to examine the number of sites sufficient for MSI calling by MSIsensorpro.

    Results

    Evaluation of MND model

    To quantitatively describe the polymerase slippages present in a single sample,we first examined the allele length distributions of 27,200 microsatellites in 1532 normal samples from TCGA[18](Tables S1 and S2;Method).The distributions flattened(the variances became larger and the modes deviated from expectation) with increases in the repeat length of microsatellites in the reference genome(Figure 1A),suggesting that polymerase slippage could be an iterative process.We proposed that polymerase slippages are independently cumulative in the DNA replication process and could be modeled by the MND model.Here,we used p and q to denote the probabilities of hysteresis synthesis(causing deletions)and pre-synthesis(causing insertions), respectively, for each replication unit(Figure S2).We next estimated p and q for each microsatellite to quantify the polymerase slippage in a given allele length distribution.

    To explore the characteristics of p and q in the MND model,we applied the model to 1532 TCGA normal samples.We obtained a total of 11,666 microsatellites with sufficient read coverage(>20×)in more than half of the samples for subsequent study(Tables S1 and S2).We found that the average probability of hysteresis synthesis,p,is significantly larger(P <0.05,Wilcoxon rank-sum test)than that of presynthesis,q(Figure S3),at these sites,indicating that polymerase slippages tend to cause more deletions than insertions at microsatellites,confirming previous reports[2,17].To evaluate the power of our MND model for describing polymerase slippages in DNA replication,we simulated the allele length distributions at each microsatellite site with their corresponding computed p and q values, and compared them with the observed values from sequencing data.We found that the allele length distributions of the simulated data were consistent with those of observed values at 91.97%of microsatellites and the similarities between the two distributions decreased with increasing repeat length(Figures 1B and S4 and S5),confirming that the MND model is capable of describing polymerase slippages at microsatellite sites.

    Figure 1 MND model of polymerase slippages

    Performance of MSIsensor-pro

    Based on the MND model,we developed a method called MSIsensor-pro to detect MSI.We applied our MND model to 1532 TCGA tumor samples with clinical MSI status and obtained their p and q values at each microsatellite site.We found that the MSI samples have significantly larger p values than MSS samples(P <2×1016),while q values in the MSI and MSS samples are not significantly different(Figures 1C,D and S6-S9).Thus,it is conceivable that either the higher incidence of polymerase slippages or failure to fix deletion errors,and therefore,the greater instability of microsatellites in MSI as opposed to MSS,could be attributed to more deletions rather than insertions[9].Therefore,parameter p could evaluate the stability of each microsatellite site.MSIsensorpro classifies the i-th microsatellite as unstable when its p is larger than μi+3σi,in which μiand σiare the mean and standard deviation,respectively,of p in 1532 normal samples at the i-th microsatellite. The fraction of unstable sites in a given microsatellite set is used to score MSI in a tumor sample(Figure S10 and Methods).

    To assess the performance of MSIsensor-pro in terms of accuracy and computational cost,we compared MSIsensorpro against MSIsensor[10],MANTIS[12],and mSINGS[11].Among them,MSIsensor and MANTIS require tumornormal-paired samples, whereas mSINGS requires tumoronly samples(Tables S1 and S2;File S2).First,we applied MSIsensor-pro to 1532 TCGA tumor samples based on 11,666 preselected microsatellites to detect MSI and then compared the MSI detection accuracy with the other three methods in the same samples using AUC.We noticed that even without matched normal samples, AUC values of MSIsensor-pro are comparable to those of MSIsensor and MANTIS,but much higher than those of mSINGS(Table 1 and Table S3).

    Sequencing data from samples with low sequencing coverage or low tumor purities are common challenges for robust MSI detection in clinical applications[15].To indicate the robustness of MSIsensor-pro for various sequencing depths or tumor purities,we evaluated the performance of all four aforementioned methods on 178 CRC samples(78 MSI and 100 MSS)in both original settings and varied sequencing depths or tumor purities.Multiple sequencing depths(5×,10×,20×,40×,60×,and 80×)resulted from simulating and downsampling the original data,while various tumor purities(5%,10%,20%,40%,60%,and 80%)were simulated by mixing the tumor and matched normal samples(Method).Across samples of diverse depths and tumor purities,AUC values of MSIsensor-pro,MSIsensor,and MANTIS were all much higher than those of mSINGS.Notably,MSIsensorpro, requiring tumor samples only, achieved performance comparable to that of MSIsensor and MANTIS,both ofwhich require normal-tumor-paired samples to call MSI(Figure 2A;Tables S4-S7).These results confirm the robustness of MSIsensor-pro and indicate that MSIsensor-pro can achieve high accuracy on samples with low sequencing depth(e.g.,20×)or low tumor purity(e.g.,40%).

    Table 1 AUC obtained using four MSI detection methods for 1532 samples from TCGA

    To further evaluate the computational performances of all these four methods, we called MSI for a TCGA sample TCGA-AD-A5EJ(35-GB tumor and 12-GB normal bam files)using these four methods on a Linux machine running Ubuntu18.04 OS with Intel(R)Core(TM)i5-7500 CPU@3.40 GHz and 32-GB memory.MSIsensor-pro and MSIsensor required only 4 min and 15 min,respectively,thus performing significantly faster than mSINGS (94 min) and MANTIS(119 min).In addition,MSIsensor-pro consumed much less memory than MSIsensor,mSINGS,and MANTIS(Table 2;Figures S11 and S12).

    Figure 2 MSI calling accuracy in TCGA dataset

    Table 2 Peak RAM and runtime used by four MSI detection methods for the sample TCGA-AD-A5EJ

    While MSIsensor-pro exhibited satisfactory all-around performance in detecting MSI using the 11,666 preselected microsatellites,these sites seemed to have an unequal contribution to MSI classifications(Figure S13).We therefore evaluated the contribution of each microsatellite based on MND parameter p and identified 7698 sites(Table S8)with strong contributions(AUC >0.75),which are defined as DMS sites(Figure S13,Table S8,and Method).When only DMS sites were used, MSIsensor-pro exhibited a slight improvement compared to MSI detection using all 11,666 sites and performed superiorly to all other methods in the 1532 TCGA samples.Using DMS sites,performance of MSIsensor-pro was further enhanced with respect to sequencing data of low depths,especially for depths below 40×(Figure 2A;Tables S4 and S5).For data of different tumor purities using DMS sites,MSIsensor-pro exhibited performance comparable to those of other tumor-normal-paired methods for tumor purities of over 40%. However, for lower tumor purities(<40%),although the performances of all methods decreased,the performance of MSIsensor-pro on DMS sites remained superior to all other methods examined(Figure 2A;Tables S6 and S7).

    Since only a portion of all 11,666 sites(DMS sites)were sufficient for high performance MSI calling by MSIsensor-pro,we wonder whether an even smaller subset of DMS sites would be adequate for MSIsensor-pro to achieve similar performance,which would reduce time and cost in practical clinical applications.We therefore assessed the MSI calling performance of MSIsensor-pro on microsatellite sets from single type of tumor samples or in combination containing the top 1,2,5,10,20,50,100,200,500,and 1000 DMS sites based on their contributions.We found that even with only 1 top site,MSIsensor-pro achieved AUC values ranging 0.92-0.96(Figure 2B;Tables S9 and S10).The performance improved with increases in the number of top sites and reached a plateau when using the top 20 sites(0.98 AUC).In addition,by testing MSIsensorpro performance on various number of randomly selected DMS sites,we sought to identify small panels of DMS sites that are potentially effective at robust MSI calling.Indeed,we found that the AUC values for MSI detection steadily increased with growing number of randomly-selected DMS sites.When as few as 50 random sites were used,the AUC was approximately 0.98 and remained stable.Taken together,these results suggest that MSIsensor-pro could be applied to various target sequencing panels with as few as 50 sites(Figures 2C and S14;Tables S9 and S10).

    Discussion

    In this study,we completely redesigned the MSI scoring strategy.By incorporating a MND model for polymerase slippage,MSIsensor-pro scores MSI on tumor samples without matched normal controls,enabling detection of MSI status on patientderived xenografts/organoids, leukemia, and paraffinembedded samples.In addition,MSIsensor-pro is able to score MSI using as few as 50 microsatellite sites(Figure 2C),indicating its potential to compute MSI status in cancer gene panels,stool DNA,and circulating tumor DNA from liquid biopsy samples.

    MSIsensor-pro exhibits remarkable advantages in terms of both accuracy and computational cost,compared to the current leading NGS-based MSI scoring methods tested in this study,especially when processing samples with low sequencing depths or low tumor purities (Figure 2). MSIsensor-pro improves AUC values of MSI classification with tumor only samples from 0.594(mSINGS)to 0.994 in 1532 TCGA samples(Table 1).We have also demonstrated the advantageous performance of MSIsensor-pro using data with various tumor purities(Figure 2A).We will further optimize our approach to integrate tumor purity information to our MND model for polymerase slippage.

    In addition to these methodological analyses,we also examine the properties of DMS sites and find that these sites are closer to splicing sites and located in genes with higher expression than the other sites(Figures S15-S17),indicating potential roles of DMS sites in tumorigenesis.

    Code availability

    MSIsensor-pro is available at https://github.com/xjtu-omics/msisensor-pro with help documentation and demo data.It is free for non-commercial use by academic,government,and non-profit/not-for-profit institutions.A commercial version of the software is available and licensed through Xi’an Jiaotong University. For more information, please contact kaiye@xjtu.edu.cn.

    Data availability

    Primary sequencing data,gold standard MSI status,and RNA expression data can be downloaded from TCGA Research Network(http://cancergenome.nih.gov/).All results generated by this study are available in Supplementary materials from the article.

    Authors’contributions

    KY conceived of,designed,and supervised the study;PJ,BL,and JS developed the multinomial distribution model for polymerase slippage estimation; PJ and HL implemented the source code of MSIsensor-pro;PJ evaluated the performances of MSIsensor-pro and the other three MSI detection methods.PJ,JL,XY,LG,CZ,and KY wrote the manuscript.All authors contributed to critical revision of the manuscript,read and approved the final version.

    Competing interests

    The authors declare no competing financial interests.

    Acknowledgments

    We thank Beifang Niu,Tingjie Wang,Yongyong Kang,Xiujuan Li,and Shenghan Gao for helpful discussions regarding data analysis and Jing Hai for administrative and technical support. This study was supported by the National Key R&D Program of China(Grant Nos.2018YFC0910400 and 2017YFC0907500),the National Natural Science Foundation of China(Grant Nos.31671372,61702406,31701739,and 31970317),the National Science and Technology Major Project of China(Grant No.2018ZX10302205),as well as the‘‘World-Class Universities and the Characteristic Development Guidance Funds for the Central Universities”and the General Financial Grant from the China Postdoctoral Science Foundation(Grant Nos.2017M623178 and 2017M623188).

    Supplementary material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.gpb.2020.02.001.

    ORCID

    0000-0002-3429-919X(Jia P)

    0000-0002-5118-7755(Yang X)

    0000-0001-6100-3481(Guo L)

    0000-0001-6570-1981(Liu B)

    0000-0002-8116-5901(Lin J)

    0000-0001-7987-6002(Liang H)

    0000-0002-9188-1856(Sun J)

    0000-0002-5144-7115(Zhang C)

    0000-0002-2851-6741(Ye K)

    热re99久久精品国产66热6| 久久香蕉激情| 日本一区二区免费在线视频| 日韩一卡2卡3卡4卡2021年| 亚洲欧美激情综合另类| 午夜日韩欧美国产| 一级黄色大片毛片| 日韩精品青青久久久久久| 十八禁网站免费在线| 久久久久久久久久久久大奶| 国内久久婷婷六月综合欲色啪| 精品国内亚洲2022精品成人| 悠悠久久av| 亚洲成人免费av在线播放| 五月开心婷婷网| 欧美日韩视频精品一区| 久久国产精品人妻蜜桃| 窝窝影院91人妻| 久久国产精品人妻蜜桃| 少妇 在线观看| 午夜激情av网站| 色在线成人网| 国内毛片毛片毛片毛片毛片| 性少妇av在线| 亚洲av片天天在线观看| 日本五十路高清| 成人免费观看视频高清| 久久久精品国产亚洲av高清涩受| 在线国产一区二区在线| 亚洲伊人色综图| 欧美日韩中文字幕国产精品一区二区三区 | 12—13女人毛片做爰片一| 少妇被粗大的猛进出69影院| 18美女黄网站色大片免费观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品1区2区在线观看.| 99re在线观看精品视频| 啪啪无遮挡十八禁网站| 黑人猛操日本美女一级片| 老熟妇乱子伦视频在线观看| 欧美老熟妇乱子伦牲交| tocl精华| 热re99久久国产66热| 男人舔女人的私密视频| 成在线人永久免费视频| www国产在线视频色| 午夜91福利影院| 乱人伦中国视频| 午夜福利免费观看在线| 夜夜夜夜夜久久久久| √禁漫天堂资源中文www| 亚洲午夜精品一区,二区,三区| 亚洲国产看品久久| 一边摸一边抽搐一进一小说| 精品国产乱子伦一区二区三区| 精品一区二区三区视频在线观看免费 | 女性生殖器流出的白浆| 久久精品国产亚洲av高清一级| 久久人妻福利社区极品人妻图片| 777久久人妻少妇嫩草av网站| 日本五十路高清| 亚洲视频免费观看视频| 久久精品国产亚洲av高清一级| 欧美日韩视频精品一区| 久久久国产成人精品二区 | 人人妻,人人澡人人爽秒播| 久热这里只有精品99| 亚洲熟妇熟女久久| 极品教师在线免费播放| 在线观看免费午夜福利视频| 国产亚洲精品一区二区www| 日本五十路高清| 国产有黄有色有爽视频| 欧美另类亚洲清纯唯美| 一区二区三区激情视频| 欧美日本中文国产一区发布| 欧美日韩一级在线毛片| 日韩免费高清中文字幕av| 精品人妻1区二区| 99精国产麻豆久久婷婷| 婷婷丁香在线五月| 又紧又爽又黄一区二区| 国产一区二区三区综合在线观看| 在线观看免费午夜福利视频| 在线观看舔阴道视频| 亚洲成人免费av在线播放| 51午夜福利影视在线观看| 欧美成人免费av一区二区三区| 色婷婷久久久亚洲欧美| 丰满的人妻完整版| 欧美人与性动交α欧美精品济南到| 看免费av毛片| 亚洲国产精品999在线| 高清黄色对白视频在线免费看| 成人三级做爰电影| 在线观看免费视频日本深夜| 国产黄a三级三级三级人| 日韩有码中文字幕| 亚洲情色 制服丝袜| 夫妻午夜视频| avwww免费| 两个人免费观看高清视频| 99国产精品免费福利视频| 国产免费现黄频在线看| 99国产精品一区二区蜜桃av| 欧美色视频一区免费| 精品一区二区三区视频在线观看免费 | 国产精品98久久久久久宅男小说| 大型黄色视频在线免费观看| 男女做爰动态图高潮gif福利片 | 欧美+亚洲+日韩+国产| 国产高清视频在线播放一区| 亚洲性夜色夜夜综合| 精品久久蜜臀av无| 亚洲熟女毛片儿| 亚洲精品美女久久久久99蜜臀| 久9热在线精品视频| 一区二区三区国产精品乱码| 一a级毛片在线观看| 丝袜人妻中文字幕| 人人澡人人妻人| ponron亚洲| 露出奶头的视频| 欧美日韩一级在线毛片| 欧美日韩瑟瑟在线播放| 一进一出好大好爽视频| 精品无人区乱码1区二区| 日韩免费高清中文字幕av| avwww免费| 黄片大片在线免费观看| 日日爽夜夜爽网站| 久久人人精品亚洲av| 亚洲av熟女| 国产人伦9x9x在线观看| 波多野结衣高清无吗| 性色av乱码一区二区三区2| 欧美中文综合在线视频| 悠悠久久av| av在线天堂中文字幕 | 成人特级黄色片久久久久久久| 日韩三级视频一区二区三区| 一级片'在线观看视频| 又紧又爽又黄一区二区| 天天添夜夜摸| 天堂影院成人在线观看| ponron亚洲| 中文字幕人妻丝袜制服| xxx96com| 久久久国产欧美日韩av| 老鸭窝网址在线观看| 久久久久久久久免费视频了| 啦啦啦免费观看视频1| 国产成人影院久久av| 窝窝影院91人妻| 亚洲欧美日韩无卡精品| 成年人黄色毛片网站| 麻豆一二三区av精品| 在线视频色国产色| 亚洲色图 男人天堂 中文字幕| 99久久99久久久精品蜜桃| 国产又色又爽无遮挡免费看| 久99久视频精品免费| 中文字幕精品免费在线观看视频| 亚洲精品一二三| 国产欧美日韩综合在线一区二区| 色老头精品视频在线观看| 欧美黑人欧美精品刺激| 极品人妻少妇av视频| 欧美日韩精品网址| 国产黄a三级三级三级人| www国产在线视频色| 国产亚洲av高清不卡| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品成人在线| 国产亚洲精品一区二区www| 国产免费av片在线观看野外av| 国产欧美日韩一区二区精品| 色老头精品视频在线观看| 亚洲成av片中文字幕在线观看| 欧美成狂野欧美在线观看| 伦理电影免费视频| 美女国产高潮福利片在线看| 久久久久亚洲av毛片大全| 日本精品一区二区三区蜜桃| 少妇裸体淫交视频免费看高清 | 成人黄色视频免费在线看| 自拍欧美九色日韩亚洲蝌蚪91| 久久青草综合色| 久久香蕉精品热| 日韩欧美一区视频在线观看| 女性生殖器流出的白浆| 欧美成狂野欧美在线观看| 国产人伦9x9x在线观看| 又黄又爽又免费观看的视频| 天天影视国产精品| 免费女性裸体啪啪无遮挡网站| 高清黄色对白视频在线免费看| 成人18禁在线播放| 久久人人精品亚洲av| 久久久久九九精品影院| 欧美 亚洲 国产 日韩一| 日韩欧美三级三区| 亚洲精品国产一区二区精华液| 不卡一级毛片| 老鸭窝网址在线观看| 久久 成人 亚洲| 国产不卡一卡二| 久99久视频精品免费| 欧美不卡视频在线免费观看 | 无限看片的www在线观看| 亚洲视频免费观看视频| 两人在一起打扑克的视频| 精品少妇一区二区三区视频日本电影| 免费观看人在逋| 成人18禁高潮啪啪吃奶动态图| 波多野结衣高清无吗| 视频在线观看一区二区三区| 免费在线观看视频国产中文字幕亚洲| 亚洲精品粉嫩美女一区| 亚洲精品国产色婷婷电影| 波多野结衣高清无吗| 1024视频免费在线观看| 超碰成人久久| 在线天堂中文资源库| 自拍欧美九色日韩亚洲蝌蚪91| 老司机靠b影院| 狠狠狠狠99中文字幕| 久久影院123| 村上凉子中文字幕在线| 日本一区二区免费在线视频| 精品一区二区三区视频在线观看免费 | 99久久国产精品久久久| 亚洲中文字幕日韩| 69av精品久久久久久| 国产激情欧美一区二区| 午夜a级毛片| 日本一区二区免费在线视频| 超碰97精品在线观看| а√天堂www在线а√下载| 91大片在线观看| 亚洲国产毛片av蜜桃av| 精品熟女少妇八av免费久了| 亚洲中文字幕日韩| 欧美成人性av电影在线观看| 9191精品国产免费久久| 黄色视频不卡| 久久久久精品国产欧美久久久| 久久久久亚洲av毛片大全| 男人的好看免费观看在线视频 | 久久久久国内视频| 亚洲一区中文字幕在线| 免费观看人在逋| 精品国内亚洲2022精品成人| 亚洲av美国av| 国内久久婷婷六月综合欲色啪| 欧美日本亚洲视频在线播放| 国产极品粉嫩免费观看在线| 精品国产超薄肉色丝袜足j| 在线看a的网站| 亚洲色图综合在线观看| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 久久婷婷成人综合色麻豆| 69av精品久久久久久| 色播在线永久视频| 在线天堂中文资源库| 黄色丝袜av网址大全| 国产野战对白在线观看| 日本一区二区免费在线视频| 亚洲精品国产区一区二| 老鸭窝网址在线观看| 美国免费a级毛片| 亚洲熟妇中文字幕五十中出 | 国产午夜精品久久久久久| 国内久久婷婷六月综合欲色啪| 久久国产乱子伦精品免费另类| 别揉我奶头~嗯~啊~动态视频| 久热爱精品视频在线9| 久久中文字幕人妻熟女| 中文字幕高清在线视频| 亚洲精品国产精品久久久不卡| 国产高清国产精品国产三级| 国产高清激情床上av| av片东京热男人的天堂| 自线自在国产av| 91国产中文字幕| 97人妻天天添夜夜摸| 丝袜美腿诱惑在线| 亚洲午夜理论影院| 老汉色av国产亚洲站长工具| 丰满迷人的少妇在线观看| 一区福利在线观看| 欧美一级毛片孕妇| 亚洲欧美日韩无卡精品| 成人国语在线视频| 欧美日本亚洲视频在线播放| 99热国产这里只有精品6| 午夜两性在线视频| 亚洲人成电影观看| 黄色成人免费大全| 麻豆av在线久日| 欧美日韩瑟瑟在线播放| 欧美成人性av电影在线观看| 欧美日韩国产mv在线观看视频| 亚洲精品粉嫩美女一区| 国产精品电影一区二区三区| 中文字幕人妻丝袜一区二区| 久久人妻av系列| 日韩精品免费视频一区二区三区| 高清av免费在线| 涩涩av久久男人的天堂| 日韩一卡2卡3卡4卡2021年| 纯流量卡能插随身wifi吗| a在线观看视频网站| 欧美精品亚洲一区二区| 亚洲一码二码三码区别大吗| 亚洲一区中文字幕在线| 午夜亚洲福利在线播放| 又黄又粗又硬又大视频| 精品免费久久久久久久清纯| 欧美 亚洲 国产 日韩一| 午夜福利在线免费观看网站| 黑人操中国人逼视频| 黄色视频不卡| 久久国产亚洲av麻豆专区| 亚洲男人天堂网一区| svipshipincom国产片| 啦啦啦免费观看视频1| 首页视频小说图片口味搜索| 波多野结衣av一区二区av| 美女 人体艺术 gogo| 老熟妇仑乱视频hdxx| 久久精品亚洲av国产电影网| 日本黄色视频三级网站网址| 欧美成狂野欧美在线观看| 中文亚洲av片在线观看爽| 日韩av在线大香蕉| 欧美日韩av久久| 国产成人精品久久二区二区91| 国产亚洲精品一区二区www| 日韩欧美三级三区| 久久久久国产一级毛片高清牌| 一边摸一边做爽爽视频免费| 国产一区二区激情短视频| 欧美中文日本在线观看视频| 老司机亚洲免费影院| 国产免费av片在线观看野外av| 欧美精品一区二区免费开放| 一级毛片高清免费大全| 国产精品久久久av美女十八| 18美女黄网站色大片免费观看| 国产成人av激情在线播放| 日韩精品青青久久久久久| 日本免费a在线| 黄色丝袜av网址大全| 成人av一区二区三区在线看| 男女之事视频高清在线观看| 黑人欧美特级aaaaaa片| 亚洲伊人色综图| 国产精品久久久久久人妻精品电影| 国产高清videossex| 欧美一区二区精品小视频在线| 免费高清在线观看日韩| 三级毛片av免费| 麻豆一二三区av精品| 啦啦啦 在线观看视频| 国产99久久九九免费精品| 久久精品影院6| 精品国内亚洲2022精品成人| 视频区欧美日本亚洲| 男男h啪啪无遮挡| 欧美日韩中文字幕国产精品一区二区三区 | 婷婷丁香在线五月| 男女做爰动态图高潮gif福利片 | 丝袜美足系列| 黄色视频,在线免费观看| 在线观看舔阴道视频| 亚洲九九香蕉| 色老头精品视频在线观看| 日韩av在线大香蕉| 黑人巨大精品欧美一区二区mp4| 日韩人妻精品一区2区三区| 亚洲精品一卡2卡三卡4卡5卡| 精品福利永久在线观看| 麻豆成人av在线观看| www.www免费av| 日韩中文字幕欧美一区二区| tocl精华| 日韩精品青青久久久久久| 老司机午夜十八禁免费视频| 欧美av亚洲av综合av国产av| 国产精品久久电影中文字幕| 亚洲成人国产一区在线观看| 精品国产乱子伦一区二区三区| 亚洲精品美女久久av网站| 国产99久久九九免费精品| 久久香蕉国产精品| 女人爽到高潮嗷嗷叫在线视频| 香蕉丝袜av| 又黄又粗又硬又大视频| 夜夜爽天天搞| 国产视频一区二区在线看| 久久精品亚洲av国产电影网| 午夜视频精品福利| 日本vs欧美在线观看视频| 午夜影院日韩av| 中出人妻视频一区二区| 另类亚洲欧美激情| 亚洲欧美日韩高清在线视频| 淫秽高清视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| cao死你这个sao货| 亚洲成人免费电影在线观看| 欧美日韩一级在线毛片| 午夜影院日韩av| 婷婷丁香在线五月| 欧美午夜高清在线| 夜夜躁狠狠躁天天躁| 19禁男女啪啪无遮挡网站| 91精品国产国语对白视频| 黄色视频,在线免费观看| 亚洲自偷自拍图片 自拍| cao死你这个sao货| 日本黄色视频三级网站网址| 视频区图区小说| 国产亚洲精品第一综合不卡| 老司机福利观看| 一区二区日韩欧美中文字幕| 50天的宝宝边吃奶边哭怎么回事| 淫秽高清视频在线观看| 欧美日韩瑟瑟在线播放| 桃红色精品国产亚洲av| ponron亚洲| e午夜精品久久久久久久| 日本欧美视频一区| 制服人妻中文乱码| 啦啦啦 在线观看视频| 91在线观看av| 亚洲欧美一区二区三区黑人| 又紧又爽又黄一区二区| 在线观看日韩欧美| 久久国产乱子伦精品免费另类| 国产亚洲欧美精品永久| 亚洲男人天堂网一区| 真人做人爱边吃奶动态| 久久精品影院6| 可以在线观看毛片的网站| 90打野战视频偷拍视频| 女性被躁到高潮视频| 这个男人来自地球电影免费观看| 女人被躁到高潮嗷嗷叫费观| x7x7x7水蜜桃| 国产精品香港三级国产av潘金莲| 黄片播放在线免费| 90打野战视频偷拍视频| 国产精品国产高清国产av| 久久久久国内视频| 男人舔女人的私密视频| 91麻豆av在线| 午夜福利,免费看| 中文字幕av电影在线播放| 国内毛片毛片毛片毛片毛片| 一级黄色大片毛片| 国产极品粉嫩免费观看在线| 国产xxxxx性猛交| 天堂影院成人在线观看| 国产亚洲欧美在线一区二区| 欧美性长视频在线观看| 国产精华一区二区三区| www.自偷自拍.com| 精品久久久久久成人av| 长腿黑丝高跟| 亚洲一区二区三区不卡视频| 视频在线观看一区二区三区| 日韩免费av在线播放| 国产成人欧美在线观看| 国产一卡二卡三卡精品| 热re99久久国产66热| 欧美成人性av电影在线观看| 国产99白浆流出| 日韩一卡2卡3卡4卡2021年| 在线观看一区二区三区| 亚洲精品久久午夜乱码| 中文字幕人妻丝袜制服| 亚洲成人免费电影在线观看| 老司机午夜十八禁免费视频| 国产av一区二区精品久久| 国产99久久九九免费精品| 91av网站免费观看| 亚洲三区欧美一区| 久久这里只有精品19| av欧美777| 看免费av毛片| 亚洲精品中文字幕一二三四区| 国产亚洲精品久久久久久毛片| 日本一区二区免费在线视频| 国产不卡一卡二| 黄色怎么调成土黄色| 日韩欧美免费精品| 国产亚洲av高清不卡| 国产精品秋霞免费鲁丝片| 精品国产一区二区三区四区第35| 黄色a级毛片大全视频| 国产成人精品在线电影| 亚洲欧美精品综合一区二区三区| 69精品国产乱码久久久| 国产一区在线观看成人免费| 免费观看精品视频网站| 久久精品国产亚洲av高清一级| 热re99久久精品国产66热6| e午夜精品久久久久久久| 在线永久观看黄色视频| 丝袜美足系列| 免费看十八禁软件| 婷婷精品国产亚洲av在线| svipshipincom国产片| 国产三级黄色录像| 欧美不卡视频在线免费观看 | 国产在线观看jvid| 人人妻人人添人人爽欧美一区卜| 久久人妻熟女aⅴ| 热re99久久精品国产66热6| 国产97色在线日韩免费| 99热只有精品国产| av电影中文网址| 超色免费av| 99国产极品粉嫩在线观看| 色尼玛亚洲综合影院| 欧美日韩中文字幕国产精品一区二区三区 | 男男h啪啪无遮挡| 母亲3免费完整高清在线观看| 老熟妇仑乱视频hdxx| 熟女少妇亚洲综合色aaa.| 天堂√8在线中文| 两性午夜刺激爽爽歪歪视频在线观看 | √禁漫天堂资源中文www| 久久精品国产亚洲av香蕉五月| 精品一区二区三区四区五区乱码| 亚洲伊人色综图| 免费不卡黄色视频| 村上凉子中文字幕在线| 精品久久蜜臀av无| 亚洲,欧美精品.| 国产亚洲精品一区二区www| 嫁个100分男人电影在线观看| 亚洲精品在线观看二区| 国产人伦9x9x在线观看| 久久人妻福利社区极品人妻图片| 亚洲 欧美 日韩 在线 免费| 性欧美人与动物交配| 国产成年人精品一区二区 | 免费看十八禁软件| 国产亚洲精品第一综合不卡| 亚洲在线自拍视频| 51午夜福利影视在线观看| 国产成人欧美| 国产精品久久电影中文字幕| 90打野战视频偷拍视频| 欧美成人午夜精品| 亚洲一区高清亚洲精品| 亚洲av成人av| 欧美日韩av久久| 精品国产一区二区久久| 宅男免费午夜| 欧美乱色亚洲激情| 香蕉国产在线看| 丁香欧美五月| av国产精品久久久久影院| 久久99一区二区三区| 日本免费一区二区三区高清不卡 | 麻豆成人av在线观看| e午夜精品久久久久久久| av欧美777| 色综合婷婷激情| 超色免费av| 亚洲第一av免费看| 真人做人爱边吃奶动态| www.www免费av| 国产成人系列免费观看| 日日爽夜夜爽网站| 18美女黄网站色大片免费观看| 欧美日本亚洲视频在线播放| 午夜免费鲁丝| 久久久久久久久久久久大奶| 日本五十路高清| 淫妇啪啪啪对白视频| 在线看a的网站| 久久人人97超碰香蕉20202| 国产高清videossex| 国产亚洲精品久久久久5区| 国产高清视频在线播放一区| 国产av一区在线观看免费| 国产av精品麻豆| 麻豆久久精品国产亚洲av | 久久久水蜜桃国产精品网| 国产精品1区2区在线观看.| 亚洲免费av在线视频| 天堂动漫精品| 色老头精品视频在线观看| 免费在线观看亚洲国产| 亚洲成av片中文字幕在线观看| 老熟妇乱子伦视频在线观看| 日本撒尿小便嘘嘘汇集6| 欧美黄色片欧美黄色片| 又黄又爽又免费观看的视频| 亚洲人成伊人成综合网2020| 亚洲成av片中文字幕在线观看| 欧美日韩精品网址| 国产97色在线日韩免费| 黄色视频不卡| 久久香蕉精品热| 久久久国产一区二区| 黑丝袜美女国产一区| 老司机靠b影院| 国产片内射在线|