• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction method of restoring force based on online AdaBoost regression tree algorithm in hybrid test

    2020-07-20 09:20:24WangYanhuaJingWuJingWangCheng

    Wang Yanhua Lü Jing Wu Jing Wang Cheng

    (Key Laboratory of Concrete and Pre-stressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China)

    Abstract:In order to solve the poor generalization ability of the back-propagation(BP) neural network in the model updating hybrid test, a novel method called the AdaBoost regression tree algorithm is introduced into the model updating procedure in hybrid tests. During the learning phase, the regression tree is selected as a weak regression model to be trained, and then multiple trained weak regression models are integrated into a strong regression model. Finally, the training results are generated through voting by all the selected regression models. A 2-DOF nonlinear structure was numerically simulated by utilizing the online AdaBoost regression tree algorithm and the BP neural network algorithm as a contrast. The results show that the prediction accuracy of the online AdaBoost regression algorithm is 48.3% higher than that of the BP neural network algorithm, which verifies that the online AdaBoost regression tree algorithm has better generalization ability compared to the BP neural network algorithm. Furthermore, it can effectively eliminate the influence of weight initialization and improve the prediction accuracy of the restoring force in hybrid tests.

    Key words:hybrid test; restoring force prediction; generalization ability; AdaBoost regression tree

    The hybrid test, first proposed by Hakuno in 1969, is an effective test technique which combines a physical loading experiment and numerical simulation to evaluate seismic responses of large complex civil structures. At present, it has been widely focused on by researchers, and certain research results have been achieved such as a numerical integration algorithm[1-2], real time hybrid test[3], loading control[4], time delay compensation[5], boundary condition[6], remote network collaborative hybrid test[7], and an accurate numerical element[8], etc. The hybrid test has been widely used in the test of large and complex civil structures[9-10]. However, when the hybrid test is conducted on large complex structures, it is impossible to perform a physical loading test on all critical parts. Thus, some key components or parts of the structure are modeled and analyzed in the numerical substructure. Due to model errors, the inaccuracy of the numerical simulation will increase when the entire structure enters nonlinearity. The two main reasons for model errors are: 1) The assumed numerical model is too simple to describe the nonlinear behaviors of the real structure or component; 2) The uncertainty of model parameters. When the proportion of the assumed numerical models with model errors become larger, the accuracy of hybrid tests will be reduced. Therefore, how to improve the model accuracy and restore the force prediction accuracy of the numerical substructure has become an urgent problem.

    Model updating is an effective method to improve the accuracy of hybrid tests, which has been widely used in finite element analysis over the past two decades. The theory of model updating can be specified as follows: In the process of hybrid tests, the data of the experimental substructures can be used to recognize and update the numerical model of numerical substructures with similar hysteresis behaviors. Therefore, the model errors of the numerical substructure are reduced, and the ability to predict the structural actual behaviors is improved.

    1 Principle of Model Updating in Hybrid Tests

    Fig.1 Procedure of model updating hybrid test

    Among all the parameter identification methods, the initial selected numerical model is usually simplified from the experimental results, which means that the limited number of parameters cannot fully describe the real nonlinear behaviors. In other words, the model gap between the simplified model and the real model exists from the early beginning of the hybrid tests. In contrast, the intelligent algorithms can acquire more hysteresis information that does not exist in the initial assumed numerical model, and can directly fit the constitutive model of the numerical substructure. Therefore, the intelligent algorithms address the shortcomings of the parameter identification methods. However, in intelligent algorithms, the BP neural network has a poor generalization ability and it is relatively sensitive to initial weight, which will influence the accuracy of the constitutive model.

    In order to solve the problem of poor generalization ability and sensitivity to the initial weight of the BP neural network, an online AdaBoost regression tree algorithm is proposed and adopted. First, some weak regressors are selected for training; then the multiple weak regressors are integrated into a strong regressor; and finally the training results are generated. In order to verify the effectiveness of the proposed model updating method, a numerical simulation of a 2-DOF nonlinear structure is carried out, and the results are compared with the BP neural network algorithm.

    2 Principle of Regression Tree Algorithm

    The regression tree is a type of decision tree for regression. A decision tree is a tree-like model defined in the feature space, as shown in Fig.2. The regression tree algorithm proposed by Breiman et al.[17]mainly includes two steps: regression tree generation and regression tree pruning.

    Fig.2 The regression tree model diagram

    2.1 Regression tree generation

    The regression tree model consists of nodes and directed edges as shown in Fig.2. The nodes include internal nodes and leaf nodes. The circles and boxes in Fig.2 represent internal nodes and leaf nodes, respectively. The internal nodes represent the characteristics or attributes of the samples, and the leaf nodes represent the prediction value of the samples. The least squares algorithm is used to generate the regression tree. The specific process is as follows:

    It is supposed thatxandydenote the input and output variables, respectively, and the training data set isD={(x1,y1),(x2,y2),…,(xN,yN)}. The input space is divided intoMregions, namely,R1,R2,…,Rm,…,RMand each regionRmhas a fixed output valuecm. Thus, the regression tree model can be expressed as

    (1)

    (2)

    The heuristic algorithm is used to segment the input space. Thej-th variablex(j)and the corresponding valuesare selected as the split variable and split point, respectively. The next two regions are defined as

    R1(j,s)={x|x(j)≤s},R2(j,s)={x|x(j)>s}

    (3)

    Then, the best split variablex(j)and the split pointsare searched for by solving the minimum value:

    (4)

    The best split points inR1(j,s) andR2(j,s) are as follows:

    (5)

    After all the input variables (j,s) are traversed, the optimal partition variablex(j)is established and the input space is divided into two regions one by one. Next, the above segmentation process is repeated for each region until the stop condition is reached. Thus, a regression tree is generated.

    2.2 Regression tree pruning

    In order to prevent the over fitting of the above-mentioned regression tree model, it is necessary to prune the generated regression tree to ensure its generalization ability. The pruning algorithm performs recursive pruning according to the principle of loss function minimizing, including the following two steps:

    From the bottom of the regression treeT0to the top, pruning is continued until the procedure reaches the root nodes. Then, a pruned subtree sequence {T0,T1,…,Tn} is formed and the loss function of the subtrees during pruning is calculated as follows:

    Cα(T)=C(T)+α|T|

    (6)

    whereTis an arbitrary subtree;C(T) is the prediction error of the training data; |T| is the number of leaf nodes in a subtree; and the parameterα(α≥0) measures the fitting degree of the training samples and the complexity of the model.Cα(T) indicates the entire loss of the subtreeTwhen the parameter isα. The pruning process is repeated till the root node.

    Based on the validation data set, the cross validation method is used to test the subtree sequence obtained from the above process. Also, the optimal subtreeTαis obtained based on the independent verification data set. The decision tree with the smallest square error in the subtree sequence {T0,T1,…,Tn} is selected as the optimal one. The pruning diagram of the regression tree is illustrated in Fig.3

    Fig.3 The regression tree pruning diagram

    3 Implementation of online AdaBoost regression tree algorithm

    For the constitutive model recognition of the nonlinear components, large generalization errors cannot be avoided when only one neural network model is adopted for training. The training results of multiple neural network models are more accurate than those of the single neural network model, which is called the boosting method. The representative boosting method is the AdaBoost algorithm proposed by Freund and Schapire[18]in 1995. Firstly, the regression tree is selected for training and the weight of each training sample is adjusted in each round of training. Then, these regression tree models are integrated linearly to vote out the final results. The diagram of the Adaboost regression tree algorithm is shown in Fig.4.

    Fig.4 The diagram of Adaboost regression tree algorithm

    In hybrid tests, the samples of the experimental substructure in the current step are input into the Adaboost regression tree model for training, and a strong regressor is obtained. Then, after inputting the displacement of the numerical substructure in the current step into the trained strong regressor, the corresponding restoring force can be directly predicted. The procedure based on the proposed method is illustrated in Fig.5.

    3.1 Collecting training samples

    Fig.5 Procedure based on the proposed method in hybrid test

    3.2 Weight initialization of training samples

    In the first loading step, the initial weight of training samples is set to be

    (7)

    In thei-th step, the initial weight vector of the training samples is set to be the weight vector trained afterMiterations in the (i-1)-th step:

    (8)

    3.3 Training AdaBoost regression tree model

    The updating criterion of the training sample weight is: If the regression error of a certain sample point is small, the weight of this sample will be reduced in the next iteration; on the contrary, if the regression error of a certain sample point is large, the weight of this sample will be increased in the next iteration. Following the learning rule of the AdaBoost regression tree algorithm, the weight of unpredictable samples is increased and the prediction accuracy of the restoring force is finally improved. The training process mainly includes the following steps.

    (9)

    (10)

    3) The weight of the training samples is updated in each iteration. The update rules are

    (11)

    (12)

    (13)

    3.4 Combining regression tree models

    TheMregression tree models are linearly integrated into a strong regressorYi(x) in thei-th step:

    (14)

    The diagram of integrating regression tree models is shown in Fig.6.

    3.5 Prediction of restoring force in hybrid tests

    The restoring force of the numerical substructure in thei-th step can be predicted by inputting the displacement into the integrated regressor obtained above. Then, the restoring force of the experimental substructure and numerical substructure are fed back to the equation of motion. The five steps are repeated until the ground motion input is completed.

    Fig.6 The diagram of integrating regression tree models

    4 Numerical Validation

    4.1 Model description

    The online AdaBoost regression tree algorithm is evaluated on a 2-DOF nonlinear structure as shown in Fig.7. It is assumed that there are no complex incomplete boundaries and no obvious different loading histories.

    Fig.7 A 2-DOF nonlinear structure model

    The masses of the experimental substructure and numerical substructure areM1=M2=2 500 t; the initial stiffnesses areK1=K2=394 785 kN/m; and the damping coefficients areC1=C2=5 026.5 kN/(m·s-1). The ground motion recorded at the SimiValley-Katherine Rd station on January 17, 1994 at the Northridge earthquake is selected for numerical simulation. The peak seismic acceleration is adjusted to 200 cm/s2. The Runge-Kutta method is applied as the numerical integration scheme and the sample time is set to be 0.01 s. In this numerical study, it is assumed that the real constitutive models of the experimental substructure and numerical substructure are both the Bouc-Wen model, that is

    (15)

    whereFis the restoring force of the structure;αis the second stiffness coefficient;Kis the initial stiffness of the structure;Zis the hysteretic displacement; andβ,γ,nare the model parameters that control the shape of the hysteresis curve. The real model parameters of the experimental substructure and numerical substructure in this numerical study are both set to be as follows:K=394 785 kN/m,α=0.01,A=1,β=100,γ=40,n=1.

    The input variables of the nonlinear hysteresis model are set to be 6 variables as follows:di,di-1,F(xiàn)i-1,F(xiàn)i-1di-1,F(xiàn)i-1ΔdiandEi-1.diis the relative displacement of the structure in thei-th step; Δdi=di-di-1;Fi-1is the restoring force of the structure in thei-th step;Fi-1di-1is the energy consumption of the structure in the (i-1)-th step;Fi-1Δdiis the energy consumption of structure in thei-th step;Ei-1[19]is the cumulative energy consumption of the structure in the (i-1)-th step,Ei-1=Ei-2+|Fi-1di-1|.

    4.2 Results analysis

    In order to verify the effectiveness of the proposed method, three types of hybrid tests are analyzed and compared in this numerical simulation, as shown in Figs.8 and 9. The reference in the figures represents the true hybrid test; the BP algorithm in the figures represents the model updating hybrid test based on the BP neural network algorithm; the AdaBoot algorithm in the figures represents the hybrid test of model updating based on the AdaBoot regression tree algorithm.

    Fig.8 Comparison of the restoring force prediction of the numerical substructure with online AdaBoost regression tree and BP neural network algorithm

    Fig.9 Comparison of the restoring force prediction error of the numerical substructure with an online AdaBoost regression tree and BP neural network algorithm

    Fig.8 and Fig.9 show the comparison of restoring force prediction error and restoring force prediction error of the numerical substructure in three simulation cases, respectively. It can be seen from Fig.8 that the restoring force of the numerical substructure predicted by the AdaBoost regression tree algorithm is in good agreement with the real value, while the restoring force predicted by the BP algorithm has a large error at the turning point.

    Fig.9 shows that the maximum absolute error of the predicted restoring force based on the BP neural network algorithm is larger than that of the AdaBoost regression tree algorithm on the whole. The AdaBoost regression tree algorithm gradually adapts to the new data through online training and reduces the prediction error of the restoring force over time.

    In order to quantify the prediction error of the restoring force, the dimensionless error index is utilized in this study. The root mean deviation (RMSD) is

    (16)

    Fig.10 Comparison of the RMSD with the online AdaBoost regression tree and BP neural network algorithm

    It can be seen from Fig.10 that in the initial stage of hybrid tests, the prediction errors of the BP neural network algorithm and AdaBoost regression tree algorithm are relatively large. However, as time goes on, the prediction errors of the restoring force in both cases gradually decrease and tend to stabilize.

    In the stable stage, the RMSD of the online AdaBoost regression tree algorithm is 0.117 9, and that of the BP neural network algorithm is 0.228 2. The prediction accuracy of the online AdaBoost regression algorithm is 48.3% higher than that of the BP neural network algorithm. In addition, the average one-step time of the proposed method is 0.12 s, which meets the requirements of slow hybrid tests. Therefore, the method proposed in this paper can significantly improve the model accuracy in hybrid tests, and has reference value for the application of intelligent algorithms to the hybrid test of model updating.

    5 Conclusion

    1) The numerical analysis of a 2-DOF nonlinear structure is conducted to verify the effectiveness of the proposed method.

    2) Compared with the online BP neural network algorithm, the absolute error of the restoring force prediction is reduced by 72.5% and the relative root mean square error is reduced by 48.3% when the online AdaBoost regression tree algorithm is adopted, which verifies the effectiveness of the proposed method.

    3) The generalization ability of the recognition system is improved. The research results are significant for the application of intelligent algorithms to improve the model accuracy in a hybrid test.

    国产日韩一区二区三区精品不卡| 两人在一起打扑克的视频| 亚洲人成电影观看| 国产精品av久久久久免费| 在线免费观看的www视频| 久久精品国产亚洲av香蕉五月| 在线永久观看黄色视频| 亚洲精品美女久久久久99蜜臀| 久久久精品欧美日韩精品| 91成年电影在线观看| 久久久久久久午夜电影 | 熟女少妇亚洲综合色aaa.| 黄色丝袜av网址大全| √禁漫天堂资源中文www| 成人18禁在线播放| a级毛片黄视频| 亚洲国产精品999在线| 国产成人精品在线电影| 日本vs欧美在线观看视频| 日日夜夜操网爽| 久久精品91蜜桃| 亚洲激情在线av| 亚洲五月天丁香| 国产亚洲欧美98| 色综合婷婷激情| 老司机靠b影院| 国产精品久久久人人做人人爽| 日日干狠狠操夜夜爽| 亚洲免费av在线视频| 在线观看舔阴道视频| 欧美+亚洲+日韩+国产| 啦啦啦 在线观看视频| 如日韩欧美国产精品一区二区三区| 老司机午夜福利在线观看视频| 欧美人与性动交α欧美精品济南到| 悠悠久久av| 热re99久久精品国产66热6| 国产深夜福利视频在线观看| 成人三级黄色视频| 欧美黑人精品巨大| 国产av一区二区精品久久| 亚洲激情在线av| 长腿黑丝高跟| 午夜亚洲福利在线播放| 日韩大码丰满熟妇| 日本wwww免费看| 精品午夜福利视频在线观看一区| 午夜久久久在线观看| 精品一区二区三区av网在线观看| 黑人操中国人逼视频| 国产精品乱码一区二三区的特点 | 国产高清国产精品国产三级| 大码成人一级视频| 成人18禁在线播放| 亚洲自偷自拍图片 自拍| 亚洲专区国产一区二区| 久热爱精品视频在线9| 国产99白浆流出| 亚洲 欧美 日韩 在线 免费| 亚洲国产欧美日韩在线播放| 每晚都被弄得嗷嗷叫到高潮| 亚洲全国av大片| 国产成人系列免费观看| 80岁老熟妇乱子伦牲交| 美女高潮到喷水免费观看| 亚洲一码二码三码区别大吗| 如日韩欧美国产精品一区二区三区| 欧美中文日本在线观看视频| 制服人妻中文乱码| 精品国产国语对白av| 在线观看免费视频日本深夜| 亚洲av成人不卡在线观看播放网| 亚洲精品久久成人aⅴ小说| 亚洲熟妇熟女久久| 免费人成视频x8x8入口观看| 99在线视频只有这里精品首页| 久久这里只有精品19| 校园春色视频在线观看| 91精品国产国语对白视频| 9热在线视频观看99| 日韩精品青青久久久久久| 黄色女人牲交| 久久久精品欧美日韩精品| 嫁个100分男人电影在线观看| 日本撒尿小便嘘嘘汇集6| 91大片在线观看| 无限看片的www在线观看| 亚洲三区欧美一区| 欧美av亚洲av综合av国产av| 在线天堂中文资源库| 欧美在线一区亚洲| 人妻丰满熟妇av一区二区三区| 麻豆久久精品国产亚洲av | 久久 成人 亚洲| 好男人电影高清在线观看| 国产成人精品在线电影| 欧美中文综合在线视频| 亚洲成人久久性| 国产三级黄色录像| 91麻豆av在线| 亚洲精品中文字幕在线视频| 女生性感内裤真人,穿戴方法视频| 无人区码免费观看不卡| 免费日韩欧美在线观看| 日韩欧美三级三区| 很黄的视频免费| 香蕉久久夜色| 在线永久观看黄色视频| 三级毛片av免费| 国产成+人综合+亚洲专区| 丁香欧美五月| 日韩大码丰满熟妇| 精品国产国语对白av| 亚洲欧美日韩无卡精品| 大香蕉久久成人网| 国产1区2区3区精品| 人人妻,人人澡人人爽秒播| 国产精品av久久久久免费| 精品日产1卡2卡| 麻豆成人av在线观看| 亚洲av美国av| 性少妇av在线| 久久国产精品影院| 日本黄色日本黄色录像| 成年女人毛片免费观看观看9| 欧美激情久久久久久爽电影 | 亚洲成人精品中文字幕电影 | 91在线观看av| 午夜福利欧美成人| 男人操女人黄网站| 啦啦啦在线免费观看视频4| 欧美不卡视频在线免费观看 | 欧美av亚洲av综合av国产av| 女性生殖器流出的白浆| 嫁个100分男人电影在线观看| 亚洲avbb在线观看| 国产成+人综合+亚洲专区| 久久人人97超碰香蕉20202| 99精品欧美一区二区三区四区| 在线看a的网站| 精品久久久久久电影网| 我的亚洲天堂| 久久国产精品影院| 欧美黑人精品巨大| 91国产中文字幕| 看片在线看免费视频| 亚洲欧美日韩无卡精品| 波多野结衣一区麻豆| 黑人操中国人逼视频| 啦啦啦免费观看视频1| 亚洲人成电影观看| 一本大道久久a久久精品| 少妇被粗大的猛进出69影院| 极品人妻少妇av视频| 岛国在线观看网站| 美女高潮到喷水免费观看| 老司机午夜福利在线观看视频| 又紧又爽又黄一区二区| 成在线人永久免费视频| 午夜成年电影在线免费观看| 999精品在线视频| 俄罗斯特黄特色一大片| 夫妻午夜视频| 午夜免费成人在线视频| 欧美在线一区亚洲| 淫妇啪啪啪对白视频| 久久久久亚洲av毛片大全| 日韩av在线大香蕉| 在线观看免费高清a一片| 成人三级黄色视频| 别揉我奶头~嗯~啊~动态视频| av电影中文网址| 欧美黑人精品巨大| 夜夜夜夜夜久久久久| 国产精品98久久久久久宅男小说| 亚洲av日韩精品久久久久久密| 中出人妻视频一区二区| 日本免费一区二区三区高清不卡 | 亚洲国产中文字幕在线视频| 天天躁夜夜躁狠狠躁躁| 久久精品91无色码中文字幕| 欧美日韩国产mv在线观看视频| 欧美黑人精品巨大| 两人在一起打扑克的视频| 九色亚洲精品在线播放| 亚洲九九香蕉| 亚洲 欧美一区二区三区| 国产野战对白在线观看| 国产熟女午夜一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 丰满的人妻完整版| 18禁黄网站禁片午夜丰满| 在线十欧美十亚洲十日本专区| 美女高潮喷水抽搐中文字幕| av片东京热男人的天堂| 黑人巨大精品欧美一区二区mp4| 亚洲精品粉嫩美女一区| 国产片内射在线| 日本免费一区二区三区高清不卡 | svipshipincom国产片| 老熟妇仑乱视频hdxx| 精品免费久久久久久久清纯| 一级毛片女人18水好多| 80岁老熟妇乱子伦牲交| www国产在线视频色| 亚洲欧美激情在线| 在线看a的网站| 免费在线观看日本一区| 日韩欧美一区视频在线观看| 女人被狂操c到高潮| 国产亚洲精品久久久久久毛片| 久久久国产精品麻豆| 欧美另类亚洲清纯唯美| 国产野战对白在线观看| 国产欧美日韩综合在线一区二区| 九色亚洲精品在线播放| 天堂中文最新版在线下载| 精品一区二区三区av网在线观看| 精品人妻在线不人妻| 美女 人体艺术 gogo| 国产精品98久久久久久宅男小说| 88av欧美| 欧美乱妇无乱码| 黑人猛操日本美女一级片| 激情在线观看视频在线高清| 波多野结衣高清无吗| 亚洲国产看品久久| 岛国视频午夜一区免费看| 欧美乱妇无乱码| xxx96com| 欧美日韩亚洲高清精品| 黄片小视频在线播放| 制服诱惑二区| 一区二区三区国产精品乱码| 妹子高潮喷水视频| 一二三四社区在线视频社区8| 精品熟女少妇八av免费久了| 看片在线看免费视频| 欧美亚洲日本最大视频资源| 欧美老熟妇乱子伦牲交| 午夜免费激情av| 国产片内射在线| 欧美不卡视频在线免费观看 | 久久久久久人人人人人| 亚洲精品美女久久久久99蜜臀| 真人一进一出gif抽搐免费| 亚洲精品av麻豆狂野| 久久久久久人人人人人| 国产免费现黄频在线看| 18禁黄网站禁片午夜丰满| 午夜91福利影院| 搡老岳熟女国产| 夜夜爽天天搞| 精品第一国产精品| 久久婷婷成人综合色麻豆| 90打野战视频偷拍视频| 女人被狂操c到高潮| 老司机在亚洲福利影院| 一进一出好大好爽视频| 日韩有码中文字幕| 精品一区二区三区视频在线观看免费 | 午夜精品久久久久久毛片777| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品在线观看二区| 波多野结衣一区麻豆| 午夜激情av网站| 叶爱在线成人免费视频播放| 人妻丰满熟妇av一区二区三区| 日韩欧美一区视频在线观看| av网站在线播放免费| 好男人电影高清在线观看| 嫁个100分男人电影在线观看| 99国产精品一区二区三区| 黄色视频不卡| 伦理电影免费视频| 午夜福利一区二区在线看| e午夜精品久久久久久久| 麻豆久久精品国产亚洲av | 欧美日韩av久久| 久久精品国产清高在天天线| 中国美女看黄片| 9色porny在线观看| 日本免费一区二区三区高清不卡 | 男女之事视频高清在线观看| 法律面前人人平等表现在哪些方面| 夜夜看夜夜爽夜夜摸 | 精品欧美一区二区三区在线| 在线观看免费视频日本深夜| 精品乱码久久久久久99久播| 亚洲一卡2卡3卡4卡5卡精品中文| 看黄色毛片网站| 久久国产乱子伦精品免费另类| 美女高潮喷水抽搐中文字幕| 日日干狠狠操夜夜爽| bbb黄色大片| 欧美日韩av久久| www.999成人在线观看| 十分钟在线观看高清视频www| 亚洲精品一卡2卡三卡4卡5卡| 天堂√8在线中文| 女人被狂操c到高潮| 999久久久精品免费观看国产| 亚洲精品粉嫩美女一区| 黄片大片在线免费观看| www国产在线视频色| 国产成人免费无遮挡视频| 亚洲专区国产一区二区| 欧美av亚洲av综合av国产av| 日本a在线网址| 国产高清videossex| 又黄又爽又免费观看的视频| 曰老女人黄片| 变态另类成人亚洲欧美熟女 | 日韩大尺度精品在线看网址 | 女人被狂操c到高潮| 女人被狂操c到高潮| 精品欧美一区二区三区在线| 91麻豆av在线| 午夜两性在线视频| 亚洲熟妇熟女久久| 俄罗斯特黄特色一大片| 国产精品av久久久久免费| 欧美日韩亚洲综合一区二区三区_| 淫秽高清视频在线观看| 久久久国产精品麻豆| 久久精品人人爽人人爽视色| 五月开心婷婷网| 亚洲精品粉嫩美女一区| 午夜福利免费观看在线| 国产免费现黄频在线看| 久久中文字幕人妻熟女| 精品免费久久久久久久清纯| 亚洲一码二码三码区别大吗| 免费人成视频x8x8入口观看| 亚洲五月天丁香| 嫁个100分男人电影在线观看| 成人手机av| 在线观看日韩欧美| 亚洲人成伊人成综合网2020| e午夜精品久久久久久久| 可以免费在线观看a视频的电影网站| 女人精品久久久久毛片| 99久久综合精品五月天人人| 多毛熟女@视频| 欧美一区二区精品小视频在线| 18禁观看日本| 亚洲成人免费av在线播放| 国产xxxxx性猛交| 国产精品久久久人人做人人爽| 免费在线观看完整版高清| 日韩大码丰满熟妇| 欧美中文日本在线观看视频| 熟女少妇亚洲综合色aaa.| 最新美女视频免费是黄的| 看免费av毛片| 国产亚洲精品一区二区www| 国产精品乱码一区二三区的特点 | 日韩大尺度精品在线看网址 | 亚洲男人的天堂狠狠| 国产日韩一区二区三区精品不卡| xxxhd国产人妻xxx| 在线观看舔阴道视频| 亚洲色图av天堂| 国产99白浆流出| 乱人伦中国视频| 国产真人三级小视频在线观看| 国产精品久久久人人做人人爽| 免费高清视频大片| 叶爱在线成人免费视频播放| 69av精品久久久久久| 国产精华一区二区三区| 女警被强在线播放| 少妇的丰满在线观看| 搡老乐熟女国产| 热re99久久国产66热| 极品教师在线免费播放| e午夜精品久久久久久久| 不卡av一区二区三区| 黄网站色视频无遮挡免费观看| 欧美+亚洲+日韩+国产| 日本精品一区二区三区蜜桃| 在线观看日韩欧美| 91麻豆av在线| xxxhd国产人妻xxx| 99国产精品一区二区三区| 久久精品91蜜桃| 亚洲自拍偷在线| 1024香蕉在线观看| 免费高清在线观看日韩| 久久天躁狠狠躁夜夜2o2o| 中文字幕人妻熟女乱码| 老司机在亚洲福利影院| 波多野结衣高清无吗| av视频免费观看在线观看| av有码第一页| 亚洲五月天丁香| 亚洲人成伊人成综合网2020| 丰满人妻熟妇乱又伦精品不卡| 丁香六月欧美| 一边摸一边抽搐一进一出视频| 99久久久亚洲精品蜜臀av| 美女大奶头视频| 日韩三级视频一区二区三区| 日日干狠狠操夜夜爽| 亚洲人成电影免费在线| 夫妻午夜视频| 久久精品国产综合久久久| 亚洲中文字幕日韩| 久久久国产欧美日韩av| 亚洲熟妇中文字幕五十中出 | 50天的宝宝边吃奶边哭怎么回事| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲色图 男人天堂 中文字幕| 国产精品亚洲av一区麻豆| 人妻丰满熟妇av一区二区三区| 亚洲午夜精品一区,二区,三区| 亚洲av成人不卡在线观看播放网| 免费av毛片视频| 精品国产乱码久久久久久男人| 午夜精品在线福利| 91麻豆av在线| 看黄色毛片网站| 日本黄色视频三级网站网址| 在线观看一区二区三区激情| 黄色视频不卡| 99riav亚洲国产免费| 大码成人一级视频| 色综合婷婷激情| 久久久久久免费高清国产稀缺| 国产真人三级小视频在线观看| 成人黄色视频免费在线看| av免费在线观看网站| 亚洲久久久国产精品| 99热国产这里只有精品6| 精品卡一卡二卡四卡免费| 巨乳人妻的诱惑在线观看| 18美女黄网站色大片免费观看| 脱女人内裤的视频| 涩涩av久久男人的天堂| а√天堂www在线а√下载| av国产精品久久久久影院| 侵犯人妻中文字幕一二三四区| 美女大奶头视频| 国产av精品麻豆| 久久香蕉激情| 一边摸一边抽搐一进一出视频| 亚洲av电影在线进入| 久久久久精品国产欧美久久久| 欧美亚洲日本最大视频资源| 国内毛片毛片毛片毛片毛片| 国产高清videossex| 久久人人97超碰香蕉20202| 欧美成人性av电影在线观看| 国产人伦9x9x在线观看| 成人国产一区最新在线观看| 久久亚洲真实| 国产人伦9x9x在线观看| 精品少妇一区二区三区视频日本电影| 欧美黑人精品巨大| 久久久久久久久久久久大奶| 欧美日韩亚洲国产一区二区在线观看| 超碰成人久久| 天天影视国产精品| 亚洲av第一区精品v没综合| 久久久国产成人精品二区 | 一区二区日韩欧美中文字幕| 日韩av在线大香蕉| 美女扒开内裤让男人捅视频| 色婷婷久久久亚洲欧美| 国产真人三级小视频在线观看| 亚洲av第一区精品v没综合| 中文字幕色久视频| 免费日韩欧美在线观看| 久久国产精品男人的天堂亚洲| 久久人妻熟女aⅴ| 99久久综合精品五月天人人| 欧美精品啪啪一区二区三区| 搡老岳熟女国产| 日日干狠狠操夜夜爽| 欧美日韩亚洲国产一区二区在线观看| 亚洲一区中文字幕在线| 亚洲国产看品久久| 啪啪无遮挡十八禁网站| 丰满人妻熟妇乱又伦精品不卡| 国产精品98久久久久久宅男小说| 欧美黑人精品巨大| 在线观看午夜福利视频| 亚洲成av片中文字幕在线观看| 日韩大码丰满熟妇| 久久久久久久久免费视频了| 丝袜在线中文字幕| 国产精品日韩av在线免费观看 | 欧美成人性av电影在线观看| av网站在线播放免费| av免费在线观看网站| 久久中文看片网| 久久香蕉激情| 黑人操中国人逼视频| 亚洲国产精品sss在线观看 | 麻豆国产av国片精品| 一级毛片高清免费大全| 国产三级在线视频| 大型av网站在线播放| 免费av中文字幕在线| 夜夜看夜夜爽夜夜摸 | 在线看a的网站| √禁漫天堂资源中文www| 亚洲人成网站在线播放欧美日韩| 国产精品二区激情视频| 日本一区二区免费在线视频| 国产伦一二天堂av在线观看| 天天影视国产精品| 麻豆av在线久日| xxxhd国产人妻xxx| 婷婷精品国产亚洲av在线| 亚洲欧美一区二区三区黑人| 午夜久久久在线观看| 丰满饥渴人妻一区二区三| 国产午夜精品久久久久久| 夜夜夜夜夜久久久久| 亚洲av五月六月丁香网| 亚洲成av片中文字幕在线观看| 美女 人体艺术 gogo| 欧美激情久久久久久爽电影 | 91字幕亚洲| 精品免费久久久久久久清纯| 正在播放国产对白刺激| 日韩免费av在线播放| 黄频高清免费视频| 国产日韩一区二区三区精品不卡| 亚洲专区中文字幕在线| 亚洲七黄色美女视频| 成人影院久久| 精品电影一区二区在线| 中文字幕人妻丝袜制服| 黑人猛操日本美女一级片| 99久久久亚洲精品蜜臀av| 久久人妻熟女aⅴ| xxx96com| 亚洲美女黄片视频| 高清毛片免费观看视频网站 | www日本在线高清视频| 亚洲av美国av| 最新在线观看一区二区三区| 久久国产精品影院| 日韩人妻精品一区2区三区| 欧美成人午夜精品| 嫩草影院精品99| 国产人伦9x9x在线观看| 人人妻,人人澡人人爽秒播| 色精品久久人妻99蜜桃| 热re99久久国产66热| 日韩欧美一区视频在线观看| 国产欧美日韩综合在线一区二区| 曰老女人黄片| 久久久国产精品麻豆| 在线播放国产精品三级| 国产精品影院久久| 国产成人影院久久av| 日韩免费高清中文字幕av| 88av欧美| 老司机福利观看| 午夜免费成人在线视频| 亚洲第一欧美日韩一区二区三区| 精品国产超薄肉色丝袜足j| 精品免费久久久久久久清纯| 免费在线观看日本一区| 日本 av在线| 久久久精品国产亚洲av高清涩受| 变态另类成人亚洲欧美熟女 | 男女下面进入的视频免费午夜 | aaaaa片日本免费| 亚洲一区二区三区色噜噜 | 欧美日韩视频精品一区| 欧美激情久久久久久爽电影 | 国产真人三级小视频在线观看| 欧美人与性动交α欧美精品济南到| 国产精品国产高清国产av| 国产精品爽爽va在线观看网站 | 淫妇啪啪啪对白视频| 久久狼人影院| 日本撒尿小便嘘嘘汇集6| 亚洲精品在线美女| 久久久久久久精品吃奶| netflix在线观看网站| 亚洲成av片中文字幕在线观看| 熟女少妇亚洲综合色aaa.| av天堂在线播放| 一级作爱视频免费观看| 精品少妇一区二区三区视频日本电影| 日韩欧美免费精品| 国产1区2区3区精品| 亚洲,欧美精品.| 校园春色视频在线观看| 新久久久久国产一级毛片| 久久香蕉激情| 亚洲中文字幕日韩| 亚洲国产欧美一区二区综合| 欧美乱色亚洲激情| 精品久久久久久久毛片微露脸| 亚洲国产精品合色在线| 大香蕉久久成人网| 国产一区二区三区视频了| 18美女黄网站色大片免费观看| 麻豆成人av在线观看| 精品熟女少妇八av免费久了| 激情视频va一区二区三区| 免费看十八禁软件| 欧美日韩av久久| 日韩高清综合在线| 国产一区二区三区视频了| 久久久精品国产亚洲av高清涩受| 国产男靠女视频免费网站| 女人精品久久久久毛片| 免费少妇av软件|