• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on optimization design method of actuator parameters with stepless capacity control system for reciprocating compressor ①

    2020-07-12 02:34:16ZhouChaoZhangJinjieSunXuWangYao
    High Technology Letters 2020年2期

    Zhou Chao(周 超), Zhang Jinjie , Sun Xu, Wang Yao

    (*Compressor Health and Intelligent Monitoring Center of National Key Laboratory of Compressor Technology, Beijing University of Chemical Technology, Beijing 100029, P.R.China) (**State Key Laboratory of Compressor Technology, Anhui Provincial Laboratory of Compressor Technology, Hefei 230031, P.R.China) (***Beijing Key Laboratory of Health Monitoring Control and Fault Self-Recovery for High-End Machinery, Beijing University of Chemical Technology,Beijing 100029, P.R.China)

    Abstract

    Key words: reciprocating compressor, stepless capacity control system, non-dominated sorting genetic algorithm II (NSGA-II), fuzzy analytic hierarchy process (FAHP)

    0 Introduction

    In petroleum and chemical enterprises, many chemical or physical processes require high-pressure gases, and reciprocating compressors play an irreplaceable role because of their outstanding advantages in compression efficiency and compression ratio. Reciprocating compressor belongs to positive displacement compressor, the discharge is constant under normal working conditions, but the fluctuation of technological process makes the device not run at full load. Reciprocating compressor usually runs below the designed discharge, so it is usually equipped with capacity control system to meet the operating requirements. The capacity regulation by pressing-off suction valve during partial stroke can realize 0-100% stepless flow regulation theoretically by controlling the opening time of the unloading device in the compression process. At the same time, it also reduces energy consumption[1]. The capacity control system is installed on reciprocating compressor in a petrochemical refinery. When the load is 40%-60%, the power can be saved by 300 kW/h. Calculated at 0.5 yuan/kWh, running for one year (that is 8 000 h) can save about 1.2 million yuan of electricity, with obvious energy-saving effect.

    When the reciprocating compressor is installed with the stepless capacity control system[2-5], the actuator, control hardware and hydraulic system often fail because the design or control parameters are not optimized according to the actual situation in the field.The failure of hydraulic system is involved in Ref.[6]. The failure of control system is involved in Ref.[7]. The failure of actuator is involved in Refs[8-12]. Due to application problems, researchers begin to avoid problems in structure and parameter design. Wu et al.[13]analyzed the influence of inlet oil pressure on valve plate movement based on the mathematical model of valve plate movement and designed the optimal inlet oil pressure. Meanwhile, the speed buffer structure is designed to greatly reduce the impact of valve plate on valve seat and extend the life of valve plate. Li et al.[14]established a streamlined valve model and studied the relationship between inlet oil pressure and tilt angle and valve plate life, which provided theoretical basis for optimal design of actuator. Cao et al.[15]studied characteristics of hydraulic actuator and system modeling based on AMESim, and proposed an improved design. Li et al.[16]deduced an accurate calculation formula of discharge, and designed the GUI, which can quickly complete the design of the force of ejection. In conclusion, the researchers set single optimization goal and didn’t consider the diversity of parameters which have complex relationship of mutual dependence and contradiction, so, the design results have limitations, which can not make the system in an efficient operation state.

    The objectives are mutually restricted, and there are multiple groups of non-dominant solutions. Traditional multi-objective optimization methods can not be used to solve the above problems. The evolutionary multi-objective optimization method has achieved good results in practical application, and researchers have achieved rich research results. The non-dominated sorting genetic algorithm II (NSGA-II)[17,18]is currently one of the most popular multi-objective genetic algorithm (GA), which reduces the complexity of non-inferior sort genetic algorithm, and has the advantages of fast running speed and good convergence of solution set, and becomes the benchmark of other multi-objective optimization algorithms.

    In this paper, mathematical models of actuators and compressors are established. According to the mutual influence relationship and importance of parameters, the indicated power deviation, impact velocity of ejection, inlet oil pressure and spring stiffness are selected as objective functions. The Pareto frontier is obtained by NSGA-II. Finally, the optimal solution is selected by fuzzy analytic hierarchy process and compared with the traditional design value. The result obtained is significantly better than that obtained by the traditional design method, which verifies the feasibility and effectiveness of the method.

    1 Stepless capacity control system and mathematical model

    The stepless capacity control system principle of reciprocating compressor is shown in Fig.1. Under normal conditions, when the piston moves to the position of inner dead point (point A), it starts to reverse movement, the suction valve begins to close, and then the compressor compresses and exhausts. The area of the P-V diagram contains regions I and II. When the piston moves to the position of inner dead point (point A), it starts to move in the opposite direction. The hydraulic system provides a large hydraulic driving force to the unloader. The suction valve is forced to be pushed open by the unloader. The valve plate is at the lower limit and the gas returns to the suction chamber. When the piston moves to point B, the volume meets the production requirements. The hydraulic system provides the hydraulic driving force of the unloader to reduce, the spring force in the unloader overcomes the hydraulic driving force and friction, the unloader retracts, and the suction valve begins to close. The area of the P-V diagram contains region II. According to the area in the P-V diagram, the capacity control system can not only make the reciprocating compressor meet the volume requirements, but also save energy in region I. Nomenclature is listed in Table 1.

    Fig.1 Schematic diagram of valve and chamber

    1.1 Mathematical model of actuator

    The actuator is mainly composed of hydraulic cylinder, unloader including reset spring, executing fork, mandril and other components.The hydraulic system includes hydraulic stations and pipelines to provide the driving force for the actuator to overcome the spring force, gas force, friction force, etc.The suction valve is delayed in closing from open state. Part of the gas returns to the suction chamber in compression stroke to realize the purpose of capacity control.

    Table 1 Nomenclature

    In order to analyze the motion characteristics of the actuator with stepless capacity control system, several hypotheses are provided.

    (1) Don’t consider the rebound of actuator during impact.

    (2) Don’t consider time delay of hydraulic system oil supply or unloading, that is, the start time of ejection or withdrawal of the loader is consistent with the start time of oil supply or unloading in the hydraulic oil unit.

    i) Hydraulic driving force

    (1)

    where,Fhrepresents the hydraulic driving force,p1represents the oil pressure in the ejection process of the actuator,p2represents oil pressure in the withdrawal process of the actuator,Aunloaderrepresents transversal area of hydraulic piston,θ1represents start angle of ejection,θ2represents end angle of ejection,θ3represents start angle of withdrawal,θ4represents end angle of withdrawal.

    ii) Spring force of actuator

    Fs=kunloader(x0+x)

    (2)

    where,Fsrepresents spring force of actuator,kunloaderrepresents spring stiffness of actuator,x0represents pre-compression,xrepresents actuator displacement.

    iii) Differential equations of motion of ejection and withdrawal

    (3)

    where,mrepresents actuatormass,Firepresents gasforce of suction,αrepresents installation angle of actuator,frepresents total friction of actuator,Fcyrepresents gas force of cylinder,γrepresents gas force coefficient of valve plate, when executing fork contacts the valve plate,γ=1, instead,γ=0.

    iv) Initial condition

    where,x′(0) represents initial velocity in ejection or withdrawal of actuator,va(0) represents initial displacement in ejection or withdrawal of actuator,Lrepresents actuatortrip.

    1.2 Mathematical model of compressor with stepless capacity control system

    As shown in Fig.2 and Table 2, on account of changing opening and closing states by actuator under capacity control condition, many new processes are added compared with the compressor model under normal working conditions. As shown in Fig.2, the suction valve is forced open during compression stroke (crank angle isθs3-θ3). The movement state of valve plate is changed. In the closing process of suction valve, if the acceleration of the unloader is less than the suction valve plate acceleration (crank angle isθs5-θ4), the motion state of the valve plate closing process will also change.

    Table 2 Description of unloader and suction valve

    Fig.2 Displacement diagram of unloader and suction valve

    Based on the above analysis, a compressor mathematical model based on capacity control system is established.Before establishing the mathematical model, the following hypothesis is proposed.

    (1) The suction valve is an automatic valve, which

    is not affected by the actuator during the opening process.

    (2) The motion of the exhaust valve and suction valve plates is one-dimensional.

    (3) The flow of gas through the valve gap is a one-dimensional flow of ideal gas and an adiabatic process.

    (4) The cylinder transfers heat with the cooling water in outer wall, which is simulated as an inter-wall heat exchanger, and its heat transfer coefficient isB(J/(m2·s)).

    1.2.1 Expansion, suction and compression processes

    Under capacity control condition, the motion of the actuator doesn’t affect the expansion, suction and compression processes[19]. The motion differential equations of the suction valve plate in different processes are respectively:

    (4)

    (5)

    where,hrepresents valve plate displacement,θrepresents crank angle,αsvAsvrepresents instantaneous effective valve gap area of suction valve,Aprepresents area of valve plate,krepresents spring stiffness of valve plate,krepresents ratio of specific heat of gas,Vcyrepresents cylinder volume,V0represents relative clearance volume,βrepresents coefficient of heat transfer,C=B2πrcyrcrk,rcrkrepresents crank radius,trepresents time,H0represents precompression of valve plate spring,Mvrepresents the valve quality,Rrepresents gas constant,Tsrepresents suction temperature,βrepresents coefficient of applied force of gas,Zrepresents number of the spring,psrepresents inlet pressure,pcyrepresents cylinder pressure,Vhrepresents stroke volume,λrepresents ratio between the crankshaft radius and connecting rod length,rcyrepresents radius of the cylinder.

    Eq.(4) is the motion differential equations of the suction valve plate in the expansion and compression process, and Eq.(5) is the motion differential equations of the suction valve plate in the suction process.

    1.2.2 Backflow and suction valve closing process

    (1) Backflow process

    (2) Suction valve closing process

    θ3≤θ≤θ4(7)

    When the withdrawal speed of valve plate is less than the unloader, the equation is consistent with Eq.(5).

    2 Multi-objective optimization mathematical model of actuator based on NSGA-II

    2.1 Multi-objective optimization mathematical model

    The hydraulic pressure and the reset spring stiffness have great influence on the safety, reliability and performance of the capacity control system. The reduction of hydraulic pressure can decrease the design cost of hydraulic system, decrease the impact of ejection speed and increase the safety of the system, but the actuator can not meet the requirements of ejecting when the hydraulic pressure is small. The decrease of spring stiffness can reduce the design value of hydraulic pressure, but when the spring stiffness decreases, the impact speed of ejection will increase, which is not conducive to system reliability. On the other hand, on account of the valve plate retracts with the actuator, the reduction of spring stiffness will lead to the reduction of the actuator’s retract acceleration, so the valve plate closing time increases, the quantity of reflux increases, and the load deviation increases. Therefore, it is necessary to consider the mutual inhibition and contradictory relationship among multiple parameters and objectives, such as hydraulic pressure, spring stiffness, impact velocity of ejection, and regulating effect, as shown in Fig.3. Based on the mathematical model of actuator and compressor in Section 2, the multi-objective optimization study of load deviation, impact velocity of ejection, hydraulic pressure and spring stiffness is carried out. The multi-objective mathematical model of the unloader is shown in Eqs(8,9):

    Fig.3 Parameter relational graph

    minf(X)=[f1f2…fm]

    (8)

    subX=(x1x2…xn)

    xlower≤xi≤xupper(i=1,2,…,n)

    (9)

    where,f(X) is the objective equation ofX;m,nis the number of objective function and decision variables respectively;xloweris the lower limit of the decision variable;xupperis the upper limit of the decision variable.

    Therefore, the objective function is to minimize the spring stiffness, oil inlet pressure, impact velocity of ejection and load adjustment deviation. The objective function is described as follows.

    (1)Spring stiffness and oil inlet pressure

    The design of reducing the system hydraulic pressure and the spring stiffness of unloader can reduce the processing requirements and costs of the actuator and hydraulic system, and increase the safety coefficient of the system.

    f1=k

    f2=p1

    (2)Load adjustment deviation

    Under normal condition, the suction valve plate retracts automatically. Through numerical calculation of Eqs(4) and (5), the withdrawal time of the suction valve plate is 1.56 ms. Actuator parameters are shown in Table 3. Reciprocating compressor parameters are shown in Table 4. Ultimate withdrawal time of unloader is 4 ms with capacity control system. Since the mass of the valve plate is small relative to the unloader, the acceleration of the valve plate is large relative to the unloader. Therefore, under the capacity control condition, the valve plate is withdrawn together with the unloading device, namely, Eq.(7) is adopted as the differential equations of valve plate withdrawal process.

    Table 3 Actuator parameters

    Table 4 Reciprocating compressor parameters

    Through numerical calculation, the indicated power of compressor with different stiffness is obtained. The load adjustment deviation can be obtained by subtracting the indicated power of the compressor with different stiffness under the normal condition from the indicated power of the compressor under the capacity control condition, that isΔη. The relationship betweenΔηandkis obtained as shown in Fig.4, and through rational fitting, when the numerator degree is 1, denominator degree is 2, fitting degree is high, the relationship betweenΔηandkis shown in Eq.(10).

    Fig.4 Fitted curve and simulation curve

    (10)

    (3) Impact velocity of ejection

    When the angle isθ1≤θ≤θ2, it is the ejection process of the actuator, the initial conditions are substituted into the ejection motion differential equation of the actuator, and the velocity at the lower limit of the actuator namely the impact velocity of ejection, can be obtained:

    (11)

    2.2 Analysis of optimization results based on NSGA-II

    Fig.5 shows the flow of multi-objective optimization algorithm, which is divided into 3 parts. The first part constructs mathematical equations according to the structure and characteristics of the actuator and compressor, the second part analyzes the mutual influence of various parameters and obtains the relational expression according to the mathematical model, and the third part completes the multi-objective optimization calculation with NSGA-II.

    The setting parameters of non-dominant sorting multi-objective optimization is shown in Table 5. Figs 6-7 show the feasible solution set graph among the 4 targets. As can be seen from Fig.6, with the decrease of inlet oil pressure or spring stiffness, the impact velocity decreases, but the deviation of indicated power increases. Fig.6 shows the Pareto front of spring stiffness and oil inlet pressure when Gen=50, 500, 1 000 and 2 000. As the number of iterations increases, the region of feasible solution gradually decreases and is close to the Pareto front.

    Every solution in the NSGA-II solution set is a nondominant solution, and every solution cannot dominate the others. For practical engineering problem of application, the solution of multi-objective problem is not only an optimization problem. When Pareto front is found, the final optimal solution needs to be selected according to the relative importance of the optimization target. Although the deviation of indicated power affects the adjustment accuracy, it can be compensated by the control method. Therefore, the weight of the inlet oil pressure, spring stiffness, impact speed and deviation of indicated power is 0.3: 0.3: 0.3: 0.1. The relationship betweenrijand the weight of factorswiandwjisrij=0.5+(wi-wj)β, 0<β≤0.5, takingβ=0.3, therefore precedence relation matrix is:

    Table 5 Parameter of NSGA-II

    ParameterValuePopulation size100Maximum generation1000Mutation fraction0.7Crossover fraction0.4Variation ratio0.02Crossover ratio0.02

    Fig.5 Multi-objective optimization design algorithm flow chart

    Fig.6 Spring stiffness and hydraulic pressure Pareto front

    Fig.7 k-p1-v-Δη Pareto front

    Fuzzy consistency matrix is

    Therefore,

    =(0.2533, 0.2533, 0.2533, 0.24)

    According to the weight coefficient, the optimal solution can be obtained:

    Take the first 3 groups of solutions, as shown in Table 6.

    The optimized result of NSGA-II is compared with the traditional design parameters. The traditional design parameters are selected and calculated based on feasibility without considering the optimized design. Therefore, it can be seen from Table 7, the parameters decrease after the optimized design that could reach at least 17% and the maximum could reach 201%.

    3 Conclusion

    In this work, the key parameters of reciprocating compressor actuator and hydraulic system are optimized under capacity control system. Due to the mutual influence of spring stiffness, inlet oil pressure, impact velocity of ejection and deviation of indicated power, the improvement of any parameter will lead to the deterioration of other parameters. In order to solve the multi-parameter optimal design effectively, NSGA-II is used to solve the problem and compared with the traditional results.

    Table 6 Optimal solution of actuator parameters

    Table 7 Optimal solution of actuator parameters

    (1) The differential equation of actuator motion is established to analyze the relationship between spring stiffness, inlet oil pressure, impact velocity of ejection,which lays a theoretical foundation for multi-objective optimization.

    (2) The mathematical model of compressor under the capacity control system is established. On normal condition, the automatic withdrawal time of the valve plate is about 1.56 ms, while the minimum withdrawal time of the unloader on capacity control condition is 4 ms, so the valve plate and the unloader are withdrawn to the top limit together.The motion equation of the valve plate on capacity control system is related to the motion of the actuator. Therefore, the influence of spring stiffness on the indicated power and the displacement of the valve plate is analyzed by combining the motion differential equation of the actuator with the mathematical model of the compressor. The influence of spring stiffness on indicated power and displacement of valve plate on capacity control system is analyzed. It can be seen from the results that with the increase of spring stiffness, the closing time of valve plate decreases and the backflow decreases. Therefore, the deviation of indicated power of capacity control system decreases, but the increase of stiffness will lead to the increase of inlet oil pressure, and the relationship curve between spring stiffness and indicating power deviation is obtained through rational fitting.The above research lays a theoretical foundation for multi-objective optimization.

    (3) The optimal design is carried out by using NSGA-II to get Pareto front, and the optimal parameters of actuator and hydraulic system are obtained by adopting fuzzy analytic hierarchy process. The spring stiffness is 33 214 N/m, the inlet oil force is 310.63 N, the impact velocity of ejection is 0.2372 m/s, and the deviation of indicated power is 7.2523 kW. Compared with the traditional design parameters, the optimized design can reduce the spring stiffness or inlet oil pressure by at least 17% and the maximum by 201%.

    听说在线观看完整版免费高清| 18禁裸乳无遮挡免费网站照片| 男插女下体视频免费在线播放| 国产视频一区二区在线看| 最新在线观看一区二区三区| 一个人观看的视频www高清免费观看 | 1024香蕉在线观看| 国内揄拍国产精品人妻在线| 淫秽高清视频在线观看| 亚洲狠狠婷婷综合久久图片| 成人午夜高清在线视频| 国产熟女午夜一区二区三区| 国产日本99.免费观看| www.精华液| 中文字幕高清在线视频| 国产视频一区二区在线看| 日本黄色视频三级网站网址| 亚洲成人中文字幕在线播放| 欧美性猛交黑人性爽| 欧美成人性av电影在线观看| 午夜精品久久久久久毛片777| 欧美另类亚洲清纯唯美| 亚洲av中文字字幕乱码综合| 国产亚洲精品av在线| 国产亚洲av高清不卡| 久久久国产欧美日韩av| 久久这里只有精品中国| 在线免费观看的www视频| 一个人免费在线观看的高清视频| 一个人观看的视频www高清免费观看 | 在线观看www视频免费| 国内少妇人妻偷人精品xxx网站 | 亚洲成人久久性| 久久精品人妻少妇| 99热只有精品国产| 欧美性猛交╳xxx乱大交人| 亚洲av熟女| 国产精品av视频在线免费观看| 怎么达到女性高潮| 后天国语完整版免费观看| 久久中文字幕人妻熟女| 欧美成人午夜精品| 最近最新中文字幕大全电影3| 欧美在线一区亚洲| 久久香蕉国产精品| 男人舔女人的私密视频| 国产av一区在线观看免费| 久久久久久久精品吃奶| 免费在线观看影片大全网站| 亚洲人成伊人成综合网2020| 国产精品日韩av在线免费观看| 亚洲自拍偷在线| 欧美不卡视频在线免费观看 | 国产精品一区二区免费欧美| 老鸭窝网址在线观看| 久久久国产精品麻豆| 国产黄片美女视频| 国产精品一区二区免费欧美| 久久午夜亚洲精品久久| 午夜福利视频1000在线观看| 久久香蕉国产精品| 亚洲精品在线美女| 男女那种视频在线观看| 欧美在线一区亚洲| 婷婷六月久久综合丁香| 一区二区三区国产精品乱码| 97超级碰碰碰精品色视频在线观看| 99国产综合亚洲精品| av欧美777| 曰老女人黄片| 欧美极品一区二区三区四区| 欧美成人一区二区免费高清观看 | 夜夜看夜夜爽夜夜摸| 中文在线观看免费www的网站 | 正在播放国产对白刺激| 嫁个100分男人电影在线观看| 岛国视频午夜一区免费看| av中文乱码字幕在线| 国产精品1区2区在线观看.| 国产av一区在线观看免费| 真人一进一出gif抽搐免费| 久久精品成人免费网站| 99热只有精品国产| 麻豆久久精品国产亚洲av| 人妻丰满熟妇av一区二区三区| 国产av又大| 久久天堂一区二区三区四区| 999久久久国产精品视频| 精品少妇一区二区三区视频日本电影| 日韩国内少妇激情av| 亚洲人成电影免费在线| 国产精品爽爽va在线观看网站| 久久久久亚洲av毛片大全| 两个人看的免费小视频| 无人区码免费观看不卡| 波多野结衣高清作品| av国产免费在线观看| 欧美性长视频在线观看| 国产成人精品久久二区二区91| 午夜视频精品福利| 成人精品一区二区免费| 久久久国产成人精品二区| 亚洲aⅴ乱码一区二区在线播放 | 性色av乱码一区二区三区2| 亚洲自拍偷在线| 成人高潮视频无遮挡免费网站| 精品日产1卡2卡| 桃红色精品国产亚洲av| 亚洲中文av在线| 午夜影院日韩av| 亚洲欧美精品综合一区二区三区| 在线播放国产精品三级| 免费在线观看成人毛片| 日本免费a在线| АⅤ资源中文在线天堂| 村上凉子中文字幕在线| 一二三四在线观看免费中文在| 欧美日韩国产亚洲二区| 9191精品国产免费久久| 久久久久免费精品人妻一区二区| 中文字幕最新亚洲高清| 成人手机av| 国产熟女午夜一区二区三区| 久久香蕉激情| 中国美女看黄片| 久久九九热精品免费| 制服诱惑二区| 91麻豆av在线| 免费观看精品视频网站| 黑人欧美特级aaaaaa片| 一卡2卡三卡四卡精品乱码亚洲| 成人亚洲精品av一区二区| 国产成人av激情在线播放| 免费一级毛片在线播放高清视频| 中文字幕高清在线视频| 女人爽到高潮嗷嗷叫在线视频| 中文字幕av在线有码专区| 亚洲国产欧美网| 中文字幕久久专区| 欧美成人免费av一区二区三区| 亚洲国产中文字幕在线视频| 国产激情久久老熟女| 久久久久久亚洲精品国产蜜桃av| 亚洲免费av在线视频| 欧美3d第一页| 精品久久久久久久久久久久久| 欧美一级a爱片免费观看看 | 两个人免费观看高清视频| 在线永久观看黄色视频| 精品乱码久久久久久99久播| 国产精品香港三级国产av潘金莲| 在线视频色国产色| 国产蜜桃级精品一区二区三区| 亚洲精品色激情综合| 国产一区二区三区在线臀色熟女| 国产精品精品国产色婷婷| 亚洲熟妇中文字幕五十中出| av有码第一页| 波多野结衣高清作品| 亚洲欧美日韩无卡精品| 人妻夜夜爽99麻豆av| 国产精品98久久久久久宅男小说| 精品不卡国产一区二区三区| 999久久久国产精品视频| 日本黄色视频三级网站网址| 精品福利观看| 国产探花在线观看一区二区| 国产精品永久免费网站| 最近最新中文字幕大全电影3| 精品熟女少妇八av免费久了| 亚洲成av人片免费观看| 一级片免费观看大全| 亚洲精品国产精品久久久不卡| 亚洲乱码一区二区免费版| 日韩免费av在线播放| 亚洲人成网站在线播放欧美日韩| 婷婷亚洲欧美| 国产乱人伦免费视频| 日韩精品中文字幕看吧| 九色国产91popny在线| 99国产精品99久久久久| 日本在线视频免费播放| 日日夜夜操网爽| 在线播放国产精品三级| 欧美丝袜亚洲另类 | 老汉色av国产亚洲站长工具| 亚洲av第一区精品v没综合| 午夜老司机福利片| 久久精品国产99精品国产亚洲性色| 日本撒尿小便嘘嘘汇集6| 国产成人啪精品午夜网站| 免费观看精品视频网站| 亚洲欧美日韩东京热| 亚洲片人在线观看| 黄频高清免费视频| 婷婷丁香在线五月| 亚洲最大成人中文| 国产av在哪里看| 99国产综合亚洲精品| bbb黄色大片| 精品久久久久久久人妻蜜臀av| 又粗又爽又猛毛片免费看| 亚洲av美国av| 十八禁人妻一区二区| 级片在线观看| 小说图片视频综合网站| 国产精品,欧美在线| 99国产精品一区二区蜜桃av| 国产视频内射| 99精品在免费线老司机午夜| 亚洲中文字幕一区二区三区有码在线看 | 日韩精品中文字幕看吧| 欧美av亚洲av综合av国产av| 俺也久久电影网| 亚洲七黄色美女视频| 久久久久精品国产欧美久久久| 欧美+亚洲+日韩+国产| 日日干狠狠操夜夜爽| 精品国内亚洲2022精品成人| 日韩欧美一区二区三区在线观看| 久久草成人影院| 两个人的视频大全免费| 狠狠狠狠99中文字幕| 国产精品电影一区二区三区| 丰满人妻一区二区三区视频av | 国产精品精品国产色婷婷| 欧美大码av| 人人妻,人人澡人人爽秒播| www.www免费av| 国产精品亚洲美女久久久| 亚洲精品色激情综合| 特大巨黑吊av在线直播| 久久人人精品亚洲av| 欧美成狂野欧美在线观看| 欧美性长视频在线观看| 久久久水蜜桃国产精品网| 婷婷丁香在线五月| 免费看a级黄色片| 男人的好看免费观看在线视频 | 久久精品91无色码中文字幕| 欧美精品啪啪一区二区三区| 亚洲九九香蕉| 午夜日韩欧美国产| 国产av不卡久久| 日韩欧美在线二视频| av天堂在线播放| 91国产中文字幕| 久久精品亚洲精品国产色婷小说| 19禁男女啪啪无遮挡网站| 国产精品永久免费网站| 国产不卡一卡二| 三级毛片av免费| 国产精品久久久久久久电影 | 淫秽高清视频在线观看| 九色国产91popny在线| 18禁黄网站禁片免费观看直播| 99在线视频只有这里精品首页| 欧美日韩精品网址| 久久人妻福利社区极品人妻图片| 一级毛片高清免费大全| АⅤ资源中文在线天堂| 99热这里只有是精品50| 香蕉av资源在线| 精品久久蜜臀av无| 日本黄大片高清| 九九热线精品视视频播放| 级片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美日韩无卡精品| 日本精品一区二区三区蜜桃| 亚洲五月天丁香| 久久性视频一级片| a在线观看视频网站| 日本a在线网址| 欧美中文日本在线观看视频| 亚洲成av人片在线播放无| 三级国产精品欧美在线观看 | 久久久久久久久免费视频了| 久久精品国产综合久久久| 亚洲成人免费电影在线观看| 亚洲真实伦在线观看| 亚洲九九香蕉| 精品无人区乱码1区二区| 正在播放国产对白刺激| 激情在线观看视频在线高清| 日本五十路高清| 国产午夜精品久久久久久| 久久久久九九精品影院| 国产精品久久电影中文字幕| 老司机深夜福利视频在线观看| 国内少妇人妻偷人精品xxx网站 | 999精品在线视频| 九色成人免费人妻av| 亚洲成a人片在线一区二区| 757午夜福利合集在线观看| 精华霜和精华液先用哪个| 制服丝袜大香蕉在线| 非洲黑人性xxxx精品又粗又长| 亚洲成av人片在线播放无| 夜夜看夜夜爽夜夜摸| 免费av毛片视频| 桃红色精品国产亚洲av| 蜜桃久久精品国产亚洲av| 精品高清国产在线一区| 国产高清视频在线播放一区| 久久人人精品亚洲av| 久久久久久国产a免费观看| 香蕉久久夜色| 日韩精品青青久久久久久| 国产精品日韩av在线免费观看| 精品一区二区三区四区五区乱码| 91九色精品人成在线观看| 在线国产一区二区在线| 亚洲专区中文字幕在线| 中文字幕人妻丝袜一区二区| 久9热在线精品视频| 伦理电影免费视频| 婷婷精品国产亚洲av| 午夜免费观看网址| 别揉我奶头~嗯~啊~动态视频| 99热这里只有精品一区 | 亚洲国产欧美一区二区综合| 一区二区三区国产精品乱码| 丰满人妻一区二区三区视频av | 国产亚洲精品一区二区www| 1024香蕉在线观看| 午夜福利成人在线免费观看| 亚洲一区二区三区色噜噜| 亚洲av电影在线进入| svipshipincom国产片| 欧美日本亚洲视频在线播放| 日本一二三区视频观看| 欧美精品亚洲一区二区| 亚洲国产精品成人综合色| 久久久久久久久免费视频了| 欧美黑人精品巨大| 非洲黑人性xxxx精品又粗又长| 又紧又爽又黄一区二区| 哪里可以看免费的av片| 非洲黑人性xxxx精品又粗又长| 国产熟女xx| 2021天堂中文幕一二区在线观| 岛国视频午夜一区免费看| 母亲3免费完整高清在线观看| 精品久久久久久久久久久久久| 亚洲色图av天堂| 久久婷婷人人爽人人干人人爱| 老鸭窝网址在线观看| 91大片在线观看| 老司机在亚洲福利影院| 免费av毛片视频| 国产麻豆成人av免费视频| 亚洲av成人一区二区三| 999精品在线视频| 久久久水蜜桃国产精品网| 夜夜夜夜夜久久久久| 一区二区三区激情视频| 中文字幕人妻丝袜一区二区| 99热6这里只有精品| 特级一级黄色大片| 国产又色又爽无遮挡免费看| 成年人黄色毛片网站| 特级一级黄色大片| 免费高清视频大片| 午夜成年电影在线免费观看| 久久久久亚洲av毛片大全| 国模一区二区三区四区视频 | 国产亚洲精品一区二区www| 18禁国产床啪视频网站| 一夜夜www| 欧美人与性动交α欧美精品济南到| 一本精品99久久精品77| 婷婷六月久久综合丁香| 精品欧美一区二区三区在线| 国产男靠女视频免费网站| 亚洲人成电影免费在线| 久久久久久免费高清国产稀缺| 中亚洲国语对白在线视频| 欧美绝顶高潮抽搐喷水| 91av网站免费观看| 脱女人内裤的视频| 日韩 欧美 亚洲 中文字幕| 97超级碰碰碰精品色视频在线观看| 精品国产亚洲在线| 亚洲国产欧美一区二区综合| 亚洲中文日韩欧美视频| 国产高清视频在线观看网站| 日本在线视频免费播放| avwww免费| 国产成人欧美在线观看| 亚洲专区中文字幕在线| 成人av在线播放网站| 精品一区二区三区视频在线观看免费| 亚洲国产欧美一区二区综合| 一本综合久久免费| 精品久久久久久久毛片微露脸| 中文字幕久久专区| 日韩 欧美 亚洲 中文字幕| 国产精品亚洲av一区麻豆| 亚洲精品在线观看二区| 操出白浆在线播放| 全区人妻精品视频| 欧美在线一区亚洲| 老司机深夜福利视频在线观看| 亚洲九九香蕉| 色综合婷婷激情| 亚洲精品粉嫩美女一区| 精品久久久久久久久久久久久| 亚洲片人在线观看| 狂野欧美激情性xxxx| 国产精品影院久久| bbb黄色大片| 日韩免费av在线播放| 在线观看日韩欧美| 久久精品91蜜桃| 久久九九热精品免费| 国产视频一区二区在线看| 搡老妇女老女人老熟妇| 欧美日韩国产亚洲二区| 国产精品av久久久久免费| 亚洲成av人片在线播放无| 天堂动漫精品| √禁漫天堂资源中文www| 午夜影院日韩av| 最新在线观看一区二区三区| 国产野战对白在线观看| 可以在线观看的亚洲视频| 国产一区二区三区视频了| 国产亚洲av嫩草精品影院| 日韩中文字幕欧美一区二区| 色精品久久人妻99蜜桃| 成人高潮视频无遮挡免费网站| 制服丝袜大香蕉在线| 一本综合久久免费| 嫩草影院精品99| 国产成人精品久久二区二区免费| 女生性感内裤真人,穿戴方法视频| 欧美一级a爱片免费观看看 | 少妇裸体淫交视频免费看高清 | 老熟妇乱子伦视频在线观看| 国产精品自产拍在线观看55亚洲| 一级毛片女人18水好多| 精品国产美女av久久久久小说| 99精品欧美一区二区三区四区| 亚洲国产精品久久男人天堂| www日本黄色视频网| 欧美黄色淫秽网站| 精品人妻1区二区| 亚洲人与动物交配视频| 日本免费一区二区三区高清不卡| tocl精华| 亚洲国产高清在线一区二区三| 又大又爽又粗| 午夜激情av网站| 国产伦人伦偷精品视频| 91九色精品人成在线观看| 亚洲精品美女久久av网站| 伦理电影免费视频| 国产主播在线观看一区二区| 欧美极品一区二区三区四区| av国产免费在线观看| 国产精品亚洲av一区麻豆| 此物有八面人人有两片| 亚洲欧美日韩高清专用| 国产熟女xx| 男女下面进入的视频免费午夜| 老司机午夜十八禁免费视频| 亚洲中文字幕日韩| 久久久久久久午夜电影| 亚洲天堂国产精品一区在线| 少妇被粗大的猛进出69影院| 亚洲国产精品久久男人天堂| 国产精品香港三级国产av潘金莲| 色综合欧美亚洲国产小说| 日韩 欧美 亚洲 中文字幕| 久久人妻av系列| 亚洲av日韩精品久久久久久密| 欧美性长视频在线观看| 久久性视频一级片| 男女午夜视频在线观看| 亚洲欧洲精品一区二区精品久久久| 床上黄色一级片| 欧美乱色亚洲激情| 午夜免费激情av| 国产精品影院久久| 亚洲第一电影网av| 欧美一区二区国产精品久久精品 | 琪琪午夜伦伦电影理论片6080| 免费在线观看视频国产中文字幕亚洲| a在线观看视频网站| 大型黄色视频在线免费观看| 亚洲男人的天堂狠狠| 亚洲av成人av| 亚洲va日本ⅴa欧美va伊人久久| 十八禁人妻一区二区| 97碰自拍视频| 欧美国产日韩亚洲一区| 久久久久久国产a免费观看| 757午夜福利合集在线观看| 两性夫妻黄色片| 2021天堂中文幕一二区在线观| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品国产精品久久久不卡| 亚洲最大成人中文| 精品欧美国产一区二区三| 午夜福利18| 制服人妻中文乱码| av在线天堂中文字幕| 黄色成人免费大全| 久久久精品国产亚洲av高清涩受| 久久这里只有精品中国| 麻豆一二三区av精品| 国产精品久久久久久人妻精品电影| 黄色 视频免费看| 首页视频小说图片口味搜索| 久久中文看片网| 国产熟女xx| 俺也久久电影网| 亚洲真实伦在线观看| 亚洲欧洲精品一区二区精品久久久| 色综合站精品国产| 国产黄片美女视频| 午夜激情福利司机影院| 在线永久观看黄色视频| 黑人操中国人逼视频| 一边摸一边抽搐一进一小说| 99国产极品粉嫩在线观看| 久久久久精品国产欧美久久久| 露出奶头的视频| 一级黄色大片毛片| 两人在一起打扑克的视频| 宅男免费午夜| 国产成+人综合+亚洲专区| 91国产中文字幕| 亚洲国产精品sss在线观看| 淫妇啪啪啪对白视频| 搡老妇女老女人老熟妇| 999精品在线视频| 特大巨黑吊av在线直播| 国产一区二区在线av高清观看| 白带黄色成豆腐渣| 国产麻豆成人av免费视频| 久久精品国产亚洲av香蕉五月| 看黄色毛片网站| 久久久久国内视频| 2021天堂中文幕一二区在线观| 国产又黄又爽又无遮挡在线| 在线观看美女被高潮喷水网站 | 国产成人精品无人区| 久久久久久免费高清国产稀缺| 国产精品亚洲av一区麻豆| 88av欧美| 成人高潮视频无遮挡免费网站| 别揉我奶头~嗯~啊~动态视频| 午夜a级毛片| 中文字幕av在线有码专区| 免费人成视频x8x8入口观看| 国产成+人综合+亚洲专区| 99久久无色码亚洲精品果冻| 全区人妻精品视频| 好男人在线观看高清免费视频| 日韩欧美国产一区二区入口| 久久精品国产99精品国产亚洲性色| 日本 av在线| 国产人伦9x9x在线观看| 亚洲av美国av| 久久 成人 亚洲| 18禁美女被吸乳视频| 亚洲专区国产一区二区| tocl精华| 波多野结衣高清无吗| 国产单亲对白刺激| 日韩欧美一区二区三区在线观看| 亚洲av成人精品一区久久| 欧美日韩中文字幕国产精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 成人午夜高清在线视频| 在线观看免费视频日本深夜| 麻豆成人午夜福利视频| 男女午夜视频在线观看| 亚洲男人的天堂狠狠| 亚洲男人天堂网一区| 亚洲av中文字字幕乱码综合| 一个人免费在线观看电影 | 老司机靠b影院| 国产日本99.免费观看| 男女下面进入的视频免费午夜| 国产精品一区二区免费欧美| 琪琪午夜伦伦电影理论片6080| 国产免费男女视频| 在线观看午夜福利视频| 午夜视频精品福利| 久久精品国产99精品国产亚洲性色| 99久久精品热视频| 国产99久久九九免费精品| 丝袜美腿诱惑在线| 在线观看66精品国产| 亚洲一卡2卡3卡4卡5卡精品中文| av天堂在线播放| 午夜成年电影在线免费观看| 亚洲精品美女久久av网站| 无限看片的www在线观看| 香蕉丝袜av| 国产亚洲欧美98| 日韩精品免费视频一区二区三区| 91老司机精品| 色综合站精品国产| 国产99久久九九免费精品| 国产一区二区三区在线臀色熟女| 天天一区二区日本电影三级| www.www免费av| 又粗又爽又猛毛片免费看| 国产v大片淫在线免费观看| 国内揄拍国产精品人妻在线| 精品第一国产精品|