王在滿,裴 娟,何 杰,張明華,楊文武,羅錫文
水稻精量穴直播機(jī)播量監(jiān)測(cè)系統(tǒng)研制
王在滿,裴 娟,何 杰,張明華,楊文武,羅錫文※
(華南農(nóng)業(yè)大學(xué)南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,廣州 510642)
播種量是水稻精量穴直播機(jī)的關(guān)鍵技術(shù)參數(shù)。為了實(shí)時(shí)監(jiān)測(cè)水稻精量穴直播機(jī)的播種量,提高播種作業(yè)性能,該文以環(huán)形布置安裝于排種管的面源式光電傳感器為主要監(jiān)測(cè)元件,設(shè)計(jì)了水稻精量穴直播機(jī)播量監(jiān)測(cè)系統(tǒng)。根據(jù)型孔式排種器結(jié)構(gòu)與工作原理,確定了面源式光電傳感器和旋轉(zhuǎn)編碼器的安裝方式。采用高速攝像技術(shù)建立了水稻種子流通過監(jiān)測(cè)區(qū)時(shí)種子數(shù)量與脈沖寬度之間的數(shù)學(xué)模型;通過時(shí)間分割節(jié)點(diǎn)得到穴粒數(shù)監(jiān)測(cè)時(shí)間窗口,根據(jù)監(jiān)測(cè)時(shí)間窗口內(nèi)的脈沖寬度信息得到每穴播種粒數(shù)。選用南粳46和象牙香占2種具有代表性的水稻品種,對(duì)水稻精量穴直播機(jī)播量監(jiān)測(cè)系統(tǒng)進(jìn)行試驗(yàn),將人工統(tǒng)計(jì)數(shù)據(jù)與監(jiān)測(cè)系統(tǒng)統(tǒng)計(jì)數(shù)據(jù)進(jìn)行對(duì)比分析,臺(tái)架試驗(yàn)結(jié)果表明:對(duì)于南粳46(短粒型品種),平均穴粒數(shù)監(jiān)測(cè)誤差不超過7.99%,穴數(shù)監(jiān)測(cè)誤差不超過6.07%;對(duì)于象牙香占(長(zhǎng)粒型品種),平均穴粒數(shù)監(jiān)測(cè)誤差不超過24.07%,穴數(shù)監(jiān)測(cè)誤差不超過5.66%。該系統(tǒng)基本滿足不同工作轉(zhuǎn)速下不同粒型的水稻播種量實(shí)時(shí)監(jiān)測(cè)要求,可為后期實(shí)現(xiàn)水稻精量穴直播機(jī)大田作業(yè)參數(shù)監(jiān)測(cè)提供了參考。
農(nóng)業(yè)機(jī)械;水稻;穴播機(jī);光電傳感器;播種量;監(jiān)測(cè)系統(tǒng);時(shí)間序列
精量播種技術(shù)是規(guī)?;a(chǎn)實(shí)現(xiàn)節(jié)本增效的重要技術(shù)之一[1-2]。水稻精量穴直播已逐漸成為水稻輕簡(jiǎn)化種植的主要研究方向[3-8]。播種量實(shí)時(shí)監(jiān)測(cè)對(duì)提高直播機(jī)作業(yè)質(zhì)量具有重要意義,可為播量實(shí)時(shí)調(diào)節(jié)、缺種實(shí)時(shí)補(bǔ)種以及水稻精量穴直播機(jī)作業(yè)管理系統(tǒng)等技術(shù)研發(fā)提供重要支撐[9-14]。
目前國(guó)外與播種機(jī)配套的監(jiān)測(cè)裝置較為完善,美國(guó)的John Deere播種機(jī)采用光電傳感器配合信號(hào)采集電路,能夠監(jiān)測(cè)播種機(jī)漏播、斷條等現(xiàn)象,利用圖形化處理技術(shù)對(duì)播種質(zhì)量進(jìn)行統(tǒng)計(jì)與分析,方便駕駛員實(shí)時(shí)了解播種機(jī)作業(yè)情況。Precision Planting研制的WaveVision 監(jiān)測(cè)器采用高頻無(wú)線電波監(jiān)測(cè)種子質(zhì)量,克服了玉米播種機(jī)在排種過程中連續(xù)2 粒或多粒種子被認(rèn)為1粒種子、塵土被監(jiān)測(cè)為種子等技術(shù)難題,可實(shí)現(xiàn)對(duì)播種工況的全程監(jiān)控[15]。意大利MC electronic研制的精準(zhǔn)播種系統(tǒng)[16]能對(duì)大中粒徑種子進(jìn)行播種監(jiān)測(cè)。近年來,國(guó)內(nèi)對(duì)于播種機(jī)的播種過程監(jiān)測(cè)技術(shù)的研究取得了較大進(jìn)展,丁幼春等[17-21]對(duì)種子與壓電薄膜的碰撞信號(hào)進(jìn)行特征分析,實(shí)現(xiàn)了排種頻率與排種總量的實(shí)時(shí)監(jiān)測(cè)。邱兆美等[22]采用光電傳感器和CMOS圖像傳感器設(shè)計(jì)的播種質(zhì)量監(jiān)測(cè)系統(tǒng)可實(shí)現(xiàn)對(duì)單粒播種的蔬菜種子播量監(jiān)測(cè)。陳建國(guó)等[23-25]基于電容法建立了種子數(shù)量與電容變化量之間的線性關(guān)系,實(shí)現(xiàn)了對(duì)小麥播量的監(jiān)測(cè),但當(dāng)種子通過電容傳感器引起的電容變化量較小時(shí),監(jiān)測(cè)精度會(huì)受到寄生電容和環(huán)境的影響。譚穗妍等[26-27]在育秧播種流水線上基于機(jī)器視覺和BP神經(jīng)網(wǎng)絡(luò)對(duì)超級(jí)雜交稻的穴播量進(jìn)行監(jiān)測(cè),實(shí)現(xiàn)了對(duì)穴播種量的精確監(jiān)測(cè)的功能,平均準(zhǔn)確率達(dá)94.4%。機(jī)器視覺法可以獲得排種過程全部的細(xì)節(jié)[28-32],但因圖像處理數(shù)據(jù)量大、設(shè)備昂貴等難以實(shí)時(shí)監(jiān)測(cè)整個(gè)作業(yè)過程,不適合大田生產(chǎn)應(yīng)用。
綜上所述,由于受田間作業(yè)環(huán)境條件差和設(shè)備成本高的限制,圖像法難以用于田間對(duì)播種量進(jìn)行實(shí)時(shí)監(jiān)測(cè);電容法和光電法等對(duì)小顆粒多粒播種的播種量實(shí)時(shí)監(jiān)測(cè)精度較低。因此,本文針對(duì)點(diǎn)陣式光電傳感器在監(jiān)測(cè)高速稻種流過程中存在漏測(cè)、誤測(cè)等問題,以組合型孔式排種器為研究對(duì)象,采用面源式光電傳感器環(huán)形布置方式設(shè)計(jì)水稻精量穴直播機(jī)播量實(shí)時(shí)監(jiān)測(cè)系統(tǒng)。該系統(tǒng)可多角度獲取稻種在排種管中的運(yùn)動(dòng)信息,并通過提取和處理脈沖信號(hào)后得到時(shí)間序列中的時(shí)間特征參數(shù),以播種量判定指標(biāo)中的“穴粒數(shù)”為監(jiān)測(cè)目標(biāo),實(shí)現(xiàn)對(duì)水稻精量穴直播機(jī)播種量的實(shí)時(shí)精準(zhǔn)監(jiān)測(cè)。
穴粒數(shù)是水稻精量穴直播機(jī)的重要性能指標(biāo)。一般情況下,常規(guī)稻的每穴播種量在6~10粒,雜交稻每穴播種量為3~5粒[8]。作業(yè)時(shí),排種器型孔內(nèi)的水稻種子由彈性隨動(dòng)護(hù)種機(jī)構(gòu)護(hù)送至投種口在自身重力的作用下完成排種。如圖1所示,在排種過程中的各作業(yè)部件中,排種管結(jié)構(gòu)形式簡(jiǎn)單且靠近落種點(diǎn),因此優(yōu)選在排種管上設(shè)置播量監(jiān)測(cè)傳感器;為保證排種器轉(zhuǎn)速監(jiān)測(cè)的準(zhǔn)確性,編碼器采用直聯(lián)式安裝結(jié)構(gòu),通過固定支架安裝于排種器的定位端蓋上。
1.種子 2.紅外發(fā)射器 3.監(jiān)測(cè)區(qū) 4.紅外接收器 5.排種管 6.排種輪 7.固定支架 8.排種器 9.面源式光電傳感器 10.編碼器
排種管內(nèi)的水稻種子流經(jīng)過光電傳感器監(jiān)測(cè)區(qū)時(shí)引起紅外光束強(qiáng)度的變化,從而導(dǎo)致接收端光敏電阻電壓變化。單片機(jī)控制器利用輸入捕獲中斷采集水稻種子流經(jīng)面源式光電傳感器引起的脈沖信號(hào),從而得到被監(jiān)測(cè)的排種時(shí)間序列,通過排種時(shí)間序列與排種器轉(zhuǎn)速的同步監(jiān)測(cè),獲取時(shí)間分割節(jié)點(diǎn),通過2個(gè)相鄰時(shí)間分割節(jié)點(diǎn)得到穴粒數(shù)監(jiān)測(cè)時(shí)間窗口,每個(gè)監(jiān)測(cè)時(shí)間窗口對(duì)應(yīng)1穴;對(duì)監(jiān)測(cè)時(shí)間窗口內(nèi)的脈沖寬度進(jìn)行特征分析,從而得到穴粒數(shù)。
時(shí)間分割節(jié)點(diǎn)與投種時(shí)間間隔有關(guān)。由于每穴種子在下落時(shí)具有分散性,導(dǎo)致實(shí)際投種時(shí)間間隔與理論投種時(shí)間間隔不一致,為保證監(jiān)測(cè)的準(zhǔn)確性,減少排種速度變化引起的監(jiān)測(cè)誤差,對(duì)理論投種時(shí)間間隔進(jìn)行加權(quán)處理。因投種時(shí)間間隔與轉(zhuǎn)速成反比,隨著排種速度變化,采用加權(quán)的方式修正理論投種時(shí)間間隔,可減少監(jiān)測(cè)誤差。
在田間作業(yè)時(shí)排種輪轉(zhuǎn)速一般為30~60 r/min[8],因此本文設(shè)置了5個(gè)排種輪轉(zhuǎn)速,分別為25、35、45、55和65 r/min。根據(jù)前期預(yù)試驗(yàn)確定了以上各轉(zhuǎn)速下對(duì)應(yīng)的最優(yōu)權(quán)重系數(shù)分別0.65、0.6、0.5、0.45、0.33。以權(quán)重系數(shù)為因變量,排種輪轉(zhuǎn)速為自變量,進(jìn)行曲線擬合,如圖2所示。
擬合方程為
理論投種時(shí)間間隔T(s)的計(jì)算公式為
修正后投種時(shí)間間隔T(s)的計(jì)算公式為
聯(lián)立式(1)~(3)有:
式中為型孔數(shù)量,取8;為排種輪角速度,rad/s。
圖2 權(quán)重系數(shù)與排種輪轉(zhuǎn)速的關(guān)系
記排種時(shí)間序列為
式(5)~(7)中代表排種時(shí)間序列,s;(t)為第t個(gè)電平時(shí)長(zhǎng),s;集合代表脈沖寬度,s;q代表第個(gè)脈沖寬度,s;代表種子下落時(shí)間間隔,s;s代表第個(gè)下落時(shí)間間隔,s。
通過對(duì)排種時(shí)間序列中每一個(gè)新到達(dá)的數(shù)據(jù)元素s與修正后的投種時(shí)間間隔相比較,進(jìn)行分割節(jié)點(diǎn)判斷,若s≥T,則該點(diǎn)即分割點(diǎn),2個(gè)相鄰分割節(jié)點(diǎn)組成一個(gè)監(jiān)測(cè)時(shí)間窗口,通過對(duì)監(jiān)測(cè)時(shí)間窗口內(nèi)的脈沖寬度進(jìn)行特征分析,得出穴粒數(shù)。
采用STM32H743IIT6微處理器作為主控芯片,該芯片主頻為400 MHz,內(nèi)置2MB閃存、1MB 隨機(jī)存儲(chǔ)器,10個(gè)定時(shí)器、4路UART等I/O端口和外設(shè)接口,能夠滿足本文高速稻種流的監(jiān)測(cè)功能。
針對(duì)目前點(diǎn)陣式光電傳感器在監(jiān)測(cè)高速種子流過程中存在漏測(cè)、誤測(cè)等問題,以及田間作業(yè)時(shí)存在因灰塵堆積導(dǎo)致光電信息接收減弱等問題,本文采用面源式光電傳感器(SZ-JS系列)環(huán)形布置于排種管的安裝方式(如圖1c),實(shí)現(xiàn)無(wú)盲區(qū)監(jiān)測(cè),如圖1所示。面源式光電傳感器的監(jiān)測(cè)范圍為25 mm×36 mm,感光面積大,能有效監(jiān)測(cè)每穴通過傳感器的種子;響應(yīng)速度小于0.5 ms,具備分辨每穴種子中不同種子產(chǎn)生的脈沖信號(hào)的能力,能有效監(jiān)測(cè)每穴水稻種子粒數(shù)。面源式光電傳感器的工作面由透明外殼密封,保證了發(fā)射端發(fā)出的紅外光被接收端有效接收,同時(shí)能夠隔絕灰塵進(jìn)入,避免光敏感器件的損傷,有效抑制了灰塵遮擋造成的接收電流不足。排種管(包括面源式傳感器的非工作面)采用非透明材料制成,有效地隔絕外界強(qiáng)光對(duì)面源式傳感器監(jiān)測(cè)靈敏度的影響。為測(cè)量排種器的每穴實(shí)際投種時(shí)間間隔,采用歐姆龍E6B2-CWZ6C增量式旋轉(zhuǎn)編碼器(分辨率為2 000 P/R)獲取每穴的投種時(shí)間間隔?;诿嬖词焦怆妭鞲衅鞯难?shù)監(jiān)測(cè)系統(tǒng)硬件結(jié)構(gòu)如圖3所示。
圖3 監(jiān)測(cè)系統(tǒng)硬件結(jié)構(gòu)圖
水稻種子流經(jīng)面源式傳感器的光敏感區(qū)產(chǎn)生低電平脈沖,利用高速攝像儀觀察得到單粒種子通過監(jiān)測(cè)區(qū)時(shí)的下落時(shí)間最短為3 ms。為保證監(jiān)測(cè)精度,STM32控制器定時(shí)器的時(shí)間基準(zhǔn)應(yīng)小于3 ms,故設(shè)定為50s。當(dāng)STM32接收到對(duì)應(yīng)輸入捕獲中斷的觸發(fā)信號(hào)后開啟定時(shí)器,采用內(nèi)部計(jì)數(shù)器對(duì)產(chǎn)生的相應(yīng)信號(hào)進(jìn)行計(jì)數(shù),分別測(cè)出低電平時(shí)長(zhǎng)Δ1和高電平時(shí)長(zhǎng)Δ2,對(duì)修正后投種時(shí)間間隔T與高電平時(shí)長(zhǎng)Δ2進(jìn)行比較,判斷分割節(jié)點(diǎn)。通過計(jì)算監(jiān)測(cè)時(shí)間窗口內(nèi)低電平時(shí)長(zhǎng)Δ1(脈沖寬度)對(duì)應(yīng)的種子數(shù)量,實(shí)現(xiàn)對(duì)穴粒數(shù)的監(jiān)測(cè),計(jì)算方法如圖4所示。
圖4 穴粒數(shù)和穴數(shù)計(jì)算方法
按照上述方法,設(shè)計(jì)播量監(jiān)測(cè)流程如圖5所示。
為驗(yàn)證監(jiān)測(cè)方法的可行性,選用排種輪常用工作轉(zhuǎn)速35、45和55 r/min,品種選用南粳46,啟動(dòng)排種器使其轉(zhuǎn)動(dòng)1圈(對(duì)應(yīng)排種8穴),對(duì)水稻種子流經(jīng)過面源式光電傳感器時(shí)的輸出脈沖信號(hào)進(jìn)行采集,通過Matlab軟件對(duì)采集到的脈沖序列進(jìn)行處理,結(jié)果如圖6所示,圖中局部放大圖代表一穴種子經(jīng)過傳感器時(shí)的情況,相鄰2穴之間無(wú)明顯干擾信號(hào),表明該方法可實(shí)現(xiàn)穴粒數(shù)與穴數(shù)的監(jiān)測(cè)。
圖5 播量監(jiān)測(cè)流程圖
圖6 不同排種輪轉(zhuǎn)速下南粳46的輸出電壓脈沖波形圖
試驗(yàn)在華南農(nóng)業(yè)大學(xué)工程學(xué)院南方農(nóng)業(yè)機(jī)械與裝備關(guān)鍵技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室進(jìn)行。試驗(yàn)設(shè)備主要有JPS-12計(jì)算機(jī)視覺精密排種器性能監(jiān)測(cè)試驗(yàn)臺(tái)、組合型孔排種器[20]、面源式光電傳感器、編碼器以及水稻精量穴直播機(jī)播量監(jiān)測(cè)系統(tǒng)。試驗(yàn)裝置如圖7所示。
本文采用的組合型孔式排種器主要用于常規(guī)稻品種的播種,一般情況下,穴距10~25 cm可調(diào),每穴播種粒數(shù)為6~10粒,短粒型品種與長(zhǎng)粒型品種每穴播種粒數(shù)相差1粒左右。不同品種粒型和不同工作轉(zhuǎn)速對(duì)每穴播種粒數(shù)有一定的影響,因此,為考察不同品種的排種監(jiān)測(cè)效果,試驗(yàn)品種為短粒型稻種南粳46(常規(guī)粳稻,長(zhǎng)寬厚為7.39 mm×3.16 mm×2.31 mm)和長(zhǎng)粒型稻種象牙香占(常規(guī)秈稻,長(zhǎng)寬厚為10.42 mm×2.55 mm× 1.82 mm),所選的稻種類別和外觀粒形具有代表性。
1.排種器 2.排種管 3.面源式光電傳感器傳感器 4.編碼器 5.種箱
3.2.1 種子數(shù)量與脈沖寬度標(biāo)定
為研究監(jiān)測(cè)區(qū)內(nèi)不同種子數(shù)量與輸出脈沖寬度的關(guān)系,采用高速攝像對(duì)監(jiān)測(cè)區(qū)內(nèi)的種子數(shù)量與脈沖寬度之間的關(guān)系進(jìn)行標(biāo)定。選用南粳46品種作為標(biāo)定對(duì)象,試驗(yàn)轉(zhuǎn)速為25、35、45、55和65 r/min,通過回放高速攝像錄像統(tǒng)計(jì)種子下落時(shí)間,每組試驗(yàn)統(tǒng)計(jì)100穴,重復(fù)3次。
采用日本PHOTRON公司生產(chǎn)的FASTCAMSUPER- 10K型高速攝像機(jī)進(jìn)行種子下落過程攝像。試驗(yàn)時(shí)相機(jī)拍攝幀率為1 000幀/s,分辨率為1 024×1 024。為準(zhǔn)確記錄種子在投種過程中的下落時(shí)間,采用5 mm×5 mm網(wǎng)格的黑色背景板對(duì)種子下落時(shí)間進(jìn)行標(biāo)定,如圖8所示,建立坐標(biāo)系,以排種器殼體最左端垂線為標(biāo)準(zhǔn)線,記作軸,距離排種器殼體最低端處的水平直線記作軸,并將黑色網(wǎng)格板中的水平線和垂直線與,軸重合。
注:xoy為坐標(biāo)系;vr為稻種脫離型孔時(shí)平行于排種輪平面的速度,m·s-1;vx為vr的水平分量,m·s-1;vy為vr的豎直分量,m·s-1;n為排種輪轉(zhuǎn)速,r·min-1。
3.2.2 監(jiān)測(cè)系統(tǒng)適應(yīng)性試驗(yàn)
為研究監(jiān)測(cè)系統(tǒng)對(duì)不同水稻品種粒型的適應(yīng)性,選用南粳46和象牙香占2個(gè)品種,以平均穴粒數(shù)和變異系數(shù)為試驗(yàn)指標(biāo),每個(gè)轉(zhuǎn)速重復(fù)3次,監(jiān)測(cè)記錄200穴的穴粒數(shù);同時(shí)采用錄像回放的方法,人工統(tǒng)計(jì)出輸送帶上的實(shí)際排種穴粒數(shù)和穴數(shù),并進(jìn)行數(shù)據(jù)對(duì)比分析。
3.3.1 種子數(shù)量與脈沖寬度標(biāo)定結(jié)果
組合型孔式排種器具有多粒穴播的特點(diǎn),排種輪轉(zhuǎn)速和監(jiān)測(cè)區(qū)的種子數(shù)量對(duì)面源式光電傳感器輸出的脈沖寬度有影響。
為了分析種子在監(jiān)測(cè)區(qū)的下落時(shí)間,連續(xù)提取水稻種子的瞬時(shí)運(yùn)動(dòng)圖像,圖像間的時(shí)間間隔為0.001 s。圖9為高速攝像拍攝的南梗46(短粒型品種)在不同轉(zhuǎn)速下其中1穴種子在落種區(qū)的運(yùn)動(dòng)狀態(tài)。
圖9 南粳46的投種過程高速攝像記錄結(jié)果
由圖9可知,在不同排種輪轉(zhuǎn)速下,當(dāng)種子離開排種輪后,種子流在下落過程中以較小時(shí)間間隔的分散狀態(tài)為主。根據(jù)高速攝像拍攝到的水稻種子流在監(jiān)測(cè)區(qū)內(nèi)的種子數(shù)量與下落時(shí)間,結(jié)合人工統(tǒng)計(jì)結(jié)果,繪制不同轉(zhuǎn)速下種子數(shù)量與下落時(shí)間的曲線,如圖10所示。
圖10 不同排種輪轉(zhuǎn)速下南粳46的種子數(shù)量與下落時(shí)間關(guān)系曲線
由圖10可知,經(jīng)過監(jiān)測(cè)區(qū)的種子數(shù)量有1、2、3、4、5、6、7和7粒以上8種情況。在同一轉(zhuǎn)速下,在監(jiān)測(cè)區(qū)的下落時(shí)間隨著種子數(shù)量的增加而增加;對(duì)于相同數(shù)量的種子,下落時(shí)間隨著轉(zhuǎn)速的增大略有降低,但降低的幅度不大,最大差值為0.003 s,表明轉(zhuǎn)速對(duì)種子的下落時(shí)間影響較小。
由監(jiān)測(cè)系統(tǒng)工作原理可知,水稻種子流經(jīng)面源式光電傳感器引起的脈沖寬度等于種子在監(jiān)測(cè)區(qū)的下落時(shí)間。根據(jù)高速攝像試驗(yàn)結(jié)果可計(jì)算出監(jiān)測(cè)區(qū)內(nèi)的種子數(shù)量及下落時(shí)間,對(duì)相同數(shù)量種子的下落時(shí)間取均值,作為相應(yīng)數(shù)量的種子下落引起的面源式光電傳感器輸出脈沖寬度。對(duì)種子流引起的脈沖寬度與種子數(shù)量進(jìn)行數(shù)據(jù)擬合,結(jié)果如圖11所示,兩者之間的關(guān)系式為
式中為種子數(shù)量;為粒種子通過監(jiān)測(cè)區(qū)引起的脈沖寬度,s。
由圖11可知,當(dāng)排種輪工作轉(zhuǎn)速一定時(shí),種子經(jīng)過監(jiān)測(cè)區(qū)引起的脈沖寬度與種子數(shù)量呈單調(diào)遞增變化,線性相關(guān)系數(shù)為0.988 4,從擬合結(jié)果可看出,種子流引起的脈沖寬度與對(duì)應(yīng)的種子數(shù)量之間線性關(guān)系良好。
圖11 南粳46種子數(shù)量與脈沖寬度標(biāo)定曲線
3.3.2 監(jiān)測(cè)系統(tǒng)對(duì)不同粒型水稻種子的適應(yīng)性試驗(yàn)結(jié)果
采用本文設(shè)計(jì)的監(jiān)測(cè)系統(tǒng)安裝于水稻精量穴直播機(jī)組合型孔式排種器上,分別對(duì)穴數(shù)和穴粒數(shù)進(jìn)行監(jiān)測(cè),試驗(yàn)結(jié)果如表1所示。
表1 試驗(yàn)結(jié)果與分析
由表1可知,對(duì)于南粳46(短粒型品種),平均穴粒數(shù)的監(jiān)測(cè)誤差不超過7.99%,穴數(shù)的監(jiān)測(cè)誤差不超過6.07%;對(duì)于象牙香占(長(zhǎng)粒型品種),平均穴粒數(shù)的監(jiān)測(cè)誤差不超過24.07%,穴數(shù)的監(jiān)測(cè)誤差不超過5.66%。隨著排種輪工作轉(zhuǎn)速的升高,穴粒數(shù)的變異系數(shù)會(huì)增大,其中,當(dāng)排種輪轉(zhuǎn)速在45 r/min以上時(shí),每穴播種粒數(shù)監(jiān)測(cè)值的變異系數(shù)較高,平均達(dá)到30%以上。
試驗(yàn)結(jié)果表明:穴粒數(shù)監(jiān)測(cè)值與實(shí)際值不一致,不同品種的監(jiān)測(cè)結(jié)果也存在差異,主要原因是當(dāng)2?;蛘?粒以上種子經(jīng)過監(jiān)測(cè)區(qū)時(shí),若存在全部或個(gè)別重疊的相鄰種子,不能產(chǎn)生明顯差異的脈沖寬度,故系統(tǒng)無(wú)法準(zhǔn)確地監(jiān)測(cè)到種子個(gè)數(shù),造成對(duì)重疊種子的漏判,從而導(dǎo)致監(jiān)測(cè)粒數(shù)與實(shí)際粒數(shù)存在一定的偏差;短粒型品種形狀偏橢圓形,充種與排種穩(wěn)定性較好,且短粒型種子尺寸較小,故監(jiān)測(cè)系統(tǒng)對(duì)短粒型稻種的監(jiān)測(cè)精度較高。監(jiān)測(cè)系統(tǒng)實(shí)際采集到的南粳46(短粒型品種)脈沖寬度數(shù)據(jù)結(jié)果如圖12所示。
圖12 不同轉(zhuǎn)速下南粳46的種子數(shù)量與脈沖寬度關(guān)系
由圖12可知,在監(jiān)測(cè)播量的過程中,由于排種器工作中會(huì)產(chǎn)生振動(dòng),系統(tǒng)的監(jiān)測(cè)結(jié)果會(huì)伴有波動(dòng),波動(dòng)范圍在0.002 s左右,導(dǎo)致系統(tǒng)的監(jiān)測(cè)結(jié)果整體比高速攝像得到的結(jié)果偏小。
1)以組合型孔式排種器為研究對(duì)象,以面源式光電傳感器作為主要監(jiān)測(cè)元件設(shè)計(jì)了水稻精量穴直播機(jī)播量監(jiān)測(cè)系統(tǒng),確定了編碼器與面源式光電傳感器的安裝方式和播量基本監(jiān)測(cè)原理。
2)采用高速攝像技術(shù)對(duì)種子在監(jiān)測(cè)區(qū)內(nèi)的下落過程進(jìn)行了記錄,標(biāo)定了監(jiān)測(cè)區(qū)內(nèi)種子數(shù)量與脈沖寬度之間的關(guān)系,為監(jiān)測(cè)系統(tǒng)獲取播量信息提供了參考。確定了穴粒數(shù)和穴數(shù)監(jiān)測(cè)算法;根據(jù)種子經(jīng)過面源式光電傳感器引起的輸出脈沖信號(hào),經(jīng)控制器處理后從所產(chǎn)生的時(shí)間序列中提取時(shí)間值,計(jì)算得出直播機(jī)的平均穴粒數(shù)、穴數(shù)與排種器轉(zhuǎn)速的關(guān)系。
3)臺(tái)架試驗(yàn)結(jié)果表明,在排種器轉(zhuǎn)速在25~65 r/min時(shí),南粳46(短粒型品種)的平均穴粒數(shù)的監(jiān)測(cè)誤差不超過7.99%,穴數(shù)的監(jiān)測(cè)誤差不超過6.07%;象牙香占(長(zhǎng)粒型品種)的平均穴粒數(shù)監(jiān)測(cè)誤差不超過24.07%,穴數(shù)的監(jiān)測(cè)誤差不超過5.66%;排種器工作轉(zhuǎn)速對(duì)平均穴粒數(shù)的監(jiān)測(cè)精度影響較大,隨著排種器工作轉(zhuǎn)速的升高,平均穴粒數(shù)監(jiān)測(cè)值的變異系數(shù)會(huì)增大。
在不同的排種輪工作轉(zhuǎn)速下,該監(jiān)測(cè)系統(tǒng)對(duì)不同外觀粒型的水稻品種均具有較高的監(jiān)測(cè)精度,可實(shí)現(xiàn)對(duì)水稻精量穴直播機(jī)播量的實(shí)時(shí)監(jiān)測(cè)。
[1]楊麗,顏丙新,張東興,等. 玉米精密播種技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(11):38-48.
Yang Li, Yan Bingxin, Zhang Dongxing, et al. Research progress on precision planting technology of maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 38-48. (in Chinese with English abstract)
[2]苑嚴(yán)偉,張小超,吳才聰,等. 玉米免耕播種施肥機(jī)精準(zhǔn)作業(yè)監(jiān)控系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(8):222-226.
Yuan Yanwei, Zhang Xiaochao, Wu Caicong, et al. Precision control system of no-tillage corn planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(8): 222-226. (in Chinese with English abstract)
[3]知谷,羅錫文. 開啟水稻機(jī)械化精量穴直播時(shí)代[J]. 農(nóng)業(yè)機(jī)械,2018(2):57-58.
[4]Zhang Minghua, Wang Zaiman, Luo Xiwen, et al. Review of precision rice hill-drop drilling technology and machine for paddy[J]. Int J Agric & Biol Eng, 2018, 11(3): 1-11.
[5]張明華,王在滿,羅錫文,等. 組合型孔排種器雙充種室結(jié)構(gòu)對(duì)充種性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(12):8-15.
Zhang Minghua, Wang Zaiman, Luo Xiwen, et al. Effect of double seed-filling chamber structure of combined type-hole metering device on filling properties[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 8-15. (in Chinese with English abstract)
[6]王金武,李樹偉,張曌,等. 水稻精量穴直播機(jī)電驅(qū)式側(cè)深穴施肥系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(8):43-54.
Wang Jinwu, Li Shuwei, Zhang Zhao, et al. Design and experiment of electrical drive side deep hill-drop fertilization system for precision rice hill-direct-seeding machine [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 43-54. (in Chinese with English abstract)
[7]張明華,羅錫文,王在滿,等. 水稻精量穴直播機(jī)仿形與滑板機(jī)構(gòu)的優(yōu)化設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):18-26.
Zhang Minghua, Luo Xiwen, Wang Zaiman, et al. Optimization design and experiment of profiling and slide board mechanism of precision rice hill-drop drilling machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 18-26. (in Chinese with English abstract)
[8]張明華,羅錫文,王在滿,等. 水稻直播機(jī)組合型孔排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(9):29-36.
Zhang Minghua, Luo Xiwen, Wang Zaiman, et al. Design and experiment of combined hole-type metering device of rice hill-drop drilling machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 29-36. (in Chinese with English abstract)
[9]車宇,偉利國(guó),劉婞韜,等. 免耕播種機(jī)播種質(zhì)量紅外監(jiān)測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(增刊1):11-16.
Che Yu, Wei Liguo, Liu Xingtao, et al. Design and experiment of seeding quality infrared monitoring system for no-tillage seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(Supp.1): 11-16. (in Chinese with English abstract)
[10]黃東巖,賈洪雷,祁悅,等. 基于聚偏二氟乙烯壓電薄膜的播種機(jī)排種監(jiān)測(cè)系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(23):15-22.
Huang Dongyan, Jia Honglei, Qi Yue, et al. Seeding monitor system for planter based on polyvinylidence fluoride piezoelectric film[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 15-22. (in Chinese with English abstract)
[11]王金武,張曌,王菲,等. 基于壓電沖擊法的水稻穴直播監(jiān)測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(6):74-84.
Wang Jinwu, Zhang Zhao, Wang Fei, et al. Design and experiment of monitoring system for rice hill-direct-seeding based on piezoelectric impact method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6): 74-84. (in Chinese with English abstract)
[12]趙立新,張?jiān)鲚x,王成義,等. 基于變距光電傳感器的小麥精播施肥一體機(jī)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):27-34.
Zhao Lixin, Zhang Zenghui, Wang Chengyi, et al. Design of monitoring system for wheat precision seeding-fertilizing machine based on variable distance photoelectric sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 27-34. (in Chinese with English abstract)
[13]Duan Lingfeng, Yang Wanneng, Bi Kun, et al. Fast discrimination and counting of filled/unfilled rice spikelets based on bi-modal imaging[J]. Computers and Electronics in Agriculture, 2011, 75(1): 196-203.
[14]賈洪雷,路云,齊江濤,等. 光電傳感器結(jié)合旋轉(zhuǎn)編碼器監(jiān)測(cè)氣吸式排種器吸種性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(19):28-39.
Jia Honglei, Lu Yun, Qi Jiangtao, et al. Detecting seed suction performance of air suction feeder by photoelectric sensor combined with rotary encoder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 28-39. (in Chinese with English abstract)
[15]Precision Planting. WaveVision [EB/OL]. 2014-07-15 [2019-08-22]. https://www.precisionplanting.com/products /product/wavevision
[16]MC electronics. Sistema full semina [EB/OL]. 2019-06-28 [2019-12-29].https://www.mcelettronica.it/it/prodotti/semina/semina-a-righe/fotocellula-blockage-pro-seeder_256c28.html.
[17]丁幼春,王雪玲,廖慶喜. 基于時(shí)變窗口的油菜精量排種器漏播實(shí)時(shí)監(jiān)測(cè)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):11-21.
Ding Youchun, Wang Xueling, Liao Qingxi. Method of real-time loss sowing detection for rapeseed precision metering device based on time changed window[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 11-21. (in Chinese with English abstract)
[18]丁幼春,朱凱,王凱陽(yáng),等. 薄面激光-硅光電池中小粒徑種子流監(jiān)測(cè)裝置研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):12-20.
Ding Youchun, Zhu Kai, Wang Kaiyang, et al. Development of monitoring device for medium and small size seed flow based on thin surface laser- silicon photocell[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 12-20. (in Chinese with English abstract)
[19]李明,劉曉輝,丁幼春,等. 基于排種頻率的油菜氣力式精量排種器漏播監(jiān)測(cè)技術(shù)與裝置[C]//中國(guó)農(nóng)業(yè)工程學(xué)會(huì)學(xué)術(shù)年會(huì). 重慶:2011:299-304.
Li Ming, Liu Xiaohui, Ding Youchun, et al. Loss sowing test technology and equipment of rapeseed pneumatic precision seeder based on the seeding frequency[C]//Annual Conference of Chinese Society of Agricultural Engineering, Chongqing: 2011: 299-304. (in Chinese with English abstract)
[20]丁幼春,楊軍強(qiáng),朱凱,等. 油菜精量排種器種子流傳感裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):29-36.
Ding Youchun, Yang Junqiang, Zhu Kai, et al. Design and experiment on seed flow sensing device for rapeseed precision metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 29-36. (in Chinese with English abstract)
[21]丁幼春,張莉莉,楊軍強(qiáng),等. 油菜精量直播機(jī)播種監(jiān)測(cè)系統(tǒng)傳感裝置改進(jìn)及通信設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(14):19-26.
Ding Youchun, Zhang Lili, Yang Junqiang, et al. Sensing device improvement and communication design on sowing monitoring system of precision planter for rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 19-26. (in Chinese with English abstract)
[22]邱兆美,張巍朋,趙博,等. 小粒種子電動(dòng)播種機(jī)作業(yè)質(zhì)量監(jiān)測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(4):77-83.
Qiu Zhaomei, Zhang Weipeng, Zhao Bo, et al. Design and test of operation quality monitoring system for small grain electric seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 77-83. (in Chinese with English abstract)
[23]陳建國(guó),李彥明,覃程錦,等. 小麥播種量電容法監(jiān)測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(18):51-58.
Chen Jianguo, Li Yanming, Tan Chengjin, et al. Design and test of capacitive detection system for wheat seeding quantity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 51-58. (in Chinese with English abstract)
[24]周利明,王書茂,張小超,等. 基于電容信號(hào)的玉米播種機(jī)排種性能監(jiān)測(cè)系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(13):16-21.
Zhou Liming, Wang Shumao, Zhang Xiaochao, et al. Seed monitoring system for corn planter based on capacitance signal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 16-21. (in Chinese with English abstract)
[25]田雷. 基于電容傳感器的玉米精量播種機(jī)排種性能監(jiān)測(cè)系統(tǒng)研究[D]. 大慶:黑龍江八一農(nóng)墾大學(xué),2018.
Tian Lei. Research on Monitoring System for Performance of Corn Precision Seeder Based on Capacitance Sensor Seeding[D]. Daqing: Heilongjiang Bayi Agricultural University, 2018. (in Chinese with English abstract)
[26]譚穗妍,馬旭,吳露露,等. 基于機(jī)器視覺和BP神經(jīng)網(wǎng)絡(luò)的超級(jí)雜交稻穴播量監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(21):201-208.
Tan Suiyan, Ma Xu, Wu Lulu, et al. Estimation on hole seeding quantity of super hybrid rice based on machine vision and BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 201-208. (in Chinese with English abstract)
[27]趙鄭斌,劉昱程,劉忠軍,等. 基于機(jī)器視覺的穴盤精密播種性能監(jiān)測(cè)系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(Z1):24-28.
Zhao Zhengbin, Liu Yucheng, Liu Zhongjun, et al. Performance detection system of tray precision seeder based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(Z1): 24-28. (in Chinese with English abstract)
[28]張海娜,馬玉芳. 基于圖像處理的機(jī)器播種參數(shù)檢測(cè)方法研究[J]. 測(cè)控技術(shù),2015,34(2):44-47.
Zhang Haina, Ma Yufang. Research on performance testing method of machine sowing based on image processing[J]. Measurement & Control Technology, 2015, 34(2): 44-47. (in Chinese with English abstract)
[29]周茉,張學(xué)明,劉志剛. 基于高速攝像系統(tǒng)和圖像邊緣檢測(cè)的精密排種器設(shè)計(jì)[J]. 農(nóng)機(jī)化研究,2016,38(9):108-112.
Zhou Mo, Zhang Xueming, Liu Zhigang. Designn metering devic for precisioe based on high—speed camera and image edge detection[J]. Journal of Agricultural Mechanization Research, 2016,38(9): 108-112. (in Chinese with English abstract)
[30]陳進(jìn),邊疆,李耀明,等. 基于高速攝像系統(tǒng)的精密排種器性能檢測(cè)試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(9):90-95.
Chen Jin, Bian Jiang, Li Yaoming, et al. Performance detection experiment of precision seed metering device based on high-speed camera system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(9): 90-95. (in Chinese with English abstract)
[31]趙學(xué)觀,徐麗明,王應(yīng)彪,等. 基于Fluent與高速攝影的玉米種子定向吸附研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(10):103-109,128.
Zhao Xueguan, Xu Liming, Wang Yingbiao, et al. Directional adsorption characteristics of corn seed based on fluent and high-speed photography[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 103-109, 128. (in Chinese with English abstract)
[32]Karayel D, Wiesehoff M. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system[J]. Computers & Electronics in Agriculture, 2006, 50(2): 89-96.
Development of the sowing rate monitoring system for precision rice hill-drop drilling machine
Wang Zaiman, Pei Juan, He Jie, Zhang Minghua, Yang Wenwu, Luo Xiwen※
(,,,510642,)
Precision seeding technology is one of the important technologies to realize cost saving and efficiency increasing in large-scale production. Precision direct seeding of rice has gradually become the main research direction of rice light and simplified planting. The real-time sowing monitoring system has an important contribution to improve the sowing quality of direct seeding machine, and can provide important support for the research and development of sowing rate real-time adjustment, real-time reseeding and the seeding evaluation quality system of rice precision direct seeding machine. At present, the methods of seeding monitoring are photoelectric-based, image-based and capacitance-based. However, image processing technology requires special equipment with high cost, and cameras are easy to be interfered by external light. For the capacitance-based method, when multiple small seeds fall simultaneously, the monitoring performance is not accurate enough. In order to monitor the sowing rate of precision rice hill-drop drilling machine in real time, in this paper, the surface-type photoelectric sensor installed in the seeding tube is used as the main monitoring element to design the monitoring system of precision rice hill-drop drilling machine. According to the structure and working principle of seed metering device, the installation modes of photoelectric sensor and rotary encoder are determined. In this system, the seeds flow in the seeding tube is taken as the research object. When the rice seeds pass through the photoelectric sensor monitoring area, it will cause the change of infrared beam intensity, which will lead to the change of photoresist voltage. The pulse signal from the photoelectric sensor is used as the time sequence to capture the interruption source, and then the monitored time sequence of rice seeds flow is obtained. The time division node is obtained by the synchronous monitoring of the seed metering time series and the rotation speed of the seed metering device. Based on the two adjacent time dividing nodes, the detecting time window of the seeds number per hill is obtained, each time window corresponds to one hill. The pulse width time of the rice seeds output in the monitoring time window is analyzed to get the seeds number per hill. Compared and analyzed the manual statistical data with the monitoring system statistical data, the test results show that the rotation speed of the seed metering device has a great influence on the monitoring accuracy of the average seeds number per hill, the variation coefficient of the monitored value of the average seeds number per hill grows up with the increase of the rotation speed of the seed metering device. When the rotation speed of seed metering device is 25-65 r/min, the relative error of seeds number per hill is less than 7.99% for Nanjing 46 (short grain variety), the monitoring errors of the number of hills is less than 6.07%; the relative errors of seeds number per hill is less than 24.07% for Xiangyaxiangzhan (long grain variety), the monitoring errors of the number of hills is less than 5.66%.The test results show that sowing rate monitoring system is applicable to different varieties of seed and has good detection accuracy, which can provide reference for improving the operation quality of precision rice direct seeder.
agricultural machinery; rice; hill-drop drilling machine; surface-type photoelectric sensor; sowing rate; monitoring system; time series
王在滿,裴娟,何杰,等. 水稻精量穴直播機(jī)播量監(jiān)測(cè)系統(tǒng)研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(10):9-16.doi:10.11975/j.issn.1002-6819.2020.10.002 http://www.tcsae.org
Wang Zaiman, Pei Juan, He Jie, et al. Development of the sowing rate monitoring system for precision rice hill-drop drilling machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 9-16. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.10.002 http://www.tcsae.org
2020-02-24
2020-04-27
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0700503);廣東省自然科學(xué)基金(2020B1515020034);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(CARS-01-41)
王在滿,博士,副研究員,主要從事水稻生產(chǎn)機(jī)械化關(guān)鍵技術(shù)與裝備研究。Email:wangzaiman@scau.edu.cn
羅錫文,教授,中國(guó)工程院院士,主要從事農(nóng)業(yè)機(jī)械化研究。Email:xwluo@scau.edu.cn
10.11975/j.issn.1002-6819.2020.10.002
S223.25
A
1002-6819(2020)-10-0009-08