• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strategy for Use of Rice Blast Resistance Genes in Rice Molecular Breeding

    2020-07-06 10:37:02XiaoNingWuYunyuLiAihong
    Rice Science 2020年4期

    Xiao Ning, Wu Yunyu, Li Aihong, 3

    Review

    Strategy for Use of Rice Blast Resistance Genes in Rice Molecular Breeding

    Xiao Ning1, 2, 3, 4, Wu Yunyu1, 2, Li Aihong1, 2, 3

    (, Yangzhou 225007, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

    Rice blast is one of the most destructive diseases affecting rice production worldwide. The development and rational use of resistant varieties has been the most effective and economical measure to control blast. In this review, we summarized the cloning and utilization of rice blast resistance genes, such as,,,,and. We concluded that three main problems in the current breeding of rice blast resistance are:availability of few(resistance) genes that confer resistance to both seedling and panicle blast, the resistance effect of pyramided lines is not the result of a simple accumulation of resistance spectrum, and only a fewgenes have been successfully used for molecular breeding. Therefore, novel utilization strategies for rice blastgenes in molecular breeding were proposed, such as accurately understanding the utilization ofgenes in main modern rice varieties, creating a core resistant germplasm with excellent comprehensive traits, screening and utilizing broad-spectrum and durable resistance gene combinations. Lastly, the trends and possible development direction of blast resistance improvement were also discussed, including new genes regulating resistance identified via GWAS (genome-wide association study) and improving rice blast resistance using genetic editing.

    rice blast; resistance gene; molecular breeding strategy

    Rice blast, caused byB.C. Couch, is one of the most destructive diseases encountered in rice production. Once rice is attacked by, pattern recognition receptors (PRRs) on the cell surface can specifically recognize pathogen-associated molecule patterns (PAMPs), and activate defense response by cell wall modification, callose deposition, and via expression of defense-related proteins in host cells, which is termed as PAMP-triggered immunity (PTI) (Jones and Dangl, 2006). However, PTI is a weak and non-specific resistance mechanism (Bernoux et al, 2011; Segonzac and Zipfel, 2011). In many cases,can secrete certain effectors to inhibit PAMP-induced PTI and can break resistance responses (Jones and Dangl, 2006; Birch et al, 2009; Block and Alfano, 2011; Mentlak et al, 2012). At the same time, rice has acquired more specific resistance proteins that directly or indirectly recognize pathogen effector proteins. This recognition mechanism activates a second layer of the defense response in rice, known as effector-triggered immunity (ETI), which results in the production of ion (Ca2+, K+and H+) currents, superoxide, nitric oxide, and programmed cell death at the site of invasion (Dangl et al, 1996; Nurnberger et al, 2004). ETI is a highly specialized disease resistance mechanism in the host (Boller and He, 2009), which is activated in the gene-for-gene model upon recognition by an R (resistance) protein of the corresponding effector protein of. Effector proteins are often encoded by avirulence genes in.

    Thegenes in rice correspond to the avirulence () genes inin a gene-for-gene manner (Flor, 1956), which ensures that the interaction between a specific R protein in rice and the corresponding AVR effector in the pathogen render resistant. To date, more than 40genes have been identified in, while12 of them have been cloned. The cloned genes are(Kang et al, 1995),(Sweigard et al, 1995),(Jia et al, 2000),(B?hnert et al, 2004),(Li et al, 2009),(Miki et al, 2009),(Yoshida et al, 2009),(Cesari et al, 2013),(Fujisaki et al, 2015),(Wu J et al, 2015),(Zhang et al, 2015) and(Ray et al, 2016). The R protein encoded bygenes interacts directly or indirectly with the effector protein, thus sensing pathogen invasion and inducing disease resistance. Among the clonedandgene pairs,/(Jia et al, 2000; Orbach et al, 2000),/(Yoshida et al, 2009; Kanzaki et al, 2012),/(Miki et al, 2009; Ortiz et al, 2017),/(Cesari et al, 2013) and/(Ray et al, 2016) can interact directly with each other. While/(Fujisaki et al, 2015; Singh et al, 2016) and/(Park et al, 2012, 2016; Wang et al, 2016; Tang et al, 2017) require other proteins to complete the interaction. Despite the deployment of resistant varieties, blast epidemics can still occur, due to a lapse in host resistance and the emergence of new virulent pathotypes (Chuma et al, 2011). Several genetic events, including point mutations, insertion of transposable elements, deletion of partial or entire genes, etc, lead the function loss ofgenesin(Li W T et al, 2019). Thus, the effectiveness ofgenes highly dependents on the respectivegene. Deployment of blast resistantvarieties requires regular monitoring of race dynamics, and current and future frequency ofgenes across different regions (Selisana et al, 2017).

    Currently, the uses of chemicals and resistant varieties are the main ways of rice blast management. In addition to increased costs, chemical control also causes serious environmental pollution and poses food safety risks. The use ofgenes to breed resistantvarieties remains the top-most economical and effective method to control rice blast (Wu Y Y et al, 2015). This review provided a summary of the identification, cloning and utilization of rice blast resistance genes, key problems in molecular breeding of rice to blast resistance and molecular breeding strategies based on clonedgenes. In addition, the trends and possible future development direction of blast resistance improvementwere also discussed.

    Identification and cloning of rice blast resistance gene

    genes are the foundation for disease resistance research andresistance breeding. The genetic analysis, gene mapping and cloning of rice blast resistance have been intensively studied. Since the first report of independently inherited threegenes,andduring 1960s (Yamasaki and Kiyosawa, 1966), more than 100 resistance genes or loci have been identified to date (LiW T et al, 2019; Li et al, 2020).genes are distributed on 11 chromosomes of rice genome, except chromosome 3, and more than 64% are clustered in chromosomes 6, 11 and 12, representing 18%, 25% and 21%, respectively (Ashkani et al, 2016).

    Since the cloning of firstgene,, in 1999 (Wang et al, 1999), 31genes have been successfully cloned (Table 1). Except for, which is a recessivegene, the remaining 30genes are dominant. Among them,all genes except,,,and-show complete resistance.encodes a B-lectin kinase domain protein (Chen et al, 2006), whileencodes a proline-rich protein with a heavy metal domain (Fukuoka et al, 2009), andencodes an atypical protein with an armadillo repeat (Zhao et al, 2018).Remaining 28genes encode nucleotide-binding site leucine-rich repeat (NBS-LRR) domain proteins.,,,,,,andcontain two NBS-LRR protein structural genes for blast resistance (Lee et al, 2009; Okuyama et al, 2011; Hua et al, 2012; Cesari et al, 2013).,,andgenes are induced by pathogen infection, while the remaining genes express constitutively. Majority of the clonedgenes induce resistance against leaf blast at the seedling stage, while only a fewgenes, such as,and, confer resistance to panicle blast (Hayashi et al, 2010; Chen et al, 2011; Ma et al, 2015; Cao et al, 2019). Involvement of such a high numbers and types ofgenes in rice blast resistance breeding applications indicates a complex genetics of this disease interaction.

    Key problems in rice blast resistance breeding

    Higher variability inpopulation and a frequent emergence of new virulent races causea high selection pressure, resulting the resistant varieties often ‘losing’ resistance within 3–5 years of cultivation and becoming susceptible. Therefore, integration of broad-spectrum and durable resistance has become a key issue among rice breeders (Wu et al, 2007). However, because of a higher number ofgenes in rice, their deployment and utilization become an important challenge in blast resistance breeding to achieve broad-spectrum and durable resistance. Generally, two main strategies are deployed, the use of broad-spectrum resistance genes and gene pyramiding. However, some problems with these strategies remain to be solved.

    Table 1. List of cloned blast resistance genes.

    NBS-LRR, Nucleotide-binding site leucine-rich repeat; CC-NBS-LRR, Coiled-coil-nucleotide-binding site leucine-rich repeat.#genes showing partial resistance.

    FewR genes are effective to both seedling and panicle blast

    Among the identified and cloned resistance genes,,,,,,,,,andare broad-spectrum resistance genes to leaf blast.in the LAC23 cultivar from West Africa shows resistance to 98% of 792isolates in China (Chen et al, 2001).shows resistance against 6 races from the Philippines, and 26 of 29 isolates from Korea (Jeon et al, 2003)., which interacts withgene, is located on the short arm of chromosome 8, and shows resistance to over 2000 isolates originating from 55 countries (Berruyer et al, 2003).identified in a highly resistant variety Tetep is also confirmed to have broad-spectrum resistance against predominant races foundin India (Thakur et al, 2015). Sixgenes,,,,,and,harbor alleles of thelocus located on the short arm near the centromere of rice chromosome 6 (Qu et al, 2006; Zhou et al, 2006; Jeung et al, 2007; Deng et al, 2017). Thegene cluster from the US cultivar Zenith shows resistant to five US races (IH-1, IG-1, IC-17, IE-1 and IE1k) (RoyChowdhury et al, 2012).confers a high level of resistance to 43 isolates collected from 13 countries (Qu et al, 2006).was cloned from a gene cluster composed of nine gene members (namedto) encoding proteins with an NBS-LRR structure (Zhou et al, 2006).Lines carryingconfer resistance to 455 isolates collected from different regions of the Philippines and most of the 792 isolates from the 13 major rice regions of China (Chen et al, 1996).strongly resembles toin sequence and structure having only eight amino-acid differences within the three leucine-rich repeats (Qu et al, 2006; Zhou et al, 2006).fromshows broad-spectrum resistance to rice blast races from South Korea (Suh et al, 2009)., a resistance gene from Gumei 4, a local variety in China, is resistant to 50 isolates from all over the world (Deng et al, 2017; Zeng et al, 2018)., cloned from a Chinese local variety Digu, is an atypical resistance gene that encodes a C2H2transcription factor protein, which exhibits similar phenotypic incomplete resistance to several races of rice blast (Li et al, 2017). However, it should be noted that the broad-spectrum resistance of the above-mentionedgenes was mostly evaluated in different genetic backgrounds, thus the resistant phenotypes might have been masked by othergenes.

    Amongvarious disease symptomscaused by, leaf blast and panicle blast are the most common. However, resistance to leaf and panicle blast is often inconsistent, and many varieties with high resistance to leaf blast at the seedling stage show susceptibility to panicle blast at the heading stage (Puri et al, 2009; Ishihara et al, 2014). Transcriptomic analysis showed that distinct defense-related gene expression is induced by leaf blast and panicle blast, suggesting that the genetic mechanisms of leaf blast and panicle blast resistance might differ and are independently controlled by differentgenes (Liu et al, 2016). Disease evaluation via artificial inoculation at the seedling stage is a high throughput method with clear resistance/susceptibility phenotyping, which ultimately leads to most research focusing on leaf blastscreening. However, less research has been carried out on the genetics of panicle blast resistance because of the increased fieldwork, complex phenotype evaluation system and high influence of environmental conditions for artificial inoculation testing. Presently, the evaluation of panicle blast resistance is mainly performed in disease nurseries under natural conditions. The above-mentioned broad-spectrumgenes such as,,,,,,,,,andhave not been evaluated using different isolates ofby artificial inoculation at the heading stage. Therefore, it is not clear whether they exhibit broad-spectrum resistance to panicle blast. Recently, Wu et al (2016, 2017) constructed a set of near-isogenic lines (NILs) for six resistance alleles of thelocus (,,,,and) in the genetic background of therice Yangdao 6 andrice 07GY31. Using an improved method of artificial inoculation, the panicle blast resistance evaluation of these NILs was carried out with representative isolates ofcollected from different ecological regions of China. Onlyshow stable broad-spectrum resistance to leaf blast and panicle blast in the genetic background ofandrice (Wu et al, 2016, 2017). However,,,,andonly show specific resistance to the blast population in some ecological areas, and the resistance frequency of panicle blast is significantly lower than that of leaf blast (Fig. 1) (Wu et al, 2016, 2017). Therefore, there are few of broad-spectrumgenes that can effectively protect against both seedling and panicle blast.

    Resistance gene pyramiding effects is not simple accumulation of resistance spectrum of certain target R genes

    Gene pyramiding is generally considered an effective way to develop varieties with broad-spectrum and durable resistance. The rice variety Jefferson, with the gene combination, has remained resistant since its first application in 1997 (McClung et al, 1997; Fjellstrom et al, 2004). Chen et al (2001) showed that resistance frequencies of monogenic lines withandare 92.45% and 89.65%, respectively, and those of polygene pyramiding lines (PPLs) withandare as high as 98.04% against 715 isolates of. The additive effect of the monogenic lines broadens the resistance spectrum of the PPLs, resulting in an increase in the blast resistance. Similarly, pyramiding ofandenhances resistance compared toandmonogenic lines (Xiao et al, 2016). Yu et al (2013) confirmed pyramiding of two genes with different overlapping resistance spectra can improve the resistance of plants. However, the resistance effect of pyramiding lines does not comprise the simple accumulation of the resistance spectrum of targetgenes. There is a significant interaction among the pyramidedgenes, causing both positive and negative deviation (Tabien et al, 2000). Therefore, a random combination of two or moregenes can result a lower resistance effect of PPLs than the monogenic lines. International Rice Research Institute constructed a set of NILs carrying,and, as well as PPLs carrying 2–3genes in the background of CO39. The results showed that the resistance of PPLis lower than that of the lines harboring only(Hittalmani et al, 2000). Similarly, He et al (2001) found that the resistance of PPLis lower than that of the monogenic lines. In the background of07GY31, the resistance level of PPLis significantly higher than that of monogenic lines harboring a singlegene. However, the resistance level of PPLis significantly lower than that of monogenic lines harboring(Xiao et al, 2017). In thebackground of Yangdao 6, the resistance frequency of monogenic lines withis slightly higher (70.8%) than that of the combinationwithPPL(69.1%) (Xiao et al, 2018). Recently, Wu et al (2019) evaluated the resistance effects of different alleles oflocus (,,,and) combined with other broad-spectrumgenes (such as,and) systematically. They found that different gene combinations produce different interaction effects, in which most PPLs show no resistance comprising the simple accumulation of the resistance spectra of the targetgenes. Among them,,andare the most effective gene combination patterns, displaying stable broad-spectrum resistance under various conditions. Therefore, the combination ofgenes directly affects the resistance level of the PPLs. Thus, to achieve broad-spectrum resistance to both leaf blast and panicle blast, resistance gene combination patterns must be assessed first in gene pyramiding breeding.

    Fig. 1. Comparison of leaf blast and panicle blast resistance among different alleles oflocus.

    A, Resistance reaction to leaf blast and panicle blast of different alleles from thelocusrice 07GY31 against theisolate JSBY4-3. B, Resistance reaction to leaf blast and panicle blast of different alleles from thelocus in the background ofrice Yangdao 6 (YD6) against the isolate of(AH3-1). C, Resistance frequency (RF) to leaf blast and panicle blast of different alleles of thelocus in the background ofrice 07GY31. D, RF to leaf blast and panicle blast of different alleles of thelocus in the background ofrice Yangdao 6. SB, Seedling blast; PB, Panicle blast. Data are Mean ± SD (= 3). Blast resistant phenotypes were reproduced from Wu et al (2016, 2017).

    Only a few R genes have been successfully used in molecular breeding practice

    The development of molecular biology has brought rice breeding to the stage of combining biotechnology with conventional technology. In the last decade, molecular breeding technology, represented by molecular marker-assisted selection, has played an important role in the improvement of rice blast resistance in elite recipients. Many studies have been reported in this area, and some successful and representative examples are listed in Table 2. The donorgenes used in these molecular breeding studies are mainly alleles or tightly linkedgenes from three loci,,and, including,,,andof thelocus;andin thelocus, andfromlocus. Since there are so many identifiedgenes, why is molecular breeding practice only limited to fewgenes? The reasons might be as follows: Firstly, the alleles or tightly linkedgenes from these loci often exhibit relatively broad-spectrum resistance, especially in leaf blast resistance at the seedling stage. However, manygenes in other loci have a narrower resistance spectrum or less resistance effect, resulting in noobvious effect using othergenes in resistant improvement. Secondly, the cumbersome chain of linkage drag of somegenes produces negative effects on agronomic traits, which limits their utilization in breeding practice.

    Utilization strategies of rice blast resistance genes in molecular breeding

    Understanding utilization of rice blast R genes in main modern varieties

    An important prerequisite for molecular breeding improvement of rice blast resistance is to understand whichgenes have been utilized in modern varieties and whether the resistance performance of thesegenes is effective. Currently, the analysis of resistance genotypes in modern improved varieties uses linked markers or functional markers for clonedgenes.For example, Xiang et al (2018) analyzed distribution and use of rice blast resistant genes in the main cultivated rice varieties from Heilongjiang Province, China. The distribution frequencies (DFs) of,andare higher than those of other genes, reaching 31.37%, 29.41% and 18.62%, followed by,andwith DFs of 9.80%, 1.96% and 1.96%, respectively. However, nois detected.,,,andare detected in the core rice germplasms in Ningxia Province, China (Li Y D et al, 2019). Ma et al (2018) identified relatively high DFs ofandin local varieties in Guizhou Province, China, at 32.35% and 30.86%, respectively. While the DFs ofandare relatively lower, at 2.56% and 2.47%, respectively. Wu Y Y et al (2015) analyzed the distribution of clonedgenes in 277 mainandparental lines and showed that,,,,,,,andhave relatively higher DFs (>15%),whereas,,,andhave relatively lower DFs (< 10%), and,,andhave DFs of less than 2% and are found in local varieties, related wild species, or improved intermediate materials. Further analysis showed that somegenes are specifically distributed in the genomes of rice sub-species, for example,,,andare mainly distributed in-type accessions, and,,,andare mainly harbored in-type accessions, while,,andare evenly distributed in both accessions. The above results provide us with a general understanding of thegenes used in the main rice parental lines in China. However, it should be noted that the judgment of the existence of the targetgenes in the above studies are based on closely linked molecular markers or functional markers. Therefore, detection using molecular markers has a certain degree of correlation withgenes, but is more of an inference than a certainty, and cannot accurately reflect the presence of the targetgene. With the advances in third generation genome sequencing technology and the reduction of sequencing costs, it has become easier to quickly obtain high quality whole genome sequences.

    Table 2. Successful examples of application of broad-spectrum resistance genes in rice breeding practice.

    Creation of core resistant germplasm with excellent comprehensive traits

    The existence of a defined resistant germplasm with antarget gene is an important prerequisite for breeding applications. Apart from the above-mentioned clonedgenes and somegenes used in modern improved varieties, many broad-spectrum genes, including,,,,and, have not been utilized in modern varieties. Thesegenes are mainly distributed in local varieties or germplasms and might exhibit drag, causing poor agronomic traits and low yield. To promote the utilization of these genes in molecular breeding, it is necessary to overcome the linkage drag and create core resistant germplasms with excellent and comprehensive agronomic traits. Some explorations in this field have been made. For example,is a broad-spectrumgene against both leaf and panicle blast(Wu et al, 2016, 2017). However,also has the effect of reducing grain weight but increasing grain number (Deng et al, 2017). Although it can achieve yield balance, decrease in grain weight will lead to a reduction in rice yield and its marketability. Grain weight is a quantitative trait controlled by multiple genes, and therefore, it is affected by many other genes besides. In theory, individuals with no significant decrease in grain weight can be obtained by large-scale selection. Therefore, Wu et al (2016, 2017) used the elite restorer line Yangdao 6 (9311) as the recurrent parent, crossed it with thedonor Gumei 4, and backcrossed the progeny continuously. A series of NILs have been obtained through foreground selection of target genes and large-scale screening of agronomic traits. The results of agronomic trait investigation showed that although the grain weight of some NILs is decreased, there are also some lines with similar grain weight and other elite agronomic traits to the recurrent parents (Fig. 2-A and B). Finally, core resistance germplasm carryingwas selected and named as R9311. Using R9311 as the restorer line, two-line hybrid rice Yangliangyou 309 is bred. Moreover, using R9311 as thegene donor parent, two-line cytoplasmic male sterility (CMS) line Yangxian 6S and three-line CMS line Yangxian 9A are bred, followed two-line hybrid rice Yangliangyou 612 and three-line hybrid rice Yangxianyou 919 (Fig. 2-C). These hybrid rice combinations performed well in regional trials and production tests (Fig. 2-D), and havealso been approved by national certification.This serves as a successful example of the creation of core germplasm and molecular breeding for rice blast resistance.

    Screening and utilization of broad-spectrum and durable resistance gene combinations

    Gene pyramiding helps to develop varieties with broad-spectrum and durable resistance to. Many studies have shown that resistance is significantly associated with the number ofgenes, which means that the greater the number ofgenes found in the accessions, the higher their resistance against(Wu Y Y et al, 2015; Li et al, 2019). However, the number ofgenes is not the only factor affecting resistance. On one hand, as the number ofgenes increases, the improvement in the resistance level would gradually slowdown, which term as law of ‘diminishing returns’ between the number of pyramidedgenes and resistance (Xiao et al, 2018; Wu et al, 2019). On the other hand, as the number of pyramidedgenes increases, in addition to increasing the workload, the linkage drag with unacceptable traits might also increase. Therefore, how to employ a few of thesegenes to achieve broad-spectrum and durable resistance must be considered during rice blast resistance breeding (Yang et al, 2008). From the perspective of pyramidedgenes and their corresponding resistance, the combination pattern ofgenes is a key factor in determining the resistance level of different varieties against(Wu Y Y et al, 2015). Once differentgenes are pyramided, some gene combinations will show positive interactions, while other gene combinations might exhibit negative interactions (Hittalmani et al, 2000; Xiao et al, 2017; Wu et al, 2019). Therefore, it is essential to screen anddetermine the combination pattern ofgenes that exhibit broad-spectrum and durable resistance to promote the practical use of molecular breeding for blast resistance.

    Fig. 2. Creation of core resistant germplasm R9311 and its breeding application.

    A, Resistance comparison of leaf blast and panicle blast between R9311 and Yangdao 6 (YD6). Data are Mean ± SD (= 3). **,< 0.001. SB, Seedling blast; PB, Panicle blast; RF, Resistance frequency. B, Panicle blast resistance reaction of R9311 and YD6 in the natural blast nursery. C, Schematic diagram of the construction of the sterile lines and hybrids based on the core germplasm of R9311. D, Field performances of new breed hybrid rice.

    Several successful molecular breeding studies (Table 2) have indicated that a singlegene, such as,,orfrom thelocus shows broad-spectrum resistance to leaf and specifically exhibits resistance to panicle blast in some ecological regions. However, onlyshows broad-spectrum resistance to both leaf and panicle blast, and has an important practical value in breeding. Combiningwithfrom thelocus is the most successful example of the application of gene pyramiding, and there have also been reports about pyramiding withand. Wu et al (2019) reported thatexhibits high resistance to leaf and panicle blast after pyramiding with,and, respectively. Moreover, they also found that thegenes of the alleles from thelocus exhibit excellent resistance after combining them with certain independently distributedgenes, such as(unpublished data) and(Xiao et al, 2018). Based on the distribution and utilization of cloned genes, we proposed that the broad-spectrumgenes of thelocus, especially, should be used as the backbone and core for gradual pyramiding of othergenes at three levels (Fig.3). Firstly, pyramiding withfrom thelocus,from thelocus, and the independently distributedgenesand. Thesegenes have higher DFs, less linkage drag of poor agronomic traits, and are relatively easy to integrate. Secondly, pyramiding withfrom thelocus,from thelocus, and the independently distributedgenesand. Thesegenes are generally distributed in local varieties or original germplasms and can be used in pyramiding breeding by creating core germplasms carrying targetgenes and showing elite agronomic traits. Thirdly, on the basis of further clarifying the resistance effect of gene combinations, pyramiding could be performed using certain partial resistance genes, such as,,and.

    Conclusions and future perspectives

    The development of genome sequencing technology has promoted the rapid identification and cloning of rice blastgenes andgenes, which has deepened understanding of the molecular mechanisms of riceblast fungus interaction and their co-evolution. It provides not only new genetic resources for rice blast resistance improvement, but also new technical ideas to regulate disease-resistance signaling pathways via genetic editing to achieve resistance improvement.

    High-throughput whole genome sequence or targetgene sequencing in the elite rice cultivars or core resistant germplasm will provide useful technological means for breeding selection. Sincethe cloning of,and(Deng et al, 2017; Yang et al, 2019), functional single nucleotide polymorphism related to resistant genotypes can be used to design Kompetitive Allele-Specific PCR (KASP) markers and used in marker-assisted selection. Wang et al (2019) sequenced an important broad-spectrum blast resistant germplasm (Tetep) that is the donor of, and obtained a high-quality assembly, in which 455 nucleotide-binding site leucine-rich repeat (NLR) genes are annotated. Based on this, a few molecular markers have beendesigned to rapidly introduce clustered and paired NLRs in the Tetep genome to breed new resistant cultivars. With more donors ofgenes being sequenced, thegenes confering a resistant genotype on elite rice cultivars or core resistant germplasms could be identified.

    Fig. 3. Molecular breeding strategies using rice blast resistance genes.

    A, Breeding strategies for improving blast resistance in the previous studies. B, Breeding strategies that have been used. C, Novel breeding strategies that can be utilized in further research.

    With the increase in genetic research into blast resistance, understanding of the partial resistance of non-race specificity, controlled by multiple quantitative trait loci (QTLs), has became a hot topic. Partial resistance is generally regarded as a quantitative trait. It does not prevent infection bybut can reduce the proliferation of pathogens in the host and maintain a relatively low selection pressure on the population of, thus maintaining broad-spectrum and durable resistance (Niks et al, 2015). Since Wang et al (1994) first used restriction fragment length polymorphism markers to identify 19 QTLs controlling partial resistance in the durable resistance African upland rice cultivar Moroberekan, at least 500 QTLs for resistance to rice blast have been identified on the 12 chromosomes of rice to date (Li et al, 2019). In recent years, with the rapid development of molecular biology, a large number of partial resistance genes such as(Fukuoka et al, 2009),(Hayashi et al, 2010),(Fukuoka et al, 2014),(Xu et al, 2014),(Li et al, 2017),(Zhou et al, 2018) and(Inukai et al, 2019) have been cloned, suggesting that the rapid introduction of thesegenes into rice varieties through molecular breeding is feasible (Pilet-Nayel et al, 2017). Fukuoka et al (2015) first reported that the four partial resistance genes,,,and, can be combined to improve durable resistance of rice. However, because of the small resistant effect of a single partialgene, it must be combined with multiple partial resistance genes to obtain effective resistance. With the establishment of high-throughput molecular breeding methods, the creation of core germplasmsharboring target partial resistance without linkage drag will become an important step in rice blast resistance improvement in the future.

    In recent years, a series of important advances have been made in understanding the molecular mechanism of rice blast resistance. Significant progress has been achieved in cloning and identifying a number of key PTI and ETI signal regulation genes (Liu et al, 2014; Nasir et al, 2018), downstream signaling pathway related genes (Choi et al, 2015), and R proteins, especially downstream signaling molecules directly regulated by NBS-LRR proteins. However, compared with those 30genes that have been cloned, there has been less research on the downstream signaling molecules ofgenes. Currently, three kinds of downstream signaling molecules that interact directly withgenes have been identified:signaling pathways downstream of,and(Chen et al, 2010; Kawano et al, 2010; Wang et al, 2018; Zhou et al, 2019); the ARM repeats ofand(t) downstream ofand, respectively (Jia and Martin, 2008; Wang et al, 2015; Zhao et al, 2018); and transcription factor signaling pathways ofand, which act downstream ofand, respectively (Inoue et al, 2013; Liu et al, 2017).encoding a guanylate triphosphatase (GTPase), a member of the RhoGTPase family, is a key regulator of rice resistance to pathogens and it can participate in both PTI (Akamatsu et al, 2013) and ETI (Kawano et al, 2010). Zhou et al (2019) suggested thatmight be a common regulatory factor downstream of rice NBS-LRR proteins. Therefore, strengthening research into the interaction betweenand othergenes, especially the study of different broad-spectrum alleles from theandloci, should be promoted. At the same time, further identification of new signaling genes and analysis of the molecular regulatory mechanism of broad-spectrum resistance againstare needed., an APETELA2/ethylene response factor (AP2/ERF) type transcription factor in rice, is rapidly and strongly induced by avirulent pathovars of. When the expression ofwas inhibited in RNAi transgenic lines, their blast resistance was enhanced (Liu et al, 2012). Similar research showed that mutant lines ofedited by CRISPR/Cas9show significantly higher resistance tocompared with the wildtype (Xu et al, 2019). The expression levels of defense-related genes involved in signaling pathways of salicylic acid, jasmonic acid and ethylene metabolisms are upregulated in the mutant lines after inoculation of the physiological races of. Otherwise, some QTLs identified as necessary loci are required for resistance to rice panicle blast. Inoue et al (2017) mapped four QTLs that contribute to-mediated panicle blast resistance. In addition, a genome-wide association study of blast resistant loci or genes was used to identify novelgenes, and newalleles,and, respectively (Wang et al, 2014; Li C G et al,2019). These identified genes not only provide new genetic resources for breeding broad-spectrum and durable rice cultivars, but also provide new strategies to improve resistance to rice blast.

    Acknowledgements

    This study was supported by the National Key Research and Development Program of China (Grant No. 2017YFD0100400), the Key Studying and Developing Project of Jiangsu Province for Modern Agriculture (Grant No. BE2018351), the Major Project of Jiangsu Province for Significant New Varieties Development (Grant No. PZCZ201702), the Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding (Grant No. BM2018003), the National Natural Science Foundation of China (Grant No. 31971868), the National Modern Agricultural Industry Technology System Special Fund (Grant No. CARS-01-60), the ‘333’ Project of Jiangsu Province (Grant No. BRA2017163), the Key Studying and Developing Project of Yangzhou City for Modern Agriculture (Grant No. YZ2018048), and the Jiangsu Agricultural Science and Technology Innovation Fund [(Grant Nos. CX(18)1003) and CX(18)2022)], Open Research Fund of State Key Laboratory for Biology of Plant Diseases and Insect Pests (Grant No. SKLOF 201909), Opening Foundation of Key Laboratory of Plant Functional Genomics of the Ministry of Education (Grant No. ML201806), Fund of Institute of Agricultural Sciences for Lixiahe Region in Jiangsu (Grant No. SJ17201).

    Akamatsu A, Wong H L, Fujiwara M, Okuda J, Nishide K, Uno K, Imai K, Umemura K, Kawasaki T, Kawano Y, Shimamoto K. 2013. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity., 13(4): 465–476.

    Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J Z, Matsumoto T, Ono K, Yano M. 2008. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer-specific rice blast resistance., 180(4): 2267–2276.

    Ashkani S, Rafii M Y, Shabanimofrad M, Ghasemzadeh A, Ravanfar S A, Latif M A. 2016. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (L.): Current status and future considerations., 36(2): 353–367.

    Bernoux M, Ellis J G, Dodds P N. 2011. New insights in plant immunity signaling activation., 14(5): 512–518.

    Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun M H, Tharreau D. 2003. Identification and fine mapping of, the rice resistance gene corresponding to theavirulence gene., 107(6): 1139–1147.

    Beser N, Del Valle M M, Kim S M, Vinarao R B, Sürek H, Jena K K. 2016. Marker-assisted introgression of a broad-spectrum resistance gene,improved blast resistance of two elite rice (L.) cultivars of Turkey., 7(33): 1–15.

    Birch P R J, Armstrong M, Bos J, Boevink P, Gilroy E M, Taylor R M, Wawra S, Pritchard L, Conti L, Ewan R, Whisson S C, van West P, Sadanandom A, Kamoun S. 2009. Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen., 60(4): 1133–1140.

    Block A, Alfano J R. 2011. Plant targets fortype III effectors: Virulence targets or guarded decoys?, 14(1): 39–46.

    B?hnert H U, Fudal I, Dioh W, Tharreau D, Notteghem J L, Lebrun M H. 2004. A putative polyketide synthase/peptide synthetase fromsignals pathogen attack to resistant rice., 16(9): 2499–2513.

    Boller T, He S Y. 2009. Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens., 324: 742–744.

    Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK,Tarchini R, Valent B. 2000. A single amino acid difference distinguishes resistant andsusceptible alleles of the rice blast resistance gene.,12:2033–2046.

    Cao N, Chen Y, Ji Z J, Zeng Y X, Yang C D, Liang Y. 2019. Recent progress in molecular mechanism of rice blast resistance., 33(6): 489–498. (in Chinese with English abstract)

    Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J B, Fournier E, Tharreau D, Terauchi R, Kroj T. 2013. The rice resistance protein pair RGA4/RGA5 recognizes theeffectors AVR-Pia and AVR1-CO39 by direct binding., 25(4): 1463–1481.

    Chen D H, Zeigler R S, Ahn S W, Nelson R J. 1996. Phenotypic characterization of the rice blast resistance gene(t)., 80(1): 52–56.

    Chen H L, Chen B T, Zhang D P, Xie Y F, Zhang Q F. 2001. Pathotypes ofin rice fields of central and southern China., 85(8): 843–850.

    Chen J, Shi Y F, Liu W Z, Chai R Y, Fu Y P, Zhuang J Y, Wu J L. 2011. Aallele from rice cultivar Gumei2 confers resistance to., 38(5): 209–216.

    Chen J, Peng P, Tian J S, He Y G, Zhang L P, Liu Z X, Yin D D, Zhang Z H. 2015., a rice blast resistance allele consisting of two adjacentgenes, was identified as a novel allele at thelocus., 35:117.

    Chen L, Shiotani K, Togashi T, Miki D, Aoyama M, Wong H L, Kawasaki T, Shimamoto K. 2010. Analysis of the Rac/Rop small GTPase family in rice: Expression, subcellular localization and role in disease resistance., 51(4): 585–595.

    Chen X W, Shang J J, Chen D X, Lei C L, Zou Y, Zhai W X, Liu G Z, Xu J C, Ling Z Z, Cao G, Ma B T, Wang Y P, Zhao X F, Li S G, Zhu L H. 2006. A B-lectin receptor kinase gene conferring rice blast resistance, 46(5): 794–804.

    Choi C, Hwang S H, Fang I R, Kwon S I, Park S R, Ahn I, Kim J B, Hwang D J. 2015. Molecular characterization ofWRKY6, which binds to W-box-like element 1 of thepromoter and confers reduced susceptibility to pathogens., 208(3): 846–859.

    Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y. 2011. Multiple translocation of theeffector gene among chromosomes of the rice blast fungusand related species.,7(7):e1002147.

    Dai X J, He C, Zhou L, Liang M Z, Fu X C, Qin P, Yang Y Z, Chen L B. 2018. Identification of a specific molecular marker for the rice blast-resistant geneand molecular breeding of thermo-sensitive genic male sterile leaf-color marker lines., 38:72.

    Dangl J L, Dietrich R A, Richberg M H. 1996. Death don’t have no mercy: Cell feath programs in plant-microbe interactions., 8(10): 1793–1807.

    Divya B, Robin S, Rabindran R, Senthil S, Raveendran M, Joel A J. 2014. Marker assisted backcross breeding approach to improve blast resistance in Indian rice () variety ADT43., 200(1): 61–77.

    Deng Y W, Zhai K R, Xie Z, Yang D Y, Zhu X D, Liu J Z, Wang X, Qin P, Yang Y Z, Zhang G M, Li Q, Zhang J F, Wu S Q, Milazzo J, Mao B Z, Wang E T, Xie H A, Tharreau D, He Z H. 2017. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance., 355: 962–965.

    Ellur R K, Khanna A, Yadav A, Pathania S, Rajashekara H, Singh V K, Krishnan G S, Bhowmick P K, Nagarajan M, Vinod K K, Prakash G, Mondal K K, Singh N K, Prabhu K V, Singh A K. 2016. Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding., 242: 330–341.

    Fjellstrom R, Conaway-Bormans C A, McClung A M, Marchetti M A, Shank A R, Park W D. 2004. Development of DNA markers suitable for marker assisted selection of three genes conferring resistance to multiple pathotypes., 44(5): 1790–1798.

    Flor H H. 1971. Current status of the gene-for-gene concept., 9:275–296.

    Fujisaki K, Abe Y, Ito A, Saitoh H, Yoshida K, Kanzaki H, Kanzaki E, Utsushi H, Yamashita T, Kamoun S, Terauchi R. 2015. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity., 83(5): 875–887.

    Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. 2009. Loss of function of a proline-containing protein confers durable disease resistance in rice., 325: 998–1001.

    Fukuoka S, Yamamoto S I, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen T T T, Koizumi S, Sugimoto K, Matsumoto T, Yano M. 2014. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast., 4: 1–7.

    Fukuoka S, Saka N, Mizukami Y, Koga H, Yamanouchi U, Yoshioka Y, Hayashi N, Ebana K, Mizobuchi R, Yano M. 2015. Gene pyramiding enhances durable blast disease resistance in rice., 5: 7773.

    Gouda P K, Saikumar S, Varma C MK, Nagesh K, Thippeswamy S, Shenoy V, Ramesha M S, Shashidhar H E. 2013. Marker-assisted breeding ofandgenes imparting resistance to rice blast in PRR78, restorer line of Pusa RH-10 Basmati rice hybrid., 132(1): 61–69.

    Hayashi K, Yoshida H. 2009. Refunctionalization of the ancient rice blast disease resistance geneby the recruitment of a retrotransposon as a promoter., 57(3): 413–425.

    Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H. 2010. Durable panicle blast-resistance geneencodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication., 64(3): 498–510.

    He Y Q, Tang W H, Hei L, Zeigler R S. 2001. Identification of CO39 near-isogenic lines for rice blast., 27(6):838–841. (in Chinese with English abstract)

    Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N. 2000. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice., 100(7): 1121–1128.

    Hua L X, Wu J Z, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H. 2012. The isolation of, an allele at thelocus which confers broad spectrum resistance to rice blast., 125(5): 1047–1055.

    Huang Y L, Yan Z, Wang H, Shen G L, Zhang C H. 2018. Directed improvement of rice blast resistance of sterile line Q211S with molecular marker-assisted selection., 34(24):135–140. (in Chinese with English abstract)

    Inoue H, Hayashi N, Matsushita A, Liu X Q, Nakayama A, Sugano S, Jiang C J, Takatsuji H. 2013. Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction., 110(23): 9577–9582.

    Inoue H, Nakamura M, Mizubayashi T, Takahashi A, Sugano S, Fukuoka S, Hayashi N. 2017.() resistance is dependent on at least four QTLs in the rice genome., 10:36.

    Inukai T, Nagashima S, Kato M. 2019.is a race-specific partial-resistance allele at theblast resistance locus in rice., 132(2): 395–404.

    Ishihara T, Hayano-Saito Y, Oide S, Ebana K, La N T, Hayashi K, Ashizawa T, Suzuki F, Koizumi S. 2014. Quantitative trait locus analysis of resistance to panicle blast in the rice cultivar Miyazakimochi., 7(1): 2.

    Jeon J S, Chen D, Yi G H, Wang G L, Ronald P C. 2003. Genetic and physical mapping of(t), a locus associated with broad-spectrum resistance to rice blast., 269(2): 280–289.

    Jeung J U, Kim B R, Cho Y C, Han S S, Moon H P, Lee Y T, Jena K K. 2007. A novel gene,(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice., 115(8): 1163–1177.

    Jia Y L, McAdams S A, Bryan G T, Hershey H P, Valent B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance., 19(15): 4004–4014.

    Jia Y L, Martin R. 2008. Identification of a new locus,(t), required for rice blast resistance gene-mediated resistance., 21(4): 396–403.

    Jiang H C, Feng Y T, Bao L, Li X, Gao G J, Zhang Q L, Xiao J H, Xu C G, He Y Q. 2012. Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding., 30(4): 1679–1688.

    Jiang J F, Mou T, Yu H H, Zhou F S. 2015. Molecular breeding of thermo-sensitive genic male sterile (TGMS) lines of rice for blast resistance usinggene., 8: 11.

    Jones J D, Dangl J L. 2006. The plant immune system., 444: 323–329.

    Kang S, Sweigard J A, Valent B. 1995. Thehost specificity gene family in the blast fungus., 8(6): 939–948.

    Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R. 2012. Arms race co-evolution ofand ricegenes driven by their physical interactions., 72(6): 894–907.

    Kawano Y, Akamatsu A, Hayashi K, Housen Y, Okuda J, Yao A, Nakashima A, Takahashi H, Yoshida H, Wong H L, Kawasaki T, Shimamoto K. 2010. Activation of a Rac GTPase by the NLR family disease resistance protein Pit plays a critical role in rice innate immunity., 7(5): 362–375.

    Khan G H, Shikari A B, Vaishnavi R, Najeeb S, Padder B A, Bhat Z A, Parray G A, Bhat M A, Kumar R, Singh N K. 2018. Marker-assisted introgression of three dominant blast resistance genes into an aromatic rice cultivar Mushk Budji., 8: 4091.

    Khanna A, Sharma V, Ellur R K, Shikari A B, Krishnan G S, Singh U D, Prakash G, Sharma T R, Rathour R, Variar M, Prashanthi S K, Nagarajan M, Vinod K K, Bhowmick P K, Rajashekhara H, Singh N K, Prabhu K V, Singh A K. 2015. Marker assisted pyramiding of major blast resistance genesandin the genetic background of an elite Basmati rice variety, Pusa Basmati 1., 75(4): 417–425.

    Kumar S V, Rambabu R, Bhaskar B, Madhavi K R, Srikanth S, Prakasam V, Sundaram R M, Madhav M S, Rao L V S, Prasad M S. 2018. Introgression of durable blast resistance geneintorice cv. Samba Mahsuri, through marker assisted backcross breeding., 9(2): 705–715.

    Kumar S V, Srinivas Prasad M, Rambabu R, Madhavi K R, Bhaskar B, Abhilash Kumar V, Sundaram R M, Krishna Satya A, Sheshu Madhav M, Prakasam V. 2019. Marker-assisted introgression ofgene conferring resistance to rice blast pathogen pyricularia oryzae in the background of Samba Mahsuri., 8(1): 2133–2146.

    Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S. 2009. Rice-mediated resistance torequires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes., 181(4): 1627–1638.

    Li C G, Wang D, Peng S S, Chen Y, Su P, Chen J B, Zheng L M, Tan X Q, Liu J L, Xiao Y H, Kang H X, Zhang D Y, Wang GL, Liu Y. 2019. Genome-wide association mapping of resistance against rice blast strains in South China and identification of a newallele., 12(1): 47.

    Li W, Wang B H, Wu J, Lu G D, Hu Y J, Zhang X, Zhang Z G, Zhao Q, Feng Q, Zhang H Y, Wang Z Y, Wang G L, Han B, Wang Z H, Zhou B. 2009. Theavirulence geneencodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene., 22(4): 411–420.

    Li W, Deng Y W, Ning Y S, Hu Z H, Wang G L. 2020. Exploiting broad-spectrum disease resistance in crops: From molecular dissection to breeding., 16: 1–25.

    Li W T, Zhu Z W, Chern M, Yin J J, Yang C, Ran L, Cheng M P, He M, Wang K, Wang J, Zhou X G, Zhu X B, Chen Z X, Zhao W C, Ma B T, Qin P, Chen W L, Wang Y P, Liu J L, Wang W M, Wu X J, Li P, Wang J R, Zhu L H, Li S G, Chen X W. 2017. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance., 170(1): 114–126.

    Li WT, Chern MS, Yin JJ, Wang J, Chen XW. 2019. Recent advances in broad-spectrum resistance to the rice blast disease., 50:114–120.

    Li Y D, Li J J, Zhang M, Tian L, Yang S Q, Li P F, Zhang Y X. 2019. Analysis of blast resistance genes inrice core collection and progeny in Ningxia., 20(2):321–334. (in Chinese with English abstract)

    Lin F, Chen S, Que Z Q, Wang L, Liu X Q, Pan Q H. 2007. The blast resistance geneencodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1., 177(3): 1871–1880.

    Liu DF, Chen XJ, Liu JQ, Ye JC, Guo ZJ. 2012. The rice ERF transcription factornegatively regulates resistance toand salt tolerance., 63(10): 3899–3911.

    Liu H, Dong S Y, Gu F W, Liu W, Yang G L, Huang M, Xiao W M, Liu Y Z, Guo T, Wang H, Chen Z Q, Wang J F. 2017. NBS-LRR protein Pik-H4 interacts with OsBIHD1 to balance rice blast resistance and growth by coordinating ethylene-brassinosteroid pathway., 8: 127.

    Liu Q, Yang J Y, Zhang S H, Zhao J L, Feng A Q, Yang T F, Wang X F, Mao X X, Dong J F, Zhu X Y, Leung H, Leach J E, Liu B. 2016.positively regulates panicle blast resistance but negatively regulates leaf blast resistance in rice., 29(1): 46–56.

    Liu W D, Liu J L, Triplett L, Leach J E, Wang G L. 2014. Novel insights into rice innate immunity against bacterial and fungal pathogens., 52: 213–241.

    Liu W G, Wang F, Jin S J, Zhu X Y, Li J H, Liu Z R, Liao Y L, Zhu M S, Huang H J, Fu F H, Liu Y B. 2008. Improvement of rice blast resistance in TGMS line by pyramiding ofandthrough molecular marker-assisted selection., 34(7): 1128–1136.

    Liu X Q, Lin F, Wang L, Pan Q H. 2007. Themap-based cloning of, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus., 176(4): 2541–2549.

    Ma J, Lei C L, Xu X T, Hao K, Wang J L, Cheng Z J, Ma X D, Ma J, Zhou K N, Zhang X, Guo X P, Wu F Q, Lin Q B, Wang C M, Zhai H Q, Wang H Y, Wan J M. 2015., encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice., 28(5): 558–568.

    Ma J Q, Sun Y D, Yang Y, Li J B, Chen H C, Jiao A X, Tan J Y, Run R C, Xu M H. 2018. Distribution of rice blast resistance genes,,,in local rice varieties of Guizhou Province., 31(11): 2217–2222. (in Chinese with English abstract)

    McClung A M, Marchetti M A, Webb B D, Bollich C N. 1997. Registration of ‘Jefferson’ rice., 37(2): 629–630.

    Mentlak T A, Kombrink A, Shinya T, Ryder L S, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma B P H J, Talbot N J. 2012. Effector-mediated suppression of chitin-triggered immunity byis necessary for rice blast disease., 24(1): 322–335.

    Miki S, Matsui K, Kito H, Otsuka K, Ashizawa T, Yasuda N, Fukiya S, Sato J, Hirayae K, Fujita Y, Nakajima T, Tomita F, Sone T. 2009. Molecular cloning and characterization of thelocus from a Japanese field isolate of., 10(3): 361–374.

    Nasir F, Tian L, Chang C, Li X, Gao Y, Tran L P, Tian C. 2018. Current understanding of pattern-triggered immunity and hormone-mediated defense in rice () in response toinfection., 83: 95–105.

    Niks R E, Qi X Q, Marcel T C. 2015. Quantitative resistance to biotrophic filamentous plant pathogens: Concepts, misconceptions, and mechanisms., 53: 445–470.

    Nurnberger T, Brunner F, Kemmerling B, Piater L. 2004. Innate immunity in plants and animals: Striking similarities and obvious differences., 198(1): 249–266.

    Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam D C, Undan J, Ito A, Sone T, Terauchi R. 2011. A multifaceted genomics approach allows the isolation of the rice-blast resistance gene consisting of two adjacent NBS-LRR protein genes., 66(3): 467–479.

    Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B. 2000. A telomeric avirulence gene determines efficacy for the rice blast resistance gene., 12(11): 2019–2032.

    Ortiz D, de Guillen K, Cesari S, Chalvon V, Gracy J, Padilla A, Kroj T. 2017. Recognition of theeffector AVR-Pia by the decoy domain of the rice NLR immune receptor RGA5., 29(1): 156–168.

    Park C H, Chen S B, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal A J, Ning Y, Wang R Y, Bellizzi M, Valent B, Wang G L. 2012. Theeffector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice., 24(11): 4748–4762.

    Park C H, Shirsekar G, Bellizzi M, Chen S B, Songkumarn P, Xie X, Shi X T, Ning Y S, Zhou B, Suttiviriya P, Wang M, Umemura K, Wang G L. 2016. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice., 12(3): e1005529.

    Pilet-Nayel M L, Moury B, Caffier V, Montarry J, Kerlan M C, Fournet S, Durel C E, Delourme R. 2017. Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection., 8: 1838.

    Puri K D, Shrestha S M, Chhetri G B K, Joshi K D. 2009. Leaf and neck blast resistance reaction in tropical rice lines under greenhouse condition., 165:523–532.

    Qu S H, Liu G F, Zhou B, Bellizzi M, Zeng L R, Dai L Y, Han B, Wang G L. 2006. The broad-spectrum blast resistance geneencodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice., 172(3): 1901–1914.

    Ray S, Singh P K, Gupta D K, Mahato A K, Sarkar C, Rathour R, Singh N K, Sharma T R. 2016. Analysis ofgenome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene,., 7: 1140.

    RoyChowdhury M, Jia Y L, Jackson A, Jia M H, Fjellstrom R, Cartwright R D. 2012. Analysis of rice blast resistance genein rice germplasm using pathogenicity assays and DNA markers., 184(1): 35–46.

    Segonzac C, Zipfel C. 2011. Activation of plant pattern-recognition receptors by bacteria., 14(1): 54–61.

    Selisana SM, Yanoria MJ, Quime B, Chaipanya C, Lu G, Opulencia R, Wang GL, Mitchell T, Correll J, Talbot NJ, Leung H, Zhou B. 2017. Avirulence () gene-based diagnosis complements existing pathogen surveillance tools for effective deployment of resistance () genes against rice blast disease., 107(6): 711–720.

    Shang J J, Tao Y, Chen X W, Zou Y, Lei C L, Wang J, Li X B, Zhao X F, Zhang M J, Lu Z K, Xu J C, Cheng Z K, Wan J M, Zhu L H. 2009. Identification of a new rice blast resistance gene,, by genomewide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes., 182(4): 1303–1311.

    Sharma T R, Rai A K, Gupta S K, Singh N K. 2010. Broad- spectrum blast resistance genecloned from rice line Tetep designated as., 19(1): 87–89.

    Singh R, Dangol S, Chen Y F, Choi J, Cho Y S, Lee J E, Choi M O, Jwa N S. 2016.effector AVR-Pii helps to establish compatibility by inhibition of the rice NADP-malic enzyme resulting in disruption of oxidative burst and host innate immunity., 39(5): 426–438.

    Singh V K, Singh A, Singh S P, Ellur R K, Choudhary V, Sarkel S, Singh D, Krishnan S G, Nagarajan M, Vinod K K, Singh U D, Rathore R, Prashanthi S K, Agrawal P K, Bhatt J C, Mohapatra T, Prabhu K V, Singh A K. 2012. Incorporation of blast resistance into ‘PRR78’, an elite Basmati rice restorer line, through marker assisted backcross breeding., 128: 8–16.

    Su J, Wang W J, Han J L, Chen S, Wang C Y, Zeng L X, Feng A Q, Yang J Y, Zhou B, Zhu X Y. 2015. Functional divergence of duplicated genes results in a novel blast resistance geneat thelocus., 128(11): 2213–2225.

    Suh J P, Roh J H, Cho Y C, Han S S, Kim Y G, Jena K K. 2009. Thegene for durable resistance to rice blast and molecular analysis of-advanced backcross breeding lines., 99(3): 243–250.

    Sweigard J A, Carroll A M, Kang S, Farrall L, Chumley F G, Valent B. 1995. Identification, cloning, and characterization of, a gene for host species specificity in the rice blast fungus., 7(8): 1221–1233.

    Tabien R E, Li Z, Paterson A H, Marchetti M A, Stansel J W, Pinson S R M, Park W D. 2000. Mapping of four major rice blast resistance genes from ‘Lemont’and ‘Teqing’and evaluation of their combinatorial effect for field resistance., 101(8): 1215–1225.

    Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H, Saitoh H, Yoshida K, Cano L M, Kamoun S, Terauchi R. 2013. MutMap-Gap: Whole-genome resequencing of mutant F2progeny bulk combined withassembly of gap regions identifies the rice blast resistance gene., 200(1): 276–283.

    Takahashi A, Hayashi N, Miyao A, Hirochika H. 2010. Unique features of the rice blast resistancelocus revealed by large scale retrotransposon-tagging., 10: 175.

    Tang M Z, Ning Y S, Shu X L, Dong B, Zhang H Y, Wu D X, Wang H, Wang G L, Zhou B. 2017. The Nup98 homolog APIP12 targeted by the effector AvrPiz-t is involved in rice basal resistance against., 10(1): 5.

    Tanweer F A, Rafii M Y, Sijam K, Rahim H A, Ahmed F, Ashkani S, Latif M A. 2015. Introgression of blast resistance genes (putativeand) into elite rice cultivar MR219 through marker-assisted selection., 6: 1002.

    Thakur S, Singh P K, Das A, Rathour R, Variar M, Prashanthi S K, Singh A K, Singh U D, Chand D, Singh N K, Sharma T R. 2015. Extensive sequence variation in rice blast resistance genemakes it broad spectrum in nature., 6: 345.

    Tian H G, Cheng H Q, Hu J, Lei C L, Zhu X D, Qian Q. 2016. Effect of introgressedgene on rice blast resistance and yield traits of japonica rice in cold area., 47(5): 520–526. (in Chinese with English abstract)

    Usatov A V, Kostylev P I, Azarin K V, Markin N V, Makarenko M S, Khachumov V A, Bibov Y M. 2016. Introgression of the rice blast resistance genes,andinto Russian rice varieties by marker-assisted selection., 76(1): 18–23.

    Wang CH, Yang YL, Yuan XP, Xu Q, Feng Y, Yu HY, Wang YP, Wei XH. 2014. Genome-wide association study of blast resistance inrice., 14:311.

    Wang G L, Mackill D J, Bonman J M, McCouch S R, Champoux M C, Nelson R J. 1994. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar., 136(4): 1421–1434.

    Wang J, Qu B Y, Dou S J, Li L Y, Yin D D, Pang Z Q, Zhou Z Z, Tian M M, Liu G Zn, Xie Q, Tang D Z, Chen X W, Zhu L H. 2015. The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity., 15: 49.

    Wang L, Zhao LN, Zhang XH, Zhang QJ, Jia YX, Wang G, Li SM, Tian DC, Li WH, Yang SH. 2019. Large-scale identification and functional analysis ofgenes in blast resistance in the Tetep rice genome sequence., 116(37): 18479–18487.

    Wang Q, Li Y Y, Ishikawa K, Kosami K I, Uno K, Nagawa S, Tan L, Du J M, Shimamoto K, Kawano Y. 2018. Resistance protein Pit interacts with the GEF OsSPK1 to activate OsRac1 and trigger rice immunity., 115(49): 11551–11560.

    Wang R Y, Ning Y S, Shi X T, He F, Zhang C Y, Fan J B, Jiang N, Zhang Y, Zhang T, Hu Y J, Bellizzi M, Wang G L. 2016. Immunity to rice blast disease by suppression of effector-triggered necrosis., 26(18): 2399–2411.

    Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. 1999. Thegene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes., 19(1): 55–64.

    Wu J, Liu X L, Dai L Y, Wang G L. 2007. Advances on the identification and characterization of broad-spectrum blast resistance genes in rice., 19(2): 233–238. (in Chinese with English abstract)

    Wu J, Kou Y J, Bao J D, Li Y, Tang M Z, Zhu X L, Ponaya A, Xiao G, Li J B, Li C Y, Song M Y, Cumagun C J R, Deng Q Y, Lu G D, Jeon J S, Naqvi N I, Zhou B. 2015. Comparative genomics identifies theavirulence effector AvrPi9 that triggers-mediated blast resistance in rice., 206(4): 1463–1475.

    Wu Y Y, Xiao N, Yu L, Pan C H, Li Y H, Zhang X X, Liu G Q, Dai Z Y, Pan X B, Li A H. 2015. Combination patterns of majorgenes determine the level of resistance to thein rice (L.)., 10(6): e0126130.

    Wu Y Y, Yu L, Pan C H, Dai Z Y, Li Y H, Xiao N, Zhang X X, Ji H J, Huang N S, Zhao B H, Zhou C H, Liu G Q, Liu X J, Pan X B, Liang C Z, Li A H. 2016. Development of near-isogenic lines with different alleles oflocus and analysis of their breeding effect under Yangdao 6 background., 36(2): 1–12.

    Wu Y Y, Chen Y, Pan C H, Xiao N, Yu L, Li Y H, Zhang X X, Pan X B, Chen X J, Liang C Z, Dai Z Y, Li A H. 2017. Development and evaluation of near-isogenic lines with different blast resistance alleles at thelocus inrice from the lower region of the Yangtze River, China., 101(7): 1283–1291.

    Wu Y Y, Xiao N, Chen Y, Yu L, Pan C H, Li Y H, Zhang X X, Huang N S, Ji H J, Dai Z Y, Chen X J, Li A H. 2019. Comprehensive evaluation of resistance effects of pyramiding lines with different broad-spectrum resistance genes againstin rice (L.)., 12(1): 11.

    Xiang Y C, Wang L L, Xu F, Ma D R. 2018. Study on the distribution of rice blast resistant genes in rice resources of Heilongjiang Province., 16(23): 7705–7717. (in Chinese with English abstract)

    Xiao N, Wu Y Y, Pan C H, Yu L, Chen Y, Liu G Q, Li Y H, Zhang X X, Wang Z P, Dai Z Y, Liang C Z, Li A H. 2017. Improving of rice blast resistances inby pyramiding majorgenes., 7: 1918.

    Xiao N, Wu Y Y, Wang Z P, Li Y H, Pan C H, Zhang X X, Yu L, Liu G Q, Zhou C H, Ji H J, Huang N S, Jiang M, Dai Z Y, Li A H. 2018. Improvement of seedling and panicle blast resistance inrice varieties followingintrogression., 38:142.

    Xiao W M, Luo L X, Wang H, Guo T, Liu Y Z, Zhou J Y, Zhu X Y,Yang Q Y, Chen Z Q. 2016. Pyramiding ofandto improve blast resistance and to evaluate the resistance effect of the twogenes., 15(10): 2290–2298.

    Xing X, Liu X L, Chen H L, Yang F Y, Li Y C, Liao H, You L, Liu J L, Dai L Y, Wang G L. 2016. Improving blast resistance of rice restorer R288 by molecular marker-assisted selection ofgene.,30(5):487–491.

    Xu P, Wang H, Tu RR, Liu QN, Wu WX, Fu XM, Cao LV, Shen XH. 2019. Orientation improvement of blast resistance in rice via CRISPR/Cas9 system., 33(4):313–322.(in Chinese with English abstract)

    Xu X, Hayashi N, Wang C T, Fukuoka S, Kawasaki S, Takatsuji H, Jiang C J. 2014. Rice blast resistance gene(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein., 34(2): 691–700.

    Yamasaki Y, Kiyosawa S. 1966. Studies on inheritance of resistance of rice varieties to blast: 1. Inheritance of resistance of Japanese varieties to several strains of the fungus., 14: 39–69.

    Yang G L, Chen S P, Chen L K, Sun K, Huang C H, Zhou D H, Huang Y T, Wang J F, Liu Y Z, Wang H, Chen Z Q, Guo T. 2019. Development of a core SNP arrays based on the KASP method for molecular breeding of rice., 12(1): 21.

    Yang J Y, Chen S, Zeng L X, Li Y L, Chen Z, Zhu X Y. 2008. Evaluation on resistance of major rice blast resistance genes toisolates collected fromrice in Guangdong Province, China., 22(2): 190–196. (in Chinese with English abstract)

    Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R. 2009. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen., 21(5): 1573–1591.

    Yu M M, Dai Z Y, Pan C H, Chen X J, Yu L, Zhang X X, Li Y H, Xiao N, Gong H B, Sheng S L, Pan X B, Zhang H X, Li A H. 2013. Resistance spectrum difference between two broad-spectrum blast resistance genes,and, and their interaction effect on., 39(11):1927–1934. (in Chinese with English abstract)

    Yuan B, Zhai C, Wang W J, Zeng X S, Xu X K, Hu H Q, Lin F, Wang L, Pan Q H. 2011. Theresistance toin rice is mediated by a pair of closely linked CC-NBS-LRR genes., 122(5): 1017–1028.

    Zeng S Y, Li C, Du C C, Sun L T, Jing D D, Lin T Z, Yu B, QIAN H F, Yao W C, Zhou Y W, Gong H B. 2018. Development of specific markers forin marker-assisted breeding of panicle blast resistantrice., 32(5): 453–461. (in Chinese with English abstract)

    Zhai C, Lin F, Dong Z Q, He X Y, Yuan B, Zeng X S, Wang L, Pan Q H. 2011. The isolation and characterization of, a rice blast resistance gene which emerged after rice domestication., 189(1): 321–334.

    Zhang S L, Wang L, Wu W H, He L Y, Yang X F, Pan Q H. 2015. Function and evolution ofavirulence generesponding to the rice blast resistance gene., 5: 11642.

    Zhao H J, Wang X Y, Jia Y L, Minkenberg B, Wheatley M, Fan J B, Jia M H, Famoso A, Edwards J D, Wamishe Y, Valent B, Wang G L, Yang Y N. 2018. The rice blast resistance geneencodes an atypical protein required for broad-spectrum disease resistance., 9(1): 2039.

    Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang G L. 2006. The eight amino-acid differences within three leucine-rich repeats betweenandresistance proteins determine the resistance specificity to., 19(11): 1216–1228.

    Zhou X G, Liao H C, Chern M, Yin J J, Chen Y F, Wang J P, Zhu X B, Chen Z X, Yuan C, Zhao W, Li W T, He M, Ma B T, Wang J C, Qin P, Chen W L, Wang Y P, Liu J L, Qian Y W, Wang W M, Wu X J, Li P, Zhu L H, Li S G, Ronald P C, Chen X W. 2018. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance., 115(12): 3174–3179.

    Zhou Z Z, Pang Z Q, Zhao S L, Zhang L L, Lv Q M, Yin D D, Li D Y, Liu X, Zhao X F, Li X B, Wang W M, Zhu L H. 2019. Importance of OsRac1 and RAI1 in signalling of nucleotide- binding site leucine-rich repeat protein-mediated resistance to rice blast disease., 223(2): 828–838.

    Zou J F, Li Y C, Liu X L, L iu J L, Chen H L, Yang F Y, Huang J, Liao H. 2017. Improving blast reisistance of rice restorer ‘E32’ and its hybrid through molecular marker-assisted selection., 31(1):11–14.

    5 August 2019;

    4 December 2019

    LI Aihong (yzlah@126.com)

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2020.05.003

    (Managing Editor: Li Guan)

    高清av免费在线| 五月开心婷婷网| 动漫黄色视频在线观看| 美女扒开内裤让男人捅视频| 少妇裸体淫交视频免费看高清 | 爱豆传媒免费全集在线观看| 午夜福利乱码中文字幕| 一区二区三区乱码不卡18| 国产成人精品久久二区二区91| 搡老岳熟女国产| 欧美日韩av久久| 亚洲精品国产色婷婷电影| 欧美另类亚洲清纯唯美| 搡老乐熟女国产| 国产片内射在线| 9色porny在线观看| 国产成人免费无遮挡视频| 一区二区三区四区激情视频| 色播在线永久视频| 中文字幕制服av| 欧美激情 高清一区二区三区| 69av精品久久久久久 | av在线播放精品| 日韩一区二区三区影片| 一区二区日韩欧美中文字幕| 99国产精品一区二区蜜桃av | 一区在线观看完整版| 国产人伦9x9x在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品秋霞免费鲁丝片| 黄色a级毛片大全视频| 亚洲精品成人av观看孕妇| 成年动漫av网址| 夜夜骑夜夜射夜夜干| 久久久精品区二区三区| 1024香蕉在线观看| 中国美女看黄片| 亚洲avbb在线观看| 欧美激情久久久久久爽电影 | 日韩熟女老妇一区二区性免费视频| 两性夫妻黄色片| 亚洲精品国产色婷婷电影| 九色亚洲精品在线播放| 日韩精品免费视频一区二区三区| 满18在线观看网站| 亚洲国产欧美在线一区| 成年人午夜在线观看视频| 国产成人系列免费观看| 免费女性裸体啪啪无遮挡网站| 99热网站在线观看| 热re99久久国产66热| 亚洲欧美日韩另类电影网站| 亚洲国产精品成人久久小说| 波多野结衣一区麻豆| 午夜精品久久久久久毛片777| 国产成人av教育| 亚洲成国产人片在线观看| 精品一区二区三区av网在线观看 | 极品人妻少妇av视频| 中文精品一卡2卡3卡4更新| 精品一区二区三区av网在线观看 | 美女扒开内裤让男人捅视频| 少妇猛男粗大的猛烈进出视频| 亚洲精品第二区| 免费在线观看影片大全网站| 丝瓜视频免费看黄片| 一区福利在线观看| 亚洲中文av在线| 国产精品久久久久久人妻精品电影 | 侵犯人妻中文字幕一二三四区| 日韩一区二区三区影片| 午夜精品国产一区二区电影| 成人av一区二区三区在线看 | 国产成人一区二区三区免费视频网站| 国产亚洲欧美精品永久| 我的亚洲天堂| 不卡av一区二区三区| 黑人巨大精品欧美一区二区mp4| 亚洲精品国产av蜜桃| 男人添女人高潮全过程视频| 十八禁网站免费在线| 亚洲一码二码三码区别大吗| 久久九九热精品免费| 国产精品秋霞免费鲁丝片| 国产高清videossex| 又黄又粗又硬又大视频| 在线观看一区二区三区激情| 亚洲一码二码三码区别大吗| 国产片内射在线| 国产精品国产三级国产专区5o| 亚洲成人国产一区在线观看| 香蕉国产在线看| 啦啦啦中文免费视频观看日本| 黄色 视频免费看| 19禁男女啪啪无遮挡网站| av福利片在线| 亚洲国产欧美网| 精品人妻一区二区三区麻豆| 久久人妻熟女aⅴ| 91麻豆av在线| 欧美精品亚洲一区二区| 在线永久观看黄色视频| 亚洲人成电影观看| 一级毛片女人18水好多| 在线亚洲精品国产二区图片欧美| 91成年电影在线观看| 精品国产乱码久久久久久小说| 国产av国产精品国产| 成人av一区二区三区在线看 | 欧美精品啪啪一区二区三区 | 色婷婷av一区二区三区视频| 又黄又粗又硬又大视频| 午夜福利乱码中文字幕| 91国产中文字幕| 亚洲 欧美一区二区三区| 亚洲国产欧美日韩在线播放| 日韩,欧美,国产一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人精品久久二区二区免费| 精品人妻1区二区| 中文字幕另类日韩欧美亚洲嫩草| 中文精品一卡2卡3卡4更新| 黄色视频在线播放观看不卡| 欧美午夜高清在线| 香蕉国产在线看| 啦啦啦在线免费观看视频4| 纯流量卡能插随身wifi吗| 亚洲av日韩精品久久久久久密| 精品一区二区三区四区五区乱码| 99国产精品一区二区三区| 精品视频人人做人人爽| 亚洲精品久久久久久婷婷小说| 精品国产乱子伦一区二区三区 | 老司机福利观看| a 毛片基地| 国产av一区二区精品久久| 国产色视频综合| av国产精品久久久久影院| 自线自在国产av| 欧美激情高清一区二区三区| 午夜久久久在线观看| 日韩一区二区三区影片| 日韩熟女老妇一区二区性免费视频| 在线av久久热| 97精品久久久久久久久久精品| 精品乱码久久久久久99久播| 18禁黄网站禁片午夜丰满| 我要看黄色一级片免费的| 日韩精品免费视频一区二区三区| 久久九九热精品免费| 91精品伊人久久大香线蕉| 黄色怎么调成土黄色| 在线观看舔阴道视频| 侵犯人妻中文字幕一二三四区| 国产日韩欧美亚洲二区| 午夜福利,免费看| 精品免费久久久久久久清纯 | 久久亚洲精品不卡| 丝袜美腿诱惑在线| 成年人黄色毛片网站| 人妻久久中文字幕网| 日日爽夜夜爽网站| 曰老女人黄片| 免费黄频网站在线观看国产| 久久女婷五月综合色啪小说| 麻豆国产av国片精品| 精品一区在线观看国产| 成年人午夜在线观看视频| 99国产极品粉嫩在线观看| 免费在线观看完整版高清| cao死你这个sao货| av又黄又爽大尺度在线免费看| 国产成人免费无遮挡视频| 18禁观看日本| 国产亚洲精品久久久久5区| 国产片内射在线| 亚洲 国产 在线| 久久精品国产亚洲av高清一级| av天堂久久9| 91字幕亚洲| 最近最新中文字幕大全免费视频| 久久青草综合色| 在线观看人妻少妇| 汤姆久久久久久久影院中文字幕| 亚洲av成人一区二区三| 他把我摸到了高潮在线观看 | 99久久综合免费| 久久狼人影院| 黄色片一级片一级黄色片| 欧美精品啪啪一区二区三区 | 精品一区在线观看国产| 亚洲伊人色综图| 久久久久久久久久久久大奶| 黄色毛片三级朝国网站| 久久亚洲精品不卡| 精品一区二区三区四区五区乱码| 黑人巨大精品欧美一区二区mp4| 久久精品人人爽人人爽视色| 久久久精品94久久精品| 国产精品影院久久| 18在线观看网站| 美女福利国产在线| 久久毛片免费看一区二区三区| 日韩有码中文字幕| 久久国产精品影院| 中文字幕另类日韩欧美亚洲嫩草| 精品少妇久久久久久888优播| 亚洲成人免费av在线播放| 69av精品久久久久久 | 自线自在国产av| 国产精品 国内视频| 在线观看免费高清a一片| 久热这里只有精品99| 午夜老司机福利片| 久久人人爽人人片av| 成在线人永久免费视频| 成人18禁高潮啪啪吃奶动态图| 久久人人97超碰香蕉20202| 欧美精品人与动牲交sv欧美| 黑人操中国人逼视频| 久久中文看片网| 两人在一起打扑克的视频| 99热全是精品| 亚洲欧美一区二区三区黑人| 日日夜夜操网爽| 一区二区日韩欧美中文字幕| 桃花免费在线播放| 午夜视频精品福利| 老鸭窝网址在线观看| 91精品国产国语对白视频| 午夜福利一区二区在线看| 操出白浆在线播放| 精品少妇一区二区三区视频日本电影| 女性生殖器流出的白浆| 日本一区二区免费在线视频| 丰满少妇做爰视频| 亚洲国产毛片av蜜桃av| 国产亚洲精品久久久久5区| 国产97色在线日韩免费| 在线 av 中文字幕| 两个人免费观看高清视频| av网站免费在线观看视频| 高清av免费在线| 欧美精品啪啪一区二区三区 | 欧美精品一区二区大全| 熟女少妇亚洲综合色aaa.| 不卡av一区二区三区| 免费黄频网站在线观看国产| 亚洲精品中文字幕一二三四区 | av天堂久久9| 亚洲精品第二区| 国产欧美日韩一区二区三 | 久久热在线av| 亚洲精品中文字幕在线视频| av有码第一页| 国产区一区二久久| 国产精品熟女久久久久浪| 在线观看一区二区三区激情| 久久久久久久久久久久大奶| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美激情在线| 久久中文看片网| 成人手机av| 久久热在线av| 国产精品麻豆人妻色哟哟久久| 后天国语完整版免费观看| 在线十欧美十亚洲十日本专区| 岛国毛片在线播放| 91大片在线观看| 免费黄频网站在线观看国产| 国产国语露脸激情在线看| 欧美成人午夜精品| 精品免费久久久久久久清纯 | 欧美大码av| 亚洲成人免费av在线播放| 成人黄色视频免费在线看| 欧美激情久久久久久爽电影 | 亚洲国产av影院在线观看| 亚洲熟女毛片儿| 免费女性裸体啪啪无遮挡网站| 啦啦啦在线免费观看视频4| 另类亚洲欧美激情| 亚洲第一欧美日韩一区二区三区 | 久久国产精品男人的天堂亚洲| 国产极品粉嫩免费观看在线| 亚洲人成77777在线视频| 中文字幕最新亚洲高清| 午夜福利乱码中文字幕| 久久久久视频综合| 韩国精品一区二区三区| 99香蕉大伊视频| 一级黄色大片毛片| 日本a在线网址| 国产免费视频播放在线视频| 亚洲av美国av| 黑人猛操日本美女一级片| 极品少妇高潮喷水抽搐| 在线观看免费午夜福利视频| 韩国高清视频一区二区三区| 永久免费av网站大全| 午夜日韩欧美国产| 久久久水蜜桃国产精品网| 久久久久精品国产欧美久久久 | 一进一出抽搐动态| 超碰97精品在线观看| 1024视频免费在线观看| 美女国产高潮福利片在线看| 中文字幕人妻丝袜制服| netflix在线观看网站| 久久久久精品人妻al黑| 精品一区二区三区av网在线观看 | 亚洲精品美女久久av网站| 欧美另类一区| 男女无遮挡免费网站观看| 亚洲免费av在线视频| 好男人电影高清在线观看| 国产一区二区三区av在线| 少妇 在线观看| 男女下面插进去视频免费观看| 午夜91福利影院| 啦啦啦 在线观看视频| av天堂久久9| 午夜福利乱码中文字幕| 美女扒开内裤让男人捅视频| 日韩 欧美 亚洲 中文字幕| 久久久久久亚洲精品国产蜜桃av| 人人妻,人人澡人人爽秒播| 99香蕉大伊视频| 亚洲精品在线美女| 亚洲人成电影观看| 亚洲三区欧美一区| 免费看十八禁软件| 色老头精品视频在线观看| 男女床上黄色一级片免费看| 桃花免费在线播放| 又黄又粗又硬又大视频| 国产淫语在线视频| 一区二区三区精品91| 青青草视频在线视频观看| 亚洲av成人不卡在线观看播放网 | 国产老妇伦熟女老妇高清| 亚洲精品美女久久久久99蜜臀| 夜夜夜夜夜久久久久| 老司机在亚洲福利影院| 亚洲精品粉嫩美女一区| 狂野欧美激情性xxxx| 久久人人爽人人片av| 性高湖久久久久久久久免费观看| 久久久久久亚洲精品国产蜜桃av| 亚洲国产精品成人久久小说| 国产主播在线观看一区二区| 视频在线观看一区二区三区| svipshipincom国产片| 午夜日韩欧美国产| 欧美日韩黄片免| 国产av一区二区精品久久| 国产免费福利视频在线观看| 一本色道久久久久久精品综合| 亚洲成人手机| 一边摸一边抽搐一进一出视频| 一区二区三区激情视频| 日本欧美视频一区| 国产精品一区二区在线观看99| 亚洲黑人精品在线| 亚洲天堂av无毛| 久久久精品94久久精品| 欧美国产精品va在线观看不卡| 男人舔女人的私密视频| 在线精品无人区一区二区三| 欧美亚洲 丝袜 人妻 在线| 熟女少妇亚洲综合色aaa.| 亚洲精品国产av成人精品| 亚洲少妇的诱惑av| 性高湖久久久久久久久免费观看| 欧美日韩视频精品一区| 久久ye,这里只有精品| 在线亚洲精品国产二区图片欧美| 老鸭窝网址在线观看| 色播在线永久视频| 欧美变态另类bdsm刘玥| 久久久精品国产亚洲av高清涩受| 欧美国产精品va在线观看不卡| 国产一卡二卡三卡精品| 中文欧美无线码| 我要看黄色一级片免费的| 99re6热这里在线精品视频| 亚洲国产欧美在线一区| 999精品在线视频| 日本a在线网址| 久久青草综合色| 日本五十路高清| 最新的欧美精品一区二区| 美国免费a级毛片| 日韩 欧美 亚洲 中文字幕| 久久久精品国产亚洲av高清涩受| 一本综合久久免费| 人妻一区二区av| 欧美日韩视频精品一区| 精品少妇内射三级| 国产不卡av网站在线观看| 在线av久久热| 999精品在线视频| 俄罗斯特黄特色一大片| 亚洲情色 制服丝袜| 午夜免费成人在线视频| 国产精品成人在线| 99国产精品一区二区三区| 色94色欧美一区二区| 国产人伦9x9x在线观看| 亚洲成人免费av在线播放| 久9热在线精品视频| 一边摸一边抽搐一进一出视频| 欧美老熟妇乱子伦牲交| 国产极品粉嫩免费观看在线| 一区二区三区乱码不卡18| 国产伦理片在线播放av一区| 操美女的视频在线观看| 亚洲中文字幕日韩| 欧美日韩亚洲综合一区二区三区_| 人人澡人人妻人| 日韩电影二区| 三级毛片av免费| 亚洲五月色婷婷综合| 99国产综合亚洲精品| 黄色怎么调成土黄色| h视频一区二区三区| 女人精品久久久久毛片| 免费在线观看影片大全网站| 国产精品 国内视频| 一区二区三区乱码不卡18| 亚洲精品美女久久久久99蜜臀| 免费久久久久久久精品成人欧美视频| 国产在线一区二区三区精| 日本av免费视频播放| 美女国产高潮福利片在线看| 黄色视频,在线免费观看| 一级毛片精品| 日韩三级视频一区二区三区| 亚洲色图综合在线观看| 伊人亚洲综合成人网| 青青草视频在线视频观看| 久久亚洲精品不卡| 国产男人的电影天堂91| 丁香六月天网| 国产国语露脸激情在线看| 日韩中文字幕欧美一区二区| 欧美日韩亚洲综合一区二区三区_| 欧美精品av麻豆av| 国产日韩欧美在线精品| 久久这里只有精品19| 国产成人欧美| 免费高清在线观看视频在线观看| 欧美激情久久久久久爽电影 | 亚洲国产精品成人久久小说| 亚洲av日韩精品久久久久久密| 91大片在线观看| 精品国产一区二区三区四区第35| 女警被强在线播放| 亚洲欧美激情在线| 国产成人精品久久二区二区91| 在线观看舔阴道视频| 岛国毛片在线播放| 人人澡人人妻人| 18禁国产床啪视频网站| 丁香六月欧美| 免费观看av网站的网址| 亚洲精品第二区| 美女主播在线视频| 国产成人系列免费观看| 成人18禁高潮啪啪吃奶动态图| 美女高潮到喷水免费观看| 高清欧美精品videossex| 午夜福利在线观看吧| 12—13女人毛片做爰片一| 国产成人免费观看mmmm| 考比视频在线观看| 久久国产亚洲av麻豆专区| 久久人妻熟女aⅴ| 少妇 在线观看| 中文字幕人妻熟女乱码| tube8黄色片| svipshipincom国产片| 十八禁网站网址无遮挡| 我要看黄色一级片免费的| 国产黄色免费在线视频| 久久久久久久国产电影| 91麻豆av在线| 99re6热这里在线精品视频| 亚洲欧美一区二区三区久久| 一级片免费观看大全| 不卡一级毛片| 国产成人欧美在线观看 | av在线老鸭窝| 搡老乐熟女国产| 久久久国产精品麻豆| 欧美激情久久久久久爽电影 | 啦啦啦中文免费视频观看日本| 叶爱在线成人免费视频播放| 亚洲欧美清纯卡通| 亚洲欧美精品自产自拍| 日韩 亚洲 欧美在线| 别揉我奶头~嗯~啊~动态视频 | 亚洲欧洲日产国产| 日本黄色日本黄色录像| 老司机深夜福利视频在线观看 | 午夜福利影视在线免费观看| 久久精品国产亚洲av高清一级| 黄网站色视频无遮挡免费观看| 久久久国产成人免费| 老熟妇仑乱视频hdxx| 最黄视频免费看| av在线老鸭窝| 天堂8中文在线网| 天天添夜夜摸| 国产精品1区2区在线观看. | 90打野战视频偷拍视频| 国产精品99久久99久久久不卡| 男人操女人黄网站| 亚洲第一av免费看| 看免费av毛片| 国产福利在线免费观看视频| 每晚都被弄得嗷嗷叫到高潮| 成人三级做爰电影| 99re6热这里在线精品视频| 日韩免费高清中文字幕av| 十八禁人妻一区二区| av天堂在线播放| 亚洲精品国产色婷婷电影| 91成年电影在线观看| 亚洲欧美精品综合一区二区三区| 人人妻人人澡人人看| 精品一区二区三卡| 国精品久久久久久国模美| 国产成人精品无人区| 成人av一区二区三区在线看 | 国产精品二区激情视频| 国产在视频线精品| 嫁个100分男人电影在线观看| 新久久久久国产一级毛片| 欧美大码av| 香蕉丝袜av| 亚洲熟女毛片儿| 久久久久久亚洲精品国产蜜桃av| 国产伦理片在线播放av一区| 夜夜骑夜夜射夜夜干| 亚洲美女黄色视频免费看| tube8黄色片| 国产成人av激情在线播放| 日本a在线网址| 老司机靠b影院| 熟女少妇亚洲综合色aaa.| 国产亚洲欧美在线一区二区| 亚洲专区国产一区二区| 操美女的视频在线观看| 人妻一区二区av| av不卡在线播放| 欧美亚洲 丝袜 人妻 在线| 精品亚洲成国产av| 精品国产乱子伦一区二区三区 | 国产精品久久久久久精品古装| 日韩大片免费观看网站| 一本一本久久a久久精品综合妖精| 搡老熟女国产l中国老女人| 亚洲五月婷婷丁香| 国产又爽黄色视频| 国精品久久久久久国模美| 亚洲国产欧美一区二区综合| 亚洲精品一区蜜桃| 成人影院久久| 国产伦人伦偷精品视频| 午夜视频精品福利| 男女高潮啪啪啪动态图| 久久国产精品大桥未久av| 久久久精品区二区三区| 婷婷丁香在线五月| 性高湖久久久久久久久免费观看| 亚洲精品第二区| 18禁裸乳无遮挡动漫免费视频| 亚洲精品美女久久久久99蜜臀| 亚洲午夜精品一区,二区,三区| 99久久国产精品久久久| 亚洲精品一二三| 欧美性长视频在线观看| 免费在线观看黄色视频的| 在线永久观看黄色视频| 亚洲专区字幕在线| 中文字幕人妻熟女乱码| 日韩欧美一区二区三区在线观看 | 日韩制服骚丝袜av| 亚洲男人天堂网一区| 欧美激情久久久久久爽电影 | 丰满少妇做爰视频| 制服诱惑二区| 国产精品香港三级国产av潘金莲| 亚洲成人手机| 国产色视频综合| 在线观看免费视频网站a站| 王馨瑶露胸无遮挡在线观看| 在线观看免费日韩欧美大片| 丝袜喷水一区| 多毛熟女@视频| 99re6热这里在线精品视频| 欧美少妇被猛烈插入视频| 我要看黄色一级片免费的| 亚洲七黄色美女视频| 97人妻天天添夜夜摸| 亚洲五月婷婷丁香| 另类精品久久| 久久这里只有精品19| 男人添女人高潮全过程视频| 男女国产视频网站| 国产在线视频一区二区| 亚洲欧美一区二区三区久久| 亚洲七黄色美女视频| 激情视频va一区二区三区|