章杰 徐菁銘 王蓓
[摘要] 約25%~30%乳腺癌為HER2陽性乳腺癌,近年來,雖然抗HER2分子靶向藥曲妥珠單抗顯著改善HER2陽性乳腺癌的治療策略和預后,但原發(fā)性或繼發(fā)性曲妥珠單抗耐藥越來越受到關注,臨床耐藥現(xiàn)象亦尚未完全闡明。脂肪酸合成酶(fatty acid synthase,F(xiàn)ASN)是內(nèi)源性脂肪酸從頭合成途徑的關鍵酶,F(xiàn)ASN過表達與HER2陽性乳腺癌復發(fā)和預后密切相關,并在曲妥珠耐藥中發(fā)揮重要作用,有望成為規(guī)避曲妥珠單抗耐藥的新靶點,本文就該機制進展作一綜述。
[關鍵詞] HER2陽性乳腺癌;脂肪酸合成酶;曲妥珠單抗;耐藥機制
[中圖分類號] R735.2 ? ? ? ? ?[文獻標識碼] A ? ? ? ? ?[文章編號] 1673-9701(2020)12-0179-05
[Abstract] About 25%-30% of breast cancers are HER2-positive breast cancers. In recent years, although the anti-HER2 molecule targeting drug trastuzumab has significantly improved the treatment strategy and prognosis of HER2-positive breast cancer, primary or secondary trastuzumab resistance has received increasing attention, and clinical resistance has not been fully elucidated. Fatty acid synthase(FASN) is a key enzyme in the de novo synthesis pathway of endogenous fatty acids. FASN overexpression is closely related to the recurrence and prognosis of HER2-positive breast cancer, and plays an important role in trastuzumab resistance. It is expected to become a new target for avoiding trastuzumab resistance. This article reviews the progress of the mechanism.
[Key words] HER2-positive breast cancer; Fatty acid synthase(FASN); Trastuzumab; Drug resistance mechanism
據(jù)美國國家癌癥中心2019年發(fā)布的數(shù)據(jù)顯示,美國乳腺癌依然占女性惡性腫瘤的首位,約有380萬女性有乳腺癌病史,新發(fā)268 600例,乳腺癌已嚴重影響女性健康[1]。乳腺癌分子分型中約25%~30%的乳腺癌為人表皮生長因子受體-2(Human epidermal growth factor receptor-2,HER2)陽性乳腺癌,該類型乳腺癌浸潤強,預后差[2]。雖然HER2靶向藥物曲妥珠單抗(Trastuzumab)聯(lián)合化療可延長輔助、新輔助及晚期HER2陽性乳腺癌患者的無進展生存期(Time to progress,TTP)和總生存期(Overall survival,OS),但臨床研究表明70%的HER2陽性乳腺癌對曲妥珠單抗并無反應,聯(lián)合化療反應率也僅50%,即使最初曲妥珠單抗敏感的乳腺癌也大部分在1年內(nèi)出現(xiàn)進展[3,4]。因此,有關曲妥珠單抗先天性或繼發(fā)性耐藥的機制一直是研究熱點。目前已明確曲妥珠單抗耐藥與下列因素有關:曲妥珠單抗新輔助治療后腫瘤HER2陽性在體內(nèi)轉(zhuǎn)化為HER2陰性;腫瘤具有酶活性的p95HER2亞型突變;HER家族其他成員如HER1、HER3和HER4等過度表達或異常激活;PTEN丟失致PI3K/AKT/mTOR通路異常激活;功能性PI3KCA突變和AKT突變等[5,6]。為規(guī)避曲妥珠單抗耐藥,臨床優(yōu)化曲妥珠單抗聯(lián)合化療方案、聯(lián)合或序貫酪氨酸酶抑制劑、與帕妥珠單抗雙靶治療以及曲妥珠單抗-美坦辛偶聯(lián)物(Ado-trastuzumab emtansine,T-DM1)等手段,雖然顯著改善HER2陽性乳腺癌的治療結(jié)局[6,7],但臨床耐藥現(xiàn)象仍尚未完全闡明。因此,尋找新的規(guī)避曲妥珠單抗耐藥手段是目前科研和臨床共同關注的課題。內(nèi)源性脂肪酸代謝是合成代謝和能量儲存過程,在正常生理條件下不發(fā)揮主要調(diào)節(jié)作用,但對于腫瘤細胞是能量代謝和增殖的基礎,脂肪酸合成酶(Fatty acid synthase,F(xiàn)ASN)是內(nèi)源性脂肪酸合成的關鍵酶。近年來,F(xiàn)ASN在HER2陽性乳腺癌曲妥珠單抗耐藥過程中發(fā)揮的作用越來越受到重視,有望成為規(guī)避曲妥珠單抗耐藥的腫瘤代謝新靶點[8],本文就該機制研究現(xiàn)狀予以綜述。
1 FASN調(diào)控脂質(zhì)代謝促進腫瘤增殖概述
1.1 FASN概述
腫瘤細胞代謝重編程是腫瘤的標志之一,腫瘤脂質(zhì)代謝與腫瘤調(diào)控網(wǎng)絡間相互作用可促進腫瘤發(fā)生發(fā)展,致癌性生長信號通過調(diào)節(jié)脂質(zhì)、葡萄糖和谷氨酰胺等代謝以適應腫瘤細胞的快速增殖[9]。內(nèi)源性脂肪酸合成是腫瘤細胞脂質(zhì)代謝促進腫瘤增殖的核心過程,而FASN是內(nèi)源性脂肪酸乙酰輔酶A從頭合成的關鍵酶。FASN為同源二聚體多功能酶蛋白,分子質(zhì)量540 kDa,是由β-羥脂酰脫水酶、β-酮脂酰還原酶、β-酮脂酰合成酶、乙?;D(zhuǎn)移酶和丙二酰基轉(zhuǎn)移酶等七種酶聚合形成的多酶復合體,以乙酰輔酶A為引物,丙二酰單酰輔酶A為二碳的載體,依賴NADPH為還原劑,催化長鏈脂肪酸的從頭合成,是調(diào)控棕櫚酸酯合成的終止步驟[10]。正常細胞一般優(yōu)先利用膳食脂肪酸,脂肪酸內(nèi)源性合成極少,而腫瘤細胞對脂肪酸需求大,F(xiàn)ASN基因常高表達,并且與腫瘤進展、耐藥及預后不良有關[11]。因此,F(xiàn)ASN有望作為腫瘤代謝新靶點。
[5] Brand?觔o M,Pondé NF,Poggio F,et al.Combination therapies for the treatment of HER2-positive breast cancer:Current and future prospects[J]. Expert Rev Anticancer Ther,2018,18(7):629-649.
[6] Jiang N,Lin JJ,Wang J,et al.Novel treatment strategies for patients with HER2-positive breast cancer who do not benefit from current targeted therapy drugs[J]. Exp Ther Med, 2018,16(3):2183-2192.
[7] Xu Z,Guo D,Jiang Z,et al.Novel HER2-targeting antibody-drug conjugates of trastuzumab beyond T-DM1 in breast cancer:Trastuzumab deruxtecan(DS-8201a) and (Vic-)trastuzumab duocarmazine(SYD985)[J]. Eur J Med Chem,2019,183:111682.
[8] Menendez JA,Lupu R.Fatty acid synthase(FASN) as a therapeutic target in breast cancer[J]. Expert Opin Ther Targets,2017,21(11):1001-1016.
[9] Cheng C,Geng F,Cheng X,et al. Lipid metabolism reprogramming and its potential targets in cancer[J].Cancer Commun (Lond),2018,38(1):27.
[10] Zhang JS,Lei JP,Wei GQ,et al.Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review[J]. Pharm Biol,2016,54(9):1919-1925.
[11] Angeles TS,Hudkins RL.Recent advances in targeting the fatty acid biosynthetic pathway using fatty acid synthase inhibitors[J].Expert Opin Drug Discov,2016,11(12):1187-1199.
[12] Koundouros N,Poulogiannis G.Reprogramming of fatty acid metabolism in cancer[J]. Br J Cancer,2020,122(1):4-22.
[13] Ventura R,Mordec K,Waszczuk J,et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes,inhibiting signaling pathways,and reprogramming gene expression[J]. E Bio Medicine,2015,2(8):808-824.
[14] Cui J,Diao J,Sun T,et al.13C Metabolic flux analysis of enhanced lipid accumulation modulated by ethanolamine in crypthecodinium cohnii[J]. Front Microbiol,2018,9:956.
[15] Guo D,Bell EH,Mischel P,et al.Targeting SREBP-1-driven lipid metabolism to treat cancer[J]. Curr Pharm Des,2014,20(15):2619-2626.
[16] Zhu W,Lv C,Wang J,et al. Patuletin induces apoptosis of human breast cancer SK-BR-3 cell line via inhibiting fatty acid synthase gene expression and activity[J]. Oncol Lett,2017,14(6):7449-7454.
[17] Monaco ME. Fatty acid metabolism in breast cancer subtypes[J].Oncotarget,2017,8(17):29487-29500.
[18] Corominas-Faja B,Vellon L,Cuyàs E,et al. Clinical and therapeutic relevance of the metabolic oncogene fatty acid synthase in HER2+breast cancer[J].Histol Histopathol,2017,32(7):687-698.
[19] Dumortier M,Ladam F,Damour I,et al. ETV4 transcription factor and MMP13 metalloprotease are interplaying actors of breast tumorigenesis[J].Breast Cancer Res,2018, 20(1):73.
[20] Alwarawrah Y,Hughes P,Loiselle D,et al.Fasnall,a selective FASN inhibitor,shows potent anti-tumor activity in the MMTV-Neu Model of HER2(+) breast cancer[J]. Cell Chem Biol,2016,23(6):678-688.
[21] Puig T,Aguilar H,Cufí S,et al. A novel inhibitor of fatty acid synthase shows activity against HER2+ breast cancer xenografts and is active in anti-HER2 drug-resistant cell lines[J]. Breast Cancer Res,2011,13(6):R131.
[22] Jones SF,Infante JR. Molecular pathways:Fatty acid synthase[J]. Clin Cancer Res,2015,21(24):5434-5438.
[23] Furukawa K,Ohmi Y,Ohkawa Y,et al.New era of research on cancer-associated glycosphingolipids[J]. Cancer Sci,2019,110(5):1544-1551.
[24] Menendez JA.Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth:Molecular mechanisms and therapeutic perspectives[J]. Biochim Biophys Acta,2010,1801(3):381-391.
[25] Blancafort A,Giró-Perafita A,Oliveras G,et al.Dual fatty acid synthase and HER2 signaling blockade shows marked antitumor activity against breast cancer models resistant to anti-HER2 drugs[J]. PLoS One,2015,10(6):e0131241.
[26] Zhao M,Zhang Z.Glucose transporter regulation in cancer:A profile and the loops[J]. Crit Rev Eukaryot Gene Expr,2016,26(3):223-238.
[27] Bollu LR,Katreddy RR,Blessing AM,et al.Intracellular activation of EGFR by fatty acid synthase dependent palmitoylation[J].Oncotarget,2015,6(33):34992-35003.
[28] Wu X,Dong Z,Wang CJ,et al. FASN regulates cellular response to genotoxic treatments by increasing PARP-1 expression and DNA repair activity via NF-κB and SP1[J].Proc Natl Acad Sci USA,2016,113(45):E6965-E6973.
[29] Kinlaw WB,Baures PW,Lupien LE,et al. Fatty acids and breast cancer: Make them on site or have them delivered[J]. J Cell Physiol,2016,231(10):2128-2141.
[30] Deshmukh SK,Singh AP,Singh S.ETV4:An emerging target in pancreatic cancer[J]. Oncoscience,2018,5(9-10):260-261.
[31] Kherrouche Z,Monte D,Werkmeister E,et al.PEA3 transcription factors are downstream effectors of Met signaling involved in migration and invasiveness of Met-addicted tumor cells[J]. Mol Oncol,2015,9(9):1852-1867.
[32] Schcolnik-Cabrera A,Chávez-Blanco A,Domínguez-Gómez G,et al. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy[J]. Expert Opin Investig Drugs,2018,27(5):475-489.
[33] Menendez JA,Lupu R.Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells[J]. Oncogenesis,2017,6(2):e299.
(收稿日期:2020-02-10)