• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    三維無溶劑含能Ag-MOF的制備、熱分解動力學(xué)及爆炸性能

    2020-06-30 09:47:12喬成芳呂磊許文風(fēng)夏正強周春生陳三平高勝利
    物理化學(xué)學(xué)報 2020年6期
    關(guān)鍵詞:無溶劑商洛陜西省

    喬成芳,呂磊,許文風(fēng),夏正強,周春生,陳三平,*,高勝利,

    1商洛學(xué)院化學(xué)工程與現(xiàn)代材料學(xué)院,陜西省尾礦資源綜合利用重點實驗室,陜西 商洛 726000

    2西北大學(xué)化學(xué)與材料科學(xué)學(xué)院,教育部合成與天然功能分子化學(xué)重點實驗室,西安 710127

    3延安大學(xué)化學(xué)與化工學(xué)院,陜西省化學(xué)反應(yīng)工程重點實驗室,陜西 延安 716000

    1 Introduction

    The development of new energetic materials with high energy,low sensitivity, and good thermal stability is always desirable1.Nowadays the main attention has been paid on the design and synthesis of high energy density single compound explosive,which is formed by combining the high-energy or explosive groups (―NO2, ―ONO2, ―N3,etc.) and energetic skeletons(such as the nitrogen-rich heterocycles: furazan, tetrazole,triazole, tetrazine,etc.) in one molecule2-4. However, the sensitivity of materials rapidly increases with the rising energy density, resulting in the restriction of mass production and extensive application5,6. Recently, energetic metal-organic frameworks (EMOFs) constructed by high-energy ligands bridging metal ions have been demonstrated to be one of the most acceptable strategies to harmonize the above-mentioned con flict between energy and safety performance of energetic materials7,8. On one hand, abundant high-energy ligands are highly aggregated and regularly distributed within limited space by robust coordination bonds to improve the energy density of material and give remarkable heats of detonation9. On the other hand, rich supramolecular interactions (such as H-bonds andππstacking) among the multiple framework components are very beneficial to enhance thermostability and reduce insensitivity10,11. Meanwhile, compared to the 1D and 2D EMOFs, 3D EMOFs generally provide higher structural stability and more superior energetic property owing to their more complicated coordination modes and reinforced structures12.

    However, the assembly process of EMOFs is often controlled by thermodynamics and kinetics, and the resulting structures are always unpredictable. The solvent molecules can randomly diffuse into the channels of EMOFs, occupy the lattice or coordinate to metal centers13. Their existence will undoubtedly reduce the energy density of EMOFs, leading to decreased heats of detonation14. And at the same time, the heat-release of the solvent molecules will easily cause pressure at low temperature region and further reduce the stability of EMOFs15. Therefore,the synthesis of solvent-free EMOF is one of the most efficient ways to obtain energetic materials with excellent performances.

    The latest research of our group has successfully synthesized some solvent-free EMOFs with superior detonation performances and low sensitivity16,17, in which the orthobistetrazole ligands featuring large steric hindrance effect and strong chelation coordination ability play an important role in hindering the solvents to be incorporated in EMOFs. So a nitrogen-rich heterocyclic ligand, 2,3-di(1H-tetrazol-5-yl)pyrazine (H2DTPZ), is designed and synthesized to construct the EMOFs based on the following three reasons: i) a high nitrogen content of 65% provides the energy source of EMOF;ii) the ten nitrogen atoms act as strong multidentate coordination sites to occupy the coordination sphere of metal center and prevent the coordination of solvent molecules; iii) the noncoplanar torsions between pyrazine and tetrazole rings are beneficial to produce large steric hindrance or interpenetration for reducing the available void and impeding lattice solvents.Herein, a 3D solvent-free EMOF, [Ag2(DTPZ)]n(1), is synthesized under hydrothermal conditions by the reaction of H2DTPZ ligand and silver(I) ions. The crystal structure, thermal stability, non-isothermal kinetics analysis of the decomposition process, and corresponding thermodynamic parameter of 1 are discussed in detail. Additionally, the detonation and safety performance show that 1 is insensitive to impact and friction, and the detonation performance is superior to that of TNT. The results suggest that the 3D solvent-free EMOFs are promising high energy density materials and could be used in the field of explosives and propellants.

    2 Experimental section

    2.1 Materials and instruments

    Caution! H2DTPZ and compound 1 are hazardous materials,explosions of which may occur in certain conditions.Appropriate safety precautions such as the use of safety glasses,face shields and plastic spatulas should be taken during the experiments, especially when the compounds are prepared on a large scale.

    All chemicals were of analytical grade, purchased from commercial sources and used without further purification.H2DTPZ was synthesized according to the published procedures18. Elemental analyses of C, H and N were performed on a Vario EL III analyzer (Elementar, Germany). Infrared (IR)spectra were recorded on a Tensor 27 spectrometer (Bruker Optics, Ettlingen, Germany) with KBr pellets (4000-400 cm?1).Powder X-ray diffraction (PXRD) measurements were performed on a Rigaku RU200 diffractometer (Rigaku Corporation, Japan) (CuKα,λ= 0.15406 nm).Thermogravimetric analysis (TGA) was conducted on a Netzsch STA 449C instrument (Germany) under a N2atmosphere with a heating rate of 10 °C·min?1from ambient temperature up to 800 °C. The differential scanning calorimetry (DSC) experiment was performed on a CDR-4P thermal analyzer of Shanghai Balance Instrument factory (calibrated by standard pure indium and zinc) from 30 to 500 °C in a nitrogen flow. The sensitivity to impact stimuli was determined by fall hammer apparatus applying standard staircase method using a 2 kg drop weight and the results were reported in terms of height for 50% probability of explosion (h50%)19. The friction sensitivity was determined on a Julius Peter’s apparatus by following the BAM method20. The constant-volume combustion energy of the compound was determined using a precise rotating-bomb calorimeter (RBC-type II, Mianyang Zhongwu Thermal Analysis Instrument Co.LTD, China)21.

    2.2 Synthesis of [Ag2(DTPZ)]n (1)

    A mixture of H2DTPZ (5.4 mg, 0.025 mmol), AgNO3 (8.5 mg,0.05 mmol) in H2O (8 mL) was sealed in a 15 mL Teflon-liner stainless autoclave and heated at 160 °C for 72 h. After cooling to room temperature at a rate of 5 °C·h?1, yellow rod-shaped crystals were obtained (yield: 51%, based on AgI). Anal. Calcd.for AgC3HN5(%): C, 16.76; H, 0.47; N, 32.58 Found: C, 16.69;H, 0.89; N, 32.78. IR (KBr, cm?1): 3493s, 2270w, 1720w, 1630s,1481w, 1150m, 1020w, 752w, 691m, 514w. The phase purity of the bulk sample of 1 was verified by the PXRD patterns (Fig. S1,in Supporting Information).

    2.3 X-ray crystallography

    Table 1 Crystallographic data for the compound 1.

    Single-crystal XRD data were collected on a Bruker Smart Apex CCD diffractometer equipped with graphite monochromatized MoKαradiation source (λ= 0.071073 nm)usingωandφscan mode. The crystal structure was solved by direct methods and refined with full-matrix least-squares refinements based onF2using SHELXS-97 and SHELXL-9722,23.All non-hydrogen atoms were located using subsequent Fourierdifference methods and refined anisotropically. Hydrogen atoms were placed in calculated positions. The Crystallographic data of compound 1 are summarized in Table 1, selected bond lengths and angles are shown in Table 2. CCDC 1544023 contains the supplementary crystallographic data of 1. These data can be obtained free of charge from The Cambridge Crystallographic Data Centreviawww.ccdc.cam.ac.uk/data_request/cif; e-mail:deposit@ccdc.cam.ac.uk.

    Table 2 Selected bond lengths (nm) and bond angles (o) for 1.

    Fig. 1 (a) Coordination environment of AgI ions.(b) Coordination model of the DTPZ2? ligand. 3D frameworks of compound 1 viewed along the a axis (c) and b axis (d).

    3 Results and discussion

    3.1 Structural description

    Singe-crystal X-ray diffraction reveals that compound 1 crystallizes in the monoclinic space groupC2/c. The asymmetric unit consists of one crystallographically independent AgIcenter and half deprotonated DTPZ2?anion, and there is no solvent molecule in the structure. As shown in Fig. 1a, each AgIion is coordinated by three N atoms of three independent tetrazole rings from three different DTPZ2?ligands and one N atom of pyrazine ring from another DTPZ2?ligand to furnish a distorted tetrahedral geometry. The Ag-N distances are ranging from 0.2214(3) to 0.2507(3) nm, and the coordination angles around AgIcenters vary from 86.32(11)° to 139.63(12)° (Table 2),which are both within normal ranges and comparable with those observed in the reported AgI-tetrazole compounds24,25.Moreover, the configuration of DTPZ2?twists heavily, and the dihedral angle between two tetrazole rings is 46.7°, the dihedral angle between tetrazole ring and pyrazine plane is 45.5°. Each DTPZ2?ligand links eight AgIcenters with an octadentate mode(Fig. 1b) extending in all three dimensions to form a 3D microporous EMOFs (Fig. 1c). Notably, the strongπ-πstacking interactions [centroid-centroid distance = 0.34461(1) nm]between the parallel distributed tetrazole rings (C1N1N2N3N4)from different DTPZ2?ligands can be observed (Fig. S2), which could benefit the stability of framework. Along theb-axis, 1D rhombus channels with the window size of 3.44 ? × 3.50 ? can be observed. PLATON analysis shows that the effective free volume of EMOFs is 7.8% of the crystal volume26. Such a low porosity value could be interpreted by the flexible torsion of DTPZ2?, and the large steric hindrance occupies the most effective void of 1.

    3.2 Thermal stability

    Thermal stability is an important evaluation index for energetic materials. The thermal decomposition behavior of 1 was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) technology. As shown in Fig. 2a, the solvent-free framework remains stable up to 345.9 °C and then undergoes one-step of fast weight loss within the short temperature range of 346-426 °C, suggesting good thermal stability and potential explosive characteristic of 1. The rapid weight loss can be attributed to the decomposition of the organic ligand and the collapse of framework. The remaining substance still experiences continuous very slow mass losses and does not stop until 800 °C. The high thermal stability of 1 may be due to the solvent-free characteristics of the system and abundant robust coordination bonds and strongπ-πstacking interactions within the 3D framework.

    Fig. 2 The TG (a) and DSC (b) curves of 1.

    For the DSC curve of 1, an intense exothermic process occuring at 345.5 °C and ends at 422.2 °C with a peak temperature of 385.5 °C represents the sharp energy release of the energetic components in 1, which is almost identical to the phenomenon observed on the TG curve (Fig. 2b). The sharp exothermic peak at 385.5 °C on DSC curve corresponds to the fastest decomposition process.

    Table 3 Thermokinetic and apparent thermodynamic parameters of the exothermic decomposition reaction of 1.

    3.3 Non-isothermal thermoanalysis kinetics

    The thermokinetics parameters of the decomposition process of 1 were discussed by the widely used Kissinger and Ozawa-Doyle methods27,28. The Kissinger (Eq. 1) and Ozawa-Doyle(Eq. 2) equations are as follows, respectively:

    whereEis the apparent activation energy (kJ·mol?1),Ais the pre-exponential factor (s?1),βis the linear heating rate (K·min?1),Tpis the peak temperature (K),Ris the gas constant (8.314 J·mol?1·K?1) andCis a constant. Based on the exothermic peak temperatures measured at four different heating rates of 2, 5, 8,and 10 K·min?1(Fig. S3), the apparent activation energiesEkandEo, the pre-exponential factorAk, and the linear correlation coefficientsRkandRoare listed in Table 3. Apparently, the decomposition peak temperatureTpincreases with the increase of heating rate, and the apparent activation energies calculated by the two methods basically agree with each other and both are within the normal range of deviation allowed. The Arrhenius equation can further be expressed by using the obtainedEa(the average ofEkandEo) and the lgAvalues, as follows: lgk= 19.67? 270.52 × l03/(2.303RT), which can be used to estimate the rate constant of the decomposition process of 1.

    The important thermodynamic parameters, the entropy of activation (ΔS≠), the enthalpy of activation (ΔH≠), and the free energy of activation (ΔG≠) of the exothermic decomposition reaction were calculated according to the following Eqs. 3-529.

    wherekBis the Boltzmann constant,Tp0is the peak temperature point corresponding toβ→ 0,his the Planck constant,Ea=EkandA=Ak. The positive values of ΔG≠and ΔH≠indicate that the thermodecomposition reaction of 1 is a non-spontaneous entropy-driven process (Table 3).

    3.4 Critical temperature of thermal explosion

    The critical temperature of thermal explosion (Tb) and the selfaccelerating decomposition temperature (TSADT) are important indicators for the thermal safety of energetic materials during storage and operation30. Therefore, based on the values (Te0orTp0) of the initial temperature point corresponding toβ→ 0 obtained from Eq. 6, the Eqs. 7 and 8 are applied to determine the values ofTbandTSADTfor 131:

    wherea,bandcare coefficients,Te0represents the extrapolated onset temperature corresponding toβ→ 0. The high values(TSADT= 595.8 K andTb= 607.1 K) of 1 indicate that the solventfree Ag-MOF 1 possesses better thermal safety than some common explosives, such as HMX, CL-20 and FOX-7 (Table 4) 29,32-34.

    3.5 Oxygen bomb calorimetry

    The constant-volume combustion energy of 1 was determined with a precise rotating-oxygen bomb calorimeter (RBC-type II)21.Approximately 200 mg of the samples were pressed with an 800 mg of benzoic acid to form a tablet to ensure better combustion.The recorded data are the average of six single measurements.The calorimeter was calibrated by the combustion of certified benzoic acid (Standard Reference Material, 39i, NIST) in an oxygen atmosphere at a pressure of 3.05 × 106Pa. After six tests,the experimental result for the constant-volume combustion energy (Qv) of 1 is ?3509.90 ± 1.22 kJ·mol?1. On the basis of the combustion reaction equation of 1 (Eq. 9), the standard molar enthalpy of combustion (ΔcHm?) of 1 can be calculated to be(?3504.94 ± 1.22) kJ·mol?1according to the following Eq. 10:

    where Δng is the change in the number of gas constituents in the reaction process (Δng= 2),T= 298.15 K. Given the known standard molar enthalpies of formation of Ag2O(s) (?31.00 kJ·mol?1), CO2(g) (?393.51 ± 0.13 kJ·mol?1) and H2O(l)(?285.83 ± 0.04 kJ·mol?1)35, the standard enthalpy of formation(ΔfHm?) of 1 can be derived as being (2165.99 ± 0.81) kJ·mol?1by using the Hess law and the Eq. 11.

    3.6 Detonation properties

    Table 4 The thermal safety parameters of 1 and some common explosives.

    Table 5 Physicochemical properties of 1 and some reported energetic materials.

    On the basis of the largest exothermic principle proposed by Kamlet-Jacobs36, an empirical method is employed to investigate the detonation properties of metal-containing explosives37. In such metal explosive systems, the most stable products of detonation reaction were assumed under the constraints of stoichiometrically available oxygen38. Therefore,for 1, nitrogen, carbon, and ammonia were assumed to be the final products of decomposition of the organic part of the framework and the formation of metallic state was assumed to be governed by the deficiency of oxygen36. The complete detonation reaction considered is described by Eq. 12, and the detonation properties are calculated by Kamlet-Jacobs Eqs. 13-16 as follows:

    whereDis detonation velocity (km·s?1),Pis detonation pressure(GPa),Nis moles of detonation gases per gram of explosive,Mis average molecular weight of the gases,Qis heat of detonation(kJ·g?1),ρis density of explosive (g·cm?3). According to the known enthalpies of formation of NH3(g) (?46.00 kJ·mol?1) and AgC3HN5(s) (2165.99 kJ·mol?1), the heat of detonation of 1 can be calculated as 10.15 kJ·g?1. Based on the above Eqs. 13-15,the detonation velocity and detonation pressure can be further obtained and listed in Table 524,38-42. The results show that the EMOF 1 exhibits comparable detonation velocity and detonation pressure to TNT and much higher detonation heat than those of the common high explosives and some reported solvent-free Agbasd EMOFs.

    3.7 Detonation properties

    Impact sensitivity test of 1 was performed on the Fall Hammer Apparatus. 20 mg of 1 was compacted to a copper cap under the press of 39.2 MPa and hit by 2 kg drop hammer. The calculated value ofh50%represents the drop height of 50% initiation probability. The test results show that the EMOF 1 do not fire at the highest point of 200 cm (h50%) corresponding to an impact energy of 40 J, suggesting that 1 has much lower impact sensitivity than that of HMX (7.4 J) (Table 5). Meanwhile, the friction sensitivity of 1 was measured by applying a Julius Peter’s machine using 20 mg sample, and no friction sensitivity was observed up to 360 N. The results reveal that 1 is insensitive to external stimuli, which may be ascribed to the rigid skeleton structure.

    4 Conclusions

    In summary, a new solvent-free energetic MOF [Ag2(DTPZ)]n(1) was synthesized and structurally characterized. The richnitrogen multidentate ligand DTPZ2?adopting special torsion configuration bridges AgIcenters to form 3D framework, in which no solvent molecules coordinate the metal or occupy the free space of channel. The dense structure endow 1 with high thermostability (Tp= 658.7K) and good thermal safety (TSADT=595.8 K,Tb = 607.1 K). Thermal analysis tests show the typical explosive performance of EMOF 1 based on the abrupt one-step decomposition from TG curve and sharp heat release form DSC curve. The heat of detonation and safety of 1 (Q= 10.15 kJ·g?1,IS > 40 J and FS > 360 N) are superior to those of traditional energetic materials (HMX, RDX and TNT) and many reported Ag(I)-EMOFs, indicating that 1 is a promising insensitivity HEDM and can be applied to explosives and propellants.

    Supporting Information: available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

    猜你喜歡
    無溶劑商洛陜西省
    陜西省自強中等專業(yè)學(xué)校簡介
    陜西商洛:創(chuàng)出菌蔬輪種發(fā)展新模式
    陜西省抓黨建促脫貧攻堅的實踐與思考
    聚焦兩會
    陜西畫報(2018年1期)2018-11-17 19:33:14
    陜西省閱讀文化節(jié)
    商洛水源地生態(tài)經(jīng)濟區(qū)劃分析
    SO42-/TiO2-SnO2固體超強酸無溶劑催化合成季戊四醇硬脂酸酯
    淡水艙無溶劑環(huán)氧施工工藝研究
    商洛加快培育千億元新能源汽車產(chǎn)業(yè)集群
    2015中國國際合成革展覽會刮起“無溶劑合成革”風(fēng)暴
    西部皮革(2015年15期)2015-02-28 18:14:36
    久久久久国产一级毛片高清牌| 少妇的丰满在线观看| 搡老岳熟女国产| 国语自产精品视频在线第100页| xxx96com| 亚洲美女黄片视频| 一级毛片精品| 女人被狂操c到高潮| 成在线人永久免费视频| 国产视频内射| 九九久久精品国产亚洲av麻豆 | 别揉我奶头~嗯~啊~动态视频| 99久久精品热视频| 日本黄色视频三级网站网址| 在线观看舔阴道视频| 制服人妻中文乱码| 精品一区二区三区四区五区乱码| 天堂动漫精品| 一二三四在线观看免费中文在| 国产亚洲av嫩草精品影院| 美女被艹到高潮喷水动态| 丁香欧美五月| 好看av亚洲va欧美ⅴa在| 欧美中文日本在线观看视频| 男女之事视频高清在线观看| 又粗又爽又猛毛片免费看| 欧美成人一区二区免费高清观看 | 国产主播在线观看一区二区| 亚洲国产高清在线一区二区三| 免费观看精品视频网站| 亚洲精品乱码久久久v下载方式 | 日韩欧美在线二视频| 淫秽高清视频在线观看| 欧美精品啪啪一区二区三区| 中文在线观看免费www的网站| 国产麻豆成人av免费视频| 十八禁人妻一区二区| 18禁国产床啪视频网站| 亚洲成人精品中文字幕电影| 国产一区二区在线观看日韩 | 国产午夜精品论理片| 婷婷亚洲欧美| 9191精品国产免费久久| 极品教师在线免费播放| 亚洲av电影在线进入| 国产精品精品国产色婷婷| 日本与韩国留学比较| 不卡一级毛片| 国产男靠女视频免费网站| 国产私拍福利视频在线观看| 一级a爱片免费观看的视频| 一进一出抽搐gif免费好疼| 亚洲av电影在线进入| 亚洲欧洲精品一区二区精品久久久| 一区福利在线观看| 欧美绝顶高潮抽搐喷水| 后天国语完整版免费观看| 免费高清视频大片| 国产精品香港三级国产av潘金莲| av国产免费在线观看| 国产精品一区二区精品视频观看| 99精品在免费线老司机午夜| 亚洲中文字幕一区二区三区有码在线看 | 中国美女看黄片| 少妇的丰满在线观看| 亚洲无线观看免费| 最好的美女福利视频网| 亚洲av熟女| 亚洲欧美激情综合另类| 亚洲中文日韩欧美视频| 一区二区三区高清视频在线| 国产一区二区在线av高清观看| 精品欧美国产一区二区三| 午夜久久久久精精品| av天堂中文字幕网| 99久久精品热视频| 亚洲av成人av| 久久精品国产亚洲av香蕉五月| 身体一侧抽搐| 国产高清视频在线播放一区| 18禁黄网站禁片免费观看直播| 嫩草影视91久久| 全区人妻精品视频| 黑人巨大精品欧美一区二区mp4| 亚洲 国产 在线| 国产精品av视频在线免费观看| 久久久成人免费电影| 在线观看66精品国产| 午夜日韩欧美国产| 欧美激情久久久久久爽电影| 成人av一区二区三区在线看| 午夜免费成人在线视频| 亚洲激情在线av| 亚洲精品中文字幕一二三四区| 性欧美人与动物交配| 国产1区2区3区精品| 成人永久免费在线观看视频| 日韩中文字幕欧美一区二区| 村上凉子中文字幕在线| 搡老岳熟女国产| 麻豆国产97在线/欧美| 综合色av麻豆| 久久天躁狠狠躁夜夜2o2o| 免费在线观看亚洲国产| 伦理电影免费视频| 亚洲在线自拍视频| 色老头精品视频在线观看| 国产爱豆传媒在线观看| 18禁观看日本| 中文字幕久久专区| 一区二区三区国产精品乱码| 欧美日本亚洲视频在线播放| 欧美激情在线99| 亚洲国产精品久久男人天堂| 动漫黄色视频在线观看| 精品久久久久久久毛片微露脸| 一边摸一边抽搐一进一小说| 法律面前人人平等表现在哪些方面| av福利片在线观看| 国产av不卡久久| av女优亚洲男人天堂 | 叶爱在线成人免费视频播放| 法律面前人人平等表现在哪些方面| 不卡av一区二区三区| 91九色精品人成在线观看| 亚洲一区高清亚洲精品| 国产成人影院久久av| 18美女黄网站色大片免费观看| 国产精品爽爽va在线观看网站| 国产精品久久久久久人妻精品电影| 国产成人欧美在线观看| 精品福利观看| 波多野结衣高清作品| 一级作爱视频免费观看| 人人妻人人看人人澡| 午夜福利18| 观看美女的网站| 欧美日韩亚洲国产一区二区在线观看| av天堂中文字幕网| 国产黄a三级三级三级人| 在线免费观看不下载黄p国产 | 国产精品,欧美在线| 一本一本综合久久| 一级毛片精品| 一区福利在线观看| 在线观看免费午夜福利视频| 激情在线观看视频在线高清| 人人妻人人澡欧美一区二区| 色噜噜av男人的天堂激情| 九色国产91popny在线| 日本熟妇午夜| av福利片在线观看| 欧美在线黄色| 在线观看一区二区三区| 12—13女人毛片做爰片一| 999久久久国产精品视频| 欧美日本亚洲视频在线播放| 国产91精品成人一区二区三区| 女同久久另类99精品国产91| 国产精品香港三级国产av潘金莲| 成在线人永久免费视频| 女警被强在线播放| 久久人妻av系列| 啦啦啦观看免费观看视频高清| 成人18禁在线播放| 91在线观看av| 欧美+亚洲+日韩+国产| 他把我摸到了高潮在线观看| 我要搜黄色片| 狂野欧美白嫩少妇大欣赏| 国产成人av激情在线播放| 麻豆成人av在线观看| 欧美在线黄色| 夜夜爽天天搞| 一卡2卡三卡四卡精品乱码亚洲| 国产成人精品久久二区二区免费| av片东京热男人的天堂| 成人18禁在线播放| 无限看片的www在线观看| 12—13女人毛片做爰片一| 一级a爱片免费观看的视频| 精品国产美女av久久久久小说| 午夜福利免费观看在线| 精品一区二区三区视频在线 | www.www免费av| 99精品久久久久人妻精品| 一本精品99久久精品77| av天堂中文字幕网| 国产一区在线观看成人免费| 亚洲欧美一区二区三区黑人| 别揉我奶头~嗯~啊~动态视频| 淫妇啪啪啪对白视频| 丁香六月欧美| 一个人看的www免费观看视频| 亚洲精品在线观看二区| 久久精品影院6| 性色avwww在线观看| 国产亚洲欧美98| 免费在线观看日本一区| 曰老女人黄片| 午夜影院日韩av| 噜噜噜噜噜久久久久久91| 午夜激情欧美在线| 99久久精品一区二区三区| 又紧又爽又黄一区二区| 草草在线视频免费看| 丝袜人妻中文字幕| 国内久久婷婷六月综合欲色啪| 好看av亚洲va欧美ⅴa在| 日韩欧美 国产精品| 国内揄拍国产精品人妻在线| 国产精品av久久久久免费| 三级毛片av免费| 精品久久久久久久久久免费视频| 熟女电影av网| 日韩欧美三级三区| 亚洲欧美一区二区三区黑人| 国产精品亚洲av一区麻豆| 日韩大尺度精品在线看网址| 后天国语完整版免费观看| 午夜久久久久精精品| 又黄又爽又免费观看的视频| 亚洲电影在线观看av| 国产精品九九99| e午夜精品久久久久久久| 9191精品国产免费久久| 久久久久久人人人人人| 国产免费av片在线观看野外av| 性色av乱码一区二区三区2| 欧美色视频一区免费| 亚洲国产精品久久男人天堂| 老熟妇乱子伦视频在线观看| 97人妻精品一区二区三区麻豆| www.999成人在线观看| 亚洲无线在线观看| 淫秽高清视频在线观看| 久久久久国产一级毛片高清牌| 色老头精品视频在线观看| 国产一区在线观看成人免费| 岛国在线免费视频观看| 亚洲av电影不卡..在线观看| 国产午夜精品论理片| 亚洲成人免费电影在线观看| 午夜视频精品福利| 国产高清激情床上av| 久久精品影院6| 欧美xxxx黑人xx丫x性爽| 成年免费大片在线观看| 亚洲欧美日韩高清在线视频| 在线观看免费视频日本深夜| 18禁观看日本| 国产精品日韩av在线免费观看| 欧美色视频一区免费| 小蜜桃在线观看免费完整版高清| 国产野战对白在线观看| 国产精品久久久久久人妻精品电影| 国产人伦9x9x在线观看| 日本黄大片高清| 成年女人永久免费观看视频| 麻豆av在线久日| 男女之事视频高清在线观看| 精品99又大又爽又粗少妇毛片 | 12—13女人毛片做爰片一| 亚洲av免费在线观看| x7x7x7水蜜桃| 色老头精品视频在线观看| 久久久成人免费电影| 91在线精品国自产拍蜜月 | 又爽又黄无遮挡网站| 亚洲一区二区三区不卡视频| 在线观看一区二区三区| 99精品久久久久人妻精品| 黑人欧美特级aaaaaa片| 国内精品一区二区在线观看| 国产高清激情床上av| 母亲3免费完整高清在线观看| 99热6这里只有精品| 熟妇人妻久久中文字幕3abv| 久久精品aⅴ一区二区三区四区| 国模一区二区三区四区视频 | 狠狠狠狠99中文字幕| 熟女少妇亚洲综合色aaa.| 国产精品一区二区精品视频观看| 久久精品影院6| 欧美一级毛片孕妇| 国产视频一区二区在线看| 一进一出好大好爽视频| 亚洲成av人片免费观看| 精品国内亚洲2022精品成人| 午夜视频精品福利| 国产精品日韩av在线免费观看| 亚洲成a人片在线一区二区| 亚洲精品在线美女| www.www免费av| 欧美精品啪啪一区二区三区| 欧美日韩乱码在线| 视频区欧美日本亚洲| 桃色一区二区三区在线观看| 午夜福利在线在线| 欧美色视频一区免费| 在线观看66精品国产| 搡老妇女老女人老熟妇| 又黄又粗又硬又大视频| 亚洲av成人av| 亚洲人成网站高清观看| 丰满的人妻完整版| 精品午夜福利视频在线观看一区| 男女午夜视频在线观看| 国内精品久久久久久久电影| 国产高清视频在线播放一区| 色播亚洲综合网| 亚洲成av人片在线播放无| 国产av不卡久久| 国产aⅴ精品一区二区三区波| 国产成人系列免费观看| 国产亚洲欧美98| 一区二区三区高清视频在线| 亚洲色图 男人天堂 中文字幕| 亚洲专区国产一区二区| 免费人成视频x8x8入口观看| 一个人看视频在线观看www免费 | 亚洲av片天天在线观看| av黄色大香蕉| 国产视频一区二区在线看| 免费高清视频大片| 老司机午夜十八禁免费视频| 中文字幕久久专区| 国内精品美女久久久久久| 亚洲av免费在线观看| 国产成人aa在线观看| 国产熟女xx| 亚洲美女黄片视频| 婷婷精品国产亚洲av| 久久天堂一区二区三区四区| 最近最新免费中文字幕在线| 中文在线观看免费www的网站| 日韩免费av在线播放| 叶爱在线成人免费视频播放| www.熟女人妻精品国产| av在线蜜桃| 国产精品av久久久久免费| 国产成人啪精品午夜网站| 免费在线观看影片大全网站| 国产亚洲精品久久久com| 欧美日韩综合久久久久久 | 成熟少妇高潮喷水视频| av国产免费在线观看| 亚洲欧美激情综合另类| 亚洲真实伦在线观看| 国产精品美女特级片免费视频播放器 | 又粗又爽又猛毛片免费看| 中亚洲国语对白在线视频| 成人国产综合亚洲| 国产黄色小视频在线观看| 中文资源天堂在线| or卡值多少钱| 国产亚洲精品一区二区www| 亚洲av日韩精品久久久久久密| 精品久久久久久久久久免费视频| 波多野结衣高清作品| 久久人妻av系列| 他把我摸到了高潮在线观看| 伦理电影免费视频| 精品乱码久久久久久99久播| 精品久久久久久久久久久久久| 久久亚洲精品不卡| 欧洲精品卡2卡3卡4卡5卡区| 免费av毛片视频| 欧美一级毛片孕妇| 一a级毛片在线观看| 首页视频小说图片口味搜索| 精品久久久久久,| 国产97色在线日韩免费| 国产野战对白在线观看| 久久草成人影院| 999久久久精品免费观看国产| 国产一区二区三区在线臀色熟女| 97超级碰碰碰精品色视频在线观看| 欧美绝顶高潮抽搐喷水| 久久精品国产亚洲av香蕉五月| 亚洲国产色片| 啦啦啦观看免费观看视频高清| 日韩免费av在线播放| 十八禁网站免费在线| 男插女下体视频免费在线播放| 国产欧美日韩精品一区二区| 精品人妻1区二区| 香蕉丝袜av| 精品99又大又爽又粗少妇毛片 | 看片在线看免费视频| 久久精品人妻少妇| 欧美黑人巨大hd| 免费一级毛片在线播放高清视频| av欧美777| 成人性生交大片免费视频hd| 搞女人的毛片| 19禁男女啪啪无遮挡网站| 99久国产av精品| 两个人的视频大全免费| 19禁男女啪啪无遮挡网站| 国产成人一区二区三区免费视频网站| 国产精品电影一区二区三区| 日韩欧美 国产精品| 久久精品综合一区二区三区| 精品无人区乱码1区二区| 欧美不卡视频在线免费观看| www日本黄色视频网| 欧美激情在线99| 两个人看的免费小视频| 女人高潮潮喷娇喘18禁视频| 亚洲五月婷婷丁香| 熟妇人妻久久中文字幕3abv| 五月玫瑰六月丁香| 校园春色视频在线观看| 免费在线观看影片大全网站| 午夜福利在线观看吧| 亚洲av片天天在线观看| 亚洲av免费在线观看| 色视频www国产| 一个人看的www免费观看视频| 国产精品日韩av在线免费观看| 国产精品亚洲av一区麻豆| 欧美高清成人免费视频www| 国产高清视频在线播放一区| 五月玫瑰六月丁香| 精品国产乱码久久久久久男人| 国产97色在线日韩免费| 九九在线视频观看精品| 欧美性猛交╳xxx乱大交人| 国产精品久久电影中文字幕| 动漫黄色视频在线观看| 国产黄色小视频在线观看| 夜夜躁狠狠躁天天躁| 中文字幕最新亚洲高清| 在线观看免费午夜福利视频| 最新美女视频免费是黄的| 亚洲av五月六月丁香网| 成人特级av手机在线观看| 中文字幕最新亚洲高清| 国产乱人视频| 最好的美女福利视频网| 青草久久国产| 国内精品久久久久久久电影| 中文亚洲av片在线观看爽| 国产亚洲av嫩草精品影院| 黑人巨大精品欧美一区二区mp4| 这个男人来自地球电影免费观看| 成年女人看的毛片在线观看| 精品一区二区三区视频在线 | 老鸭窝网址在线观看| 亚洲国产日韩欧美精品在线观看 | 亚洲人成伊人成综合网2020| 久久人人精品亚洲av| 精品午夜福利视频在线观看一区| 五月伊人婷婷丁香| 日韩欧美在线二视频| 国产精品一及| 欧美最黄视频在线播放免费| 精品国产美女av久久久久小说| 国产精品久久电影中文字幕| 亚洲激情在线av| 亚洲在线自拍视频| 国产精品九九99| 国产成人精品久久二区二区免费| 男女之事视频高清在线观看| 一个人看的www免费观看视频| 欧美日韩乱码在线| 国内精品久久久久精免费| 欧美av亚洲av综合av国产av| 国内揄拍国产精品人妻在线| 国产精品香港三级国产av潘金莲| 亚洲国产精品成人综合色| 亚洲第一欧美日韩一区二区三区| 成人高潮视频无遮挡免费网站| 亚洲成人中文字幕在线播放| 久久九九热精品免费| 亚洲av片天天在线观看| 亚洲欧美日韩无卡精品| 久久久久久大精品| 亚洲人成电影免费在线| 国产成人啪精品午夜网站| 亚洲va日本ⅴa欧美va伊人久久| 嫩草影视91久久| 久久久国产精品麻豆| 成人性生交大片免费视频hd| 久久热在线av| 三级国产精品欧美在线观看 | 一个人免费在线观看的高清视频| 久久九九热精品免费| 国产aⅴ精品一区二区三区波| 国产精品亚洲一级av第二区| 91麻豆精品激情在线观看国产| 国产精华一区二区三区| 久久久精品大字幕| 午夜福利高清视频| АⅤ资源中文在线天堂| 啦啦啦免费观看视频1| 19禁男女啪啪无遮挡网站| 成人亚洲精品av一区二区| 97碰自拍视频| 两性夫妻黄色片| 99国产精品一区二区三区| 国产成人福利小说| 欧美国产日韩亚洲一区| 9191精品国产免费久久| 综合色av麻豆| 99国产精品99久久久久| 国产欧美日韩精品亚洲av| 淫妇啪啪啪对白视频| 男女下面进入的视频免费午夜| 99久久精品国产亚洲精品| 好男人电影高清在线观看| 热99re8久久精品国产| 色哟哟哟哟哟哟| 18禁裸乳无遮挡免费网站照片| h日本视频在线播放| 成人午夜高清在线视频| 国产亚洲精品综合一区在线观看| 欧美一区二区国产精品久久精品| xxx96com| 国产精品香港三级国产av潘金莲| 亚洲一区高清亚洲精品| 久久香蕉精品热| 欧美日韩乱码在线| 国产激情偷乱视频一区二区| 国产精品久久久人人做人人爽| 国产视频内射| 国产三级中文精品| 黄色片一级片一级黄色片| 精品一区二区三区视频在线观看免费| 露出奶头的视频| 免费观看精品视频网站| 久久99热这里只有精品18| 91麻豆av在线| 一区二区三区高清视频在线| 久久久色成人| 亚洲国产高清在线一区二区三| 午夜亚洲福利在线播放| 久久精品国产综合久久久| 国产成人福利小说| 99热这里只有是精品50| 黄片小视频在线播放| 国产精品 欧美亚洲| 人人妻人人澡欧美一区二区| 亚洲人成电影免费在线| 亚洲一区二区三区色噜噜| 国产亚洲av嫩草精品影院| 国内精品一区二区在线观看| 成在线人永久免费视频| 夜夜躁狠狠躁天天躁| 老汉色av国产亚洲站长工具| 日韩欧美国产在线观看| 男女做爰动态图高潮gif福利片| 女人被狂操c到高潮| 欧美日本亚洲视频在线播放| 最新在线观看一区二区三区| av国产免费在线观看| 婷婷丁香在线五月| 丁香欧美五月| 久久久久国产一级毛片高清牌| 村上凉子中文字幕在线| e午夜精品久久久久久久| av天堂在线播放| 亚洲欧美激情综合另类| 婷婷精品国产亚洲av在线| 很黄的视频免费| av天堂在线播放| 亚洲人成伊人成综合网2020| 日韩免费av在线播放| 久99久视频精品免费| 999久久久国产精品视频| 别揉我奶头~嗯~啊~动态视频| 国产乱人视频| 国产淫片久久久久久久久 | 在线视频色国产色| 成年人黄色毛片网站| 小说图片视频综合网站| 国产精品自产拍在线观看55亚洲| 精品日产1卡2卡| 小说图片视频综合网站| 在线观看美女被高潮喷水网站 | 好看av亚洲va欧美ⅴa在| 19禁男女啪啪无遮挡网站| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 性欧美人与动物交配| 2021天堂中文幕一二区在线观| 97超级碰碰碰精品色视频在线观看| 日本五十路高清| 国产69精品久久久久777片 | 免费在线观看成人毛片| 好男人电影高清在线观看| aaaaa片日本免费| 欧美又色又爽又黄视频| 老司机午夜十八禁免费视频| 亚洲真实伦在线观看| 亚洲一区高清亚洲精品| 午夜a级毛片| av黄色大香蕉| 日本精品一区二区三区蜜桃| 精品国产乱子伦一区二区三区| 久久精品综合一区二区三区| 国产欧美日韩精品一区二区| 精品久久久久久久毛片微露脸| 国产伦一二天堂av在线观看| 狠狠狠狠99中文字幕| 国产精品一区二区精品视频观看| 久久久久九九精品影院| 人妻夜夜爽99麻豆av| 黄色片一级片一级黄色片| 日韩欧美国产一区二区入口| 黄色片一级片一级黄色片| 日韩欧美精品v在线| 午夜福利成人在线免费观看| 丰满的人妻完整版|