• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flow computations past a triangular boattailed projectile

    2020-06-28 03:03:58ElwwdIrhimElshkRid
    Defence Technology 2020年3期

    E. Elwwd , A. Irhim , A. Elshk , A. Rid

    a Armed Forces Research Center (ARC), Cairo,11765, Egypt

    b Military Technical College (MTC), Cairo,11766, Egypt

    Keywords:Triangular base Boattailed projectile Drag reduction Range extension

    ABSTRACT This paper presents a computational study of the air flow past a triangular boattailed projectile. The study shows that there is a single normal shock wave impinges the projectile at transonic speeds. At supersonic speeds, the formed shock waves are smeared compared to a conical boattailed projectile.Also, there is a reduction of the wake region behind the triangular base and the rear stagnation point is nearer to the projectile base resulting in base drag reduction. Moreover, there is an improvement of the stability of the triangular boattailed projectile since a lower overturning moment is incurred.

    1. Introduction

    Base drag reduction of artillery projectiles is an effective means to extend their ranges since the base drag is an appreciable component of the total drag. Fig. 1 displays applied methods to reduce base drag of artillery projectiles.These methods are divided into two main groups, namely base pressure increase and boattailing.

    The base pressure increase can be obtained by applying active or passive devices. The active devices are the external burning technique and the base bleed unit. The external burning technique is discussed in Refs.[1-4].The concept of base bleed device has been thoroughly discussed in the first international symposium on special topics in chemical propulsion [5]. These devices have the disadvantages of bad accuracy and dispersion of fire due to the variation of their working time. Moreover, they could disadvantageously affect the lethality since they exploit a part of the projectile volume at the expense of its payload. Many researches have been published recently to improve the ballistic performance of projectiles provided with base bleed unit [6-10].

    The passive devices are base and ventilated cavities, multistep vortex suppression and slotted cavities. Projectiles provided with base and ventilated cavities have been experimentally tested in wind tunnel by Viswanath [11-13]. Base cavities achieved a base drag reduction of (10-20) % at subsonic and transonic speeds, but the reduction is much lower at supersonic speeds. In case of ventilated cavities, the total drag reduction is modest because of incurring drag increase due to viscous losses.The multistep vortex suppression device has been firstly proposed by Kidd [14] using different configurations at transonic speeds. Viswanath [15] performed wind tunnel experiments using different multistep configurations at transonic and supersonic speeds. The last passive device is the stream wise slotted cavity which has been numerically tested at transonic and supersonic speeds by Ibrahim and Filippone[16,17]. But, their device has insignificant effect on the total drag due to the increase of viscous losses.

    The second group of base drag reduction includes two types of boattailing. The first type is conical (axisymmetric) configuration which has two unfavorable effects on projectile at transonic speeds[18,19]: i) generation of large Magnus force and ii) formation of normal shock wave over the boattail. The second type is nonaxisymmetric configurations which have been proposed by Agnone et al. [20,21]. These configurations are square, triangular and cruciform. Their study showed that the triangular configuration has better ballistic performance among others. Accordingly,this paper discusses the air flow past a triangular boattailed projectile (TBP) when it is compared with the flow past a conical boattailed projectile (CBP) at upstream Mach number ranges from 0.94 to 2.5.

    Fig.1. Methods of base drag reduction.

    The current study has been carried out using Reynolds Averaged Navier-Stokes (RANS) equations exploiting the computational facilities of Ansys Fluent.The determined drag coefficients have been compared to the results of the experimental work performed by Platou [18]. The shock wave formation, base flow, drag reduction and overturning moment are of main concern in the present study.

    2. Computational work

    The current study has been applied to a projectile of 57 mm caliber. The relative dimensions of the used projectile models in terms of the caliber are shown in Fig. 2. The triangular boattail is formed by cutting three planes with an angle of 7°in the cylindrical part as shown in Fig. 2(b).

    In order to compare the results of computational work with those of experimental work,the current CFD simulations have been performed on TBP model which had been experimentally tested by Platou [18]. This projectile model has no twist and the spinning is imparted to it through its cupper driving band which is engraved into the grooves (rifling) of the weapon barrel.

    2.1. Governing equations

    Fig. 2. Relative dimensions of the projectile models.

    The governing equations are applied to each control volume in the computational domain for fixed cell volume V and incremental surface area dA=of its faces. These equations in the threedimensional Cartesian coordinate system can be written on the following conservation form [22]:

    where

    is the matrix of conservative properties. The components of the inviscid flux vector F are:

    and the components of G are:

    The air is considered as an ideal gas. The dynamic viscosity of the air is modeled using Sutherland's viscosity law with three coefficients.The momentum equation can be written as the following[22]:

    The implicit density base scheme has been used to solve the system of differential equations.A slight modification to the system of Eq. (1) is made by transforming the dependent variable from conserved quantities W to primitive variables Q using the chainrule [22]. Then the system of equations is preconditioned by replacing the Jacobian matrix ?W/?Q with the preconditioning matrix Γ [25,26].

    The second-order upwind scheme has been applied in discretizing the spatial dependent properties in RANS equations.Higher-order accuracy is achieved at the cell faces through a Taylor series expansion of the cell-centered solution about the cell centroid. Thus the face value φf(shuō)is computed using the following expression [22]:

    2.2. Grid generation

    The grid sensitivity study has been carried out using 2-D structured quadrilateral grid (see Fig. 3) of five sizes. Fig. 4 shows the total drag coefficient,at upstream Mach number equal to 0.96,versus the grid size (N) normalized by the size of the used grid(NG=26000 cells) since the increase of number of cells makes insignificant change of the total drag coefficient.

    For CBP,the 3-D full domain structured grid has been generated by rotating the chosen 2-D grid around the projectile axis to get a grid size of 1828800 cells as shown in Fig. 5. The pressure far field boundary is approximately located at a distance equal to five times the projectile length. This distance has been firstly taken from the literature[16].Then an investigation has been carried out to check if it is sufficient distance to set up the far field boundaries.Then,it has been found that the pressure values are of insignificant changes near the far field boundary.

    For TBP,the 3-D full domain structured grid has been generated with grid size of 1867200 cells as shown in Fig.6.The boattail part consists of three flat and three round surfaces which have been divided into sub-surfaces to improve the grid quality as shown in Fig. 7. Thus, the computational domain is comprised of forty six sub-volumes. The value of the wall function y+ < 1 has been checked satisfying the used turbulence model.

    2.3. Boundary conditions

    Fig. 3. Structured 2-D grid around CBP model.

    Fig. 4. Drag coefficient versus normalized number of cells at M=0.96 for CBP model.

    Fig. 5. Three-dimensional grid for CBP.

    Fig. 6. Three-dimensional grid for TBP.

    Fig. 7. Grid generation over the boattail of TBP.

    The adiabatic no-slip condition is considered on the walls of the used models. The pressure far-field is applied to the outer boundaries of the computational domain. The static pressure and temperature for the pressure-far-field boundary are based on the total pressure p0=101325 Pa and temperature T0=330 K used in wind tunnel testing performed by Platou [18]. The static pressure and temperature are calculated from the isentropic flow relations of a perfect gas [27] as follows:

    3. Results and discussions

    3.1. Validation of the computational work

    The wind tunnel measurements of total drag coefficient versus Mach number performed by Platou [18] have been chosen to validate the computational work. Fig. 8 depicts the experimental and computational results of the total drag coefficient versus Mach number for CBP and TBP, respectively. Good agreement is noticed between the computational and the experimental results. Table 1 lists the measured and calculated drag coefficients. It can be noted that the absolute values of the difference between computed and measured values is almost less than 5%. However, at Mach number ranges from 0.94 to 0.98 the difference is relatively large due to the drag divergence which normally occurs when the flying speed approaches the sonic value. The Mach number of drag divergence depends mainly on the geometry of the body.Physically,a formation of supersonic pocket occurs during increasing the flow speed toward sonic speed. The supersonic pocket is enlarged with the speed increase and terminated by a shock wave resulting in flow separation. This separation is the main reason of the drag increase with a high rate.

    Fig. 8. Experimental and computational drag coefficients versus Mach number.

    Table 1 Data of experimental and computational drag coefficients.

    3.2. Shock wave formation

    The shock wave formation is discussed at Mach number M=2.0 as an example of the flow at supersonic speeds, whereas M=0.96 has been chosen as an example of the flow at transonic speeds.For the remaining Mach numbers at both flow regimes (transonic or supersonic), the results of the shock wave formation are of the same qualitative main characteristics.

    Fig.9 displays the Mach contours around CBP model at a plane passing through the projectile axis at M=0.96.It can be noted that two normal shock waves are almost impinging the middle of both the cylindrical and boattail parts. Fig. 10 displays three planes passing through TBP.Plane 1 divides the TBP into two symmetrical parts and perpendicular to one of the flat surfaces. Planes 2 and 3 are inclined by angles of 30°and 60°measured from Plane 1 in clockwise direction, respectively.

    Fig. 11 displays the Mach contours over the aforementioned three planes. Unlike the case of CBP model, a single normal shock wave impinges the boattail part of TBP model at a distance less than four times the projectile caliber measured from its nose.This single normal shock wave is relatively smeared, especially at the round surfaces, i.e. Plane 3.

    Figs.12 and 13 display the Mach contours around CBP and TBP models at upstream Mach number M=2.0, respectively. The figures show compression waves behind the base of both projectiles generated on the free shearing layers.These compression waves are collected together to form an oblique shock wave. It can be noted that the shock wave is smearing in case of TBP especially at plane 3 compared with the shock wave formed in case of CBP.

    Fig. 9. Mach contours around CBP at M=0.96.

    Fig.10. Demonstrative planes along TBP.

    It is thought that the three round surfaces make flow relaxation resulting in: i) prevention of the normal shock wave formation on the cylindrical part at transonic speeds, and ii) smearing of the shock waves at supersonic speeds.

    3.3. Base drag

    Fig.14 shows base drag coefficient versus Mach number.Lower base drag coefficient is incurred in case of TBP compared to CBP.The base drag reduction may be reasoned by the base area reduction of TBP which is approximately three quarters its CBP counterpart.

    Fig.15 displays the streamlines past the base of both CBP and TBP at upstream Mach number ranging from 0.94 to 2.5. It is clear that, the wake zone past TBP is always smaller than its CBP counterpart and the streamlines are not symmetric. Diminishing of the wake zone results in a reduction in the vortices behind the base.Therefore base drag reduction and lower level of turbulence are obtained.

    Fig. 16 illustrates the position of the rear stagnation point measured from the projectile base (Xs) normalized by the caliber(D) against the upstream Mach number. In general, the rear stagnation point moves downstream by increasing the free stream subsonic speed.However,it moves nearer to the base by increasing the free stream supersonic speeds,which is in agreement with the results of Ref. [28]. Also, it can be noticed that the rear stagnation point is always closer to the base in case of TBP.

    3.4. Overturning moment

    Fig.11. Mach contours around TBP model at M=0.96.

    Fig.12. Mach contours around CBP at M=2.0.

    The conventional artillery projectiles of ogival boatatiled shapes are usually aerodynamically unstable since the center of pressure of the aerodynamic forces is located in front of the center of gravity.Therefore, the normal force generates an overturning moment about the center of gravity. This moment acts on the projectile causing the angle of attack (AOA) to increase. In this case, the moment is positive;consequently its coefficient CMα is also positive.To resist this overturning moment, a gyroscopic effect acts on the projectile by imparting it a very high spin rate through the rifling of the weapon barrel.

    Fig.13. Mach contours around TBP at M=2.0.

    Fig.14. Base drag coefficient CDb versus Mach number.

    The overturning moment coefficient at AOA of ±3°has been calculated to evaluate the aerodynamic stability of TBP with respect to CBP. The positions of the center of gravity of the projectile models have been obtained through CAD drawings using Solid-Works. Utilizing the results of CFD simulations, the overturning moment coefficients have been calculated about the determined centers of gravity.

    Fig.15. Streamlines past the base of CBP and TBP at plane 1.

    Fig.17 illustrates the overturning moment coefficient CMα versus Mach number.This coefficient has been calculated at AOA equal to 3°in case of CBP.Whereas,in case of TBP,it has been calculated at AOA=±3°.At AOA=-3°,the flow faces the flat surface.However,at AOA=+3°,the flow faces the round surface.Whatever the value of the AOA,CMαis of smaller values in case of TBP compared to the values in case of CBP.Also,CMα is favorable when the flow faces the flat surface of TBP since the distance between the center of pressure and the center of gravity decreases.The decreasing of this distance results from the higher pressure distribution on the flat surface.

    4. Conclusions and recommendations

    The study concludes that the flow over TBP is characterized by smearing of the formed shock waves and decreasing of the wake region behind the base resulting in nearer rear stagnation point.Therefore,a base drag reduction of approximately 5%is obtained at M>1.0 when comparing to CBP.

    Fig.16. Normalized position of rear stagnation point versus Mach number.

    Fig.17. Overturning moment coefficient versus Mach number.

    Also,the study concludes that TBP has better performance from stability point of view. This is reasoned by moving the center of pressure toward the center of gravity resulting in decreasing of the overturning moment.

    All the results of the current study have been determined when the value of TBP flat surfaces inclination angle is of 7°.Therefore,it is recommended to carry out a parametric study investigating the ballistic performance of TBP when changing this inclination angle.

    韩国高清视频一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 黄频高清免费视频| 成人免费观看视频高清| 欧美日本中文国产一区发布| 黄片大片在线免费观看| 男人操女人黄网站| e午夜精品久久久久久久| 日本av手机在线免费观看| 国产精品一区二区精品视频观看| 1024视频免费在线观看| 午夜精品久久久久久毛片777| 搡老乐熟女国产| 久久久久精品国产欧美久久久 | 午夜免费观看性视频| 美女高潮到喷水免费观看| 大型av网站在线播放| 亚洲国产av影院在线观看| 久久久久国产一级毛片高清牌| 丰满迷人的少妇在线观看| 岛国在线观看网站| 亚洲国产看品久久| 日韩,欧美,国产一区二区三区| 丝袜人妻中文字幕| av天堂久久9| 成年人午夜在线观看视频| 亚洲少妇的诱惑av| 成在线人永久免费视频| 亚洲精品自拍成人| 中文字幕最新亚洲高清| 一边摸一边做爽爽视频免费| 亚洲第一青青草原| 大香蕉久久成人网| 中国国产av一级| 亚洲国产精品成人久久小说| 亚洲精品久久成人aⅴ小说| 中文字幕另类日韩欧美亚洲嫩草| 首页视频小说图片口味搜索| 一本综合久久免费| 午夜福利视频在线观看免费| 国产伦人伦偷精品视频| 亚洲免费av在线视频| 啦啦啦视频在线资源免费观看| 亚洲三区欧美一区| 男女床上黄色一级片免费看| 亚洲熟女精品中文字幕| 国产av国产精品国产| 建设人人有责人人尽责人人享有的| 精品一品国产午夜福利视频| 天天操日日干夜夜撸| 成年女人毛片免费观看观看9 | 人人妻人人澡人人看| 亚洲情色 制服丝袜| 亚洲午夜精品一区,二区,三区| 国产成人系列免费观看| 纵有疾风起免费观看全集完整版| 国产男女内射视频| 一级a爱视频在线免费观看| 日本欧美视频一区| 精品福利永久在线观看| 亚洲avbb在线观看| 一二三四在线观看免费中文在| 巨乳人妻的诱惑在线观看| 欧美日韩亚洲综合一区二区三区_| 午夜老司机福利片| 咕卡用的链子| 国产一区有黄有色的免费视频| 精品国产一区二区三区久久久樱花| 视频区图区小说| 亚洲色图综合在线观看| 午夜视频精品福利| 99精国产麻豆久久婷婷| 久久久久视频综合| 久久久久网色| 他把我摸到了高潮在线观看 | 欧美日韩亚洲国产一区二区在线观看 | 日本a在线网址| 国产成人av教育| 亚洲色图综合在线观看| 精品人妻一区二区三区麻豆| 黄色视频,在线免费观看| 欧美日韩福利视频一区二区| 久久精品国产综合久久久| 丝瓜视频免费看黄片| 日韩熟女老妇一区二区性免费视频| 欧美人与性动交α欧美精品济南到| 国产高清videossex| 黄色视频在线播放观看不卡| a级片在线免费高清观看视频| cao死你这个sao货| 国产精品欧美亚洲77777| 在线观看舔阴道视频| 亚洲av成人不卡在线观看播放网 | 天天躁日日躁夜夜躁夜夜| 99国产极品粉嫩在线观看| 五月开心婷婷网| 操出白浆在线播放| 精品久久久精品久久久| 午夜影院在线不卡| 最新的欧美精品一区二区| 中文字幕最新亚洲高清| 久久久久久久大尺度免费视频| 日本精品一区二区三区蜜桃| 69精品国产乱码久久久| 王馨瑶露胸无遮挡在线观看| 91成人精品电影| 女性生殖器流出的白浆| 狠狠婷婷综合久久久久久88av| 老司机在亚洲福利影院| 一本色道久久久久久精品综合| 18禁黄网站禁片午夜丰满| 老司机午夜十八禁免费视频| 国产欧美日韩综合在线一区二区| 亚洲免费av在线视频| 日韩大片免费观看网站| 国产高清国产精品国产三级| 国产精品 欧美亚洲| svipshipincom国产片| 亚洲免费av在线视频| 后天国语完整版免费观看| 日韩欧美国产一区二区入口| 婷婷丁香在线五月| 精品熟女少妇八av免费久了| 精品久久久久久电影网| 日本一区二区免费在线视频| 18禁黄网站禁片午夜丰满| 色精品久久人妻99蜜桃| 1024视频免费在线观看| 嫁个100分男人电影在线观看| 99香蕉大伊视频| av网站在线播放免费| 久久人人爽av亚洲精品天堂| 飞空精品影院首页| 大陆偷拍与自拍| 亚洲免费av在线视频| 欧美国产精品va在线观看不卡| 国产精品香港三级国产av潘金莲| 欧美日韩成人在线一区二区| 丁香六月欧美| av在线老鸭窝| 丝袜人妻中文字幕| 午夜日韩欧美国产| 人妻 亚洲 视频| 黄片大片在线免费观看| 精品国产国语对白av| 欧美精品高潮呻吟av久久| 美女大奶头黄色视频| 国产亚洲欧美精品永久| 蜜桃国产av成人99| 黄色视频,在线免费观看| 性少妇av在线| 97精品久久久久久久久久精品| 国产不卡av网站在线观看| 香蕉国产在线看| 亚洲欧美日韩高清在线视频 | 人人妻,人人澡人人爽秒播| 亚洲中文av在线| 色婷婷av一区二区三区视频| 免费日韩欧美在线观看| 人妻一区二区av| 后天国语完整版免费观看| 日日爽夜夜爽网站| 国产在线观看jvid| 香蕉国产在线看| 窝窝影院91人妻| 国产深夜福利视频在线观看| 国产精品 国内视频| 久久热在线av| 新久久久久国产一级毛片| 狠狠婷婷综合久久久久久88av| 日本猛色少妇xxxxx猛交久久| 秋霞在线观看毛片| 国产精品九九99| 精品久久久久久电影网| 老司机影院成人| 久久毛片免费看一区二区三区| 国产精品偷伦视频观看了| 看免费av毛片| 男人添女人高潮全过程视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲黑人精品在线| 亚洲色图综合在线观看| 无遮挡黄片免费观看| 久久免费观看电影| 啦啦啦视频在线资源免费观看| 丝袜喷水一区| 久久精品亚洲av国产电影网| 在线观看免费高清a一片| 97在线人人人人妻| 日韩大码丰满熟妇| 99国产精品一区二区三区| 久久亚洲精品不卡| 久久久精品国产亚洲av高清涩受| 亚洲成人免费电影在线观看| 狠狠狠狠99中文字幕| 久久ye,这里只有精品| 亚洲 国产 在线| 国产成人精品无人区| 久久99热这里只频精品6学生| 国产日韩欧美亚洲二区| 中文欧美无线码| 国产免费一区二区三区四区乱码| 一本一本久久a久久精品综合妖精| 亚洲欧美成人综合另类久久久| 一边摸一边抽搐一进一出视频| 一本一本久久a久久精品综合妖精| 免费不卡黄色视频| 999久久久精品免费观看国产| 91av网站免费观看| av国产精品久久久久影院| 好男人电影高清在线观看| 纵有疾风起免费观看全集完整版| 午夜91福利影院| 久久亚洲国产成人精品v| 人人妻人人澡人人看| 国产精品免费视频内射| 国产三级黄色录像| 久久ye,这里只有精品| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产欧美一区二区综合| 久久精品国产综合久久久| 蜜桃在线观看..| 国产国语露脸激情在线看| 手机成人av网站| www.av在线官网国产| 欧美日韩亚洲国产一区二区在线观看 | 波多野结衣一区麻豆| 中文字幕高清在线视频| 欧美老熟妇乱子伦牲交| 欧美另类亚洲清纯唯美| 国产亚洲av片在线观看秒播厂| 又大又爽又粗| 在线 av 中文字幕| 黑丝袜美女国产一区| 久久国产精品人妻蜜桃| 好男人电影高清在线观看| 五月开心婷婷网| 2018国产大陆天天弄谢| 黑人巨大精品欧美一区二区mp4| 精品国产一区二区三区四区第35| 国产成人欧美| 伊人亚洲综合成人网| 国产成人精品在线电影| 多毛熟女@视频| 另类精品久久| 一二三四社区在线视频社区8| 国产国语露脸激情在线看| 午夜91福利影院| 91成人精品电影| 国产成人精品在线电影| 欧美另类亚洲清纯唯美| 性色av一级| 狠狠婷婷综合久久久久久88av| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕精品免费在线观看视频| 精品人妻在线不人妻| 一区二区av电影网| 中文字幕精品免费在线观看视频| 一区二区日韩欧美中文字幕| 人人妻人人澡人人看| 亚洲av片天天在线观看| 巨乳人妻的诱惑在线观看| 日本一区二区免费在线视频| 超碰成人久久| 精品福利观看| 黑丝袜美女国产一区| 久久久久久久久免费视频了| www.自偷自拍.com| 亚洲美女黄色视频免费看| 国产精品一区二区免费欧美 | 亚洲色图 男人天堂 中文字幕| 人人妻人人添人人爽欧美一区卜| 久久精品国产a三级三级三级| 90打野战视频偷拍视频| 日日摸夜夜添夜夜添小说| 成人国产一区最新在线观看| 性色av乱码一区二区三区2| 脱女人内裤的视频| 涩涩av久久男人的天堂| 久久久久国内视频| 精品一区二区三区av网在线观看 | 搡老乐熟女国产| 秋霞在线观看毛片| 国产在线免费精品| 亚洲av电影在线观看一区二区三区| 一区二区三区激情视频| 国产亚洲欧美在线一区二区| 色精品久久人妻99蜜桃| 亚洲欧美清纯卡通| 日韩欧美一区二区三区在线观看 | av免费在线观看网站| 久久天堂一区二区三区四区| 最黄视频免费看| av在线播放精品| 蜜桃在线观看..| 国产黄频视频在线观看| 午夜福利视频精品| 精品少妇黑人巨大在线播放| 99热网站在线观看| 欧美精品亚洲一区二区| 十八禁网站网址无遮挡| 久久九九热精品免费| 亚洲成人手机| 搡老岳熟女国产| 交换朋友夫妻互换小说| 日韩免费高清中文字幕av| 日韩欧美一区视频在线观看| 在线观看免费午夜福利视频| 丰满迷人的少妇在线观看| 国产无遮挡羞羞视频在线观看| 国产一区二区激情短视频 | 久久久久久人人人人人| 亚洲av电影在线进入| tocl精华| 黄网站色视频无遮挡免费观看| 欧美日本中文国产一区发布| 亚洲五月婷婷丁香| 男人爽女人下面视频在线观看| 1024香蕉在线观看| 高清av免费在线| 韩国高清视频一区二区三区| 久久精品国产亚洲av高清一级| 亚洲精品国产色婷婷电影| 无遮挡黄片免费观看| 又大又爽又粗| a级毛片黄视频| 精品乱码久久久久久99久播| 午夜老司机福利片| 亚洲av成人一区二区三| 亚洲欧美激情在线| 国产成人影院久久av| 五月天丁香电影| 亚洲久久久国产精品| 91大片在线观看| 人人妻,人人澡人人爽秒播| 国产极品粉嫩免费观看在线| a 毛片基地| 欧美激情高清一区二区三区| 一级毛片女人18水好多| av在线老鸭窝| 午夜精品久久久久久毛片777| 正在播放国产对白刺激| 亚洲第一青青草原| 99热网站在线观看| 99热全是精品| 国产成人精品在线电影| 黄片播放在线免费| 999久久久国产精品视频| 亚洲国产精品一区二区三区在线| 丰满迷人的少妇在线观看| 久热这里只有精品99| 如日韩欧美国产精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 日本五十路高清| 男女边摸边吃奶| 亚洲va日本ⅴa欧美va伊人久久 | 免费高清在线观看视频在线观看| 王馨瑶露胸无遮挡在线观看| 国产有黄有色有爽视频| 青春草亚洲视频在线观看| 丝瓜视频免费看黄片| 最黄视频免费看| 久久精品亚洲熟妇少妇任你| 中文字幕人妻丝袜一区二区| 久久综合国产亚洲精品| 日本欧美视频一区| 51午夜福利影视在线观看| 一本综合久久免费| 99re6热这里在线精品视频| 最新在线观看一区二区三区| 中文字幕精品免费在线观看视频| 人妻一区二区av| 各种免费的搞黄视频| 成年av动漫网址| 狠狠狠狠99中文字幕| 人人澡人人妻人| 欧美黄色片欧美黄色片| 中文字幕色久视频| 超碰97精品在线观看| 在线观看免费日韩欧美大片| 又黄又粗又硬又大视频| 美女高潮喷水抽搐中文字幕| 欧美久久黑人一区二区| 国产精品久久久av美女十八| 久9热在线精品视频| 亚洲专区国产一区二区| 老司机影院毛片| 女人爽到高潮嗷嗷叫在线视频| 欧美黑人精品巨大| 99久久精品国产亚洲精品| 午夜免费成人在线视频| 免费人妻精品一区二区三区视频| 女人爽到高潮嗷嗷叫在线视频| 国产av精品麻豆| 久久ye,这里只有精品| 日本五十路高清| 久久久久久亚洲精品国产蜜桃av| 天堂俺去俺来也www色官网| 一区二区三区精品91| 夜夜骑夜夜射夜夜干| 中文字幕人妻丝袜一区二区| 美女扒开内裤让男人捅视频| 久久精品aⅴ一区二区三区四区| 一区在线观看完整版| 9191精品国产免费久久| 国产伦人伦偷精品视频| 看免费av毛片| 考比视频在线观看| 久久综合国产亚洲精品| 久久久久久免费高清国产稀缺| 19禁男女啪啪无遮挡网站| 搡老乐熟女国产| av在线app专区| 1024香蕉在线观看| 亚洲五月婷婷丁香| 精品一区在线观看国产| 久久久精品94久久精品| 亚洲欧洲精品一区二区精品久久久| 男男h啪啪无遮挡| a级毛片黄视频| 在线观看人妻少妇| 日韩熟女老妇一区二区性免费视频| 超色免费av| 一级片'在线观看视频| 黄色毛片三级朝国网站| 韩国高清视频一区二区三区| 国产一卡二卡三卡精品| 日本黄色日本黄色录像| 香蕉国产在线看| 久久人人爽av亚洲精品天堂| 欧美激情久久久久久爽电影 | 热99久久久久精品小说推荐| 黄频高清免费视频| 午夜久久久在线观看| 我要看黄色一级片免费的| 飞空精品影院首页| 高清视频免费观看一区二区| 亚洲美女黄色视频免费看| 我的亚洲天堂| 老熟妇仑乱视频hdxx| 精品人妻熟女毛片av久久网站| 亚洲七黄色美女视频| 国产精品一区二区在线观看99| 性高湖久久久久久久久免费观看| 老汉色∧v一级毛片| 91精品三级在线观看| 精品熟女少妇八av免费久了| 国产1区2区3区精品| 亚洲国产看品久久| 老鸭窝网址在线观看| 男女国产视频网站| 亚洲三区欧美一区| 日韩熟女老妇一区二区性免费视频| 国产极品粉嫩免费观看在线| 国产亚洲欧美精品永久| 精品熟女少妇八av免费久了| 脱女人内裤的视频| 欧美日韩亚洲高清精品| 性高湖久久久久久久久免费观看| 99热网站在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 国产欧美日韩一区二区三区在线| 99re6热这里在线精品视频| 精品国产乱码久久久久久小说| 男男h啪啪无遮挡| 精品国产一区二区三区四区第35| 日本撒尿小便嘘嘘汇集6| 国产成+人综合+亚洲专区| 欧美精品高潮呻吟av久久| 亚洲av日韩在线播放| 极品人妻少妇av视频| 999久久久精品免费观看国产| 国产av精品麻豆| 黑人猛操日本美女一级片| 97精品久久久久久久久久精品| 黄色视频不卡| 首页视频小说图片口味搜索| 在线观看www视频免费| 丝袜脚勾引网站| 精品国产一区二区三区四区第35| 久久人妻熟女aⅴ| 久久久久久亚洲精品国产蜜桃av| av不卡在线播放| 欧美性长视频在线观看| 一级a爱视频在线免费观看| 欧美变态另类bdsm刘玥| 亚洲熟女精品中文字幕| 国产成人免费无遮挡视频| 老熟女久久久| 久久人妻福利社区极品人妻图片| 熟女少妇亚洲综合色aaa.| av国产精品久久久久影院| 每晚都被弄得嗷嗷叫到高潮| 欧美激情极品国产一区二区三区| 国产国语露脸激情在线看| 久久久久网色| 91麻豆精品激情在线观看国产 | 一级毛片女人18水好多| 男女午夜视频在线观看| 一级,二级,三级黄色视频| 性少妇av在线| 亚洲精品一区蜜桃| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久成人av| 天天添夜夜摸| 老司机影院成人| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲精品乱久久久久久| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品国产一区二区精华液| 欧美精品高潮呻吟av久久| 国产高清国产精品国产三级| 另类亚洲欧美激情| 多毛熟女@视频| 国产欧美日韩精品亚洲av| 一级片'在线观看视频| 亚洲少妇的诱惑av| 免费av中文字幕在线| 日韩中文字幕欧美一区二区| 高清黄色对白视频在线免费看| netflix在线观看网站| 亚洲国产欧美一区二区综合| 岛国在线观看网站| 一二三四社区在线视频社区8| 国产精品一区二区免费欧美 | 我的亚洲天堂| 欧美老熟妇乱子伦牲交| 亚洲一卡2卡3卡4卡5卡精品中文| 老熟女久久久| 亚洲一码二码三码区别大吗| 我要看黄色一级片免费的| 91国产中文字幕| 亚洲专区中文字幕在线| 国产欧美日韩综合在线一区二区| 午夜免费观看性视频| 欧美大码av| 日韩电影二区| 久久人人爽av亚洲精品天堂| 日韩欧美免费精品| 久久久精品区二区三区| 日韩大片免费观看网站| 99国产精品免费福利视频| 高清欧美精品videossex| 日本av免费视频播放| 丝袜喷水一区| 久久久久久久精品精品| 亚洲第一青青草原| netflix在线观看网站| 日韩大码丰满熟妇| 亚洲精品第二区| 国产麻豆69| 亚洲精品一区蜜桃| 久久国产精品人妻蜜桃| 久久亚洲国产成人精品v| 精品第一国产精品| www.av在线官网国产| 99久久综合免费| 国产欧美亚洲国产| 丰满迷人的少妇在线观看| 丝袜在线中文字幕| 免费观看人在逋| netflix在线观看网站| 久久精品国产亚洲av香蕉五月 | 国产一区二区三区av在线| 女人被躁到高潮嗷嗷叫费观| 日本a在线网址| 一二三四在线观看免费中文在| 女性生殖器流出的白浆| 精品国产一区二区久久| 自线自在国产av| 最新的欧美精品一区二区| 精品少妇内射三级| 国产成人精品在线电影| 夫妻午夜视频| 国产亚洲av片在线观看秒播厂| 久久香蕉激情| 99久久人妻综合| 亚洲一区二区三区欧美精品| 一本久久精品| 免费在线观看完整版高清| 亚洲av男天堂| 亚洲专区国产一区二区| 欧美激情高清一区二区三区| 欧美大码av| 天堂俺去俺来也www色官网| 久9热在线精品视频| 99久久综合免费| 少妇精品久久久久久久| 欧美亚洲 丝袜 人妻 在线| 咕卡用的链子| 天天躁狠狠躁夜夜躁狠狠躁| 一级a爱视频在线免费观看| 狠狠婷婷综合久久久久久88av| 欧美另类一区| 97精品久久久久久久久久精品| 一级片免费观看大全| 色视频在线一区二区三区| 久久毛片免费看一区二区三区| 老司机福利观看| 狂野欧美激情性bbbbbb| 久久天堂一区二区三区四区| 国产精品亚洲av一区麻豆| 一区二区三区激情视频| 99久久国产精品久久久| 黑人巨大精品欧美一区二区mp4| 十八禁人妻一区二区| 老熟妇乱子伦视频在线观看 | 日韩 欧美 亚洲 中文字幕| 99热国产这里只有精品6| 亚洲专区字幕在线| 精品福利永久在线观看| 一本久久精品| 女人久久www免费人成看片| 午夜成年电影在线免费观看|