• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Zn(Ⅱ) and Cd(Ⅱ) Metal-Organic Frameworks with Mixed Ligands:Synthesis,Structure,Sorption and Luminescent Properties

    2020-06-21 10:03:02LIYuLingZHAOYueSUNWeiYin

    LI Yu-LingZHAO YueSUN Wei-Yin

    (1State Key Laboratory of Coordination Chemistry,School of Chemistry and Chemical Engineering,Nanjing University,Nanjing 210023,China)

    (2School of Chemical Engineering and Food Science,Zhengzhou University of Technology,Zhengzhou 450044,China)

    Abstract:Two new metal-organic frameworks(MOFs)[Cd3(tib)2(BPT)2(H2O)2]·DMA·6H2O(1)and[Zn2(tib)(HBTB)2(H2O)]·2H2O(2)(tib=1,3,5-tris(1-imidazolyl)benzene,H3BPT=biphenyl-3,4′,5-tricarboxylic acid,H3BTB=4,4′,4″-benzene-1,3,5-triyl-tribenzoic acid,DMA=N,N-dimethylacetamide)were synthesized and characterized.Complex 1 is a 4-nodal three-dimensional(3D)framework with point symbol{83}4{85·12}{86}2,while 2 is a two-dimensional(2D)network to be joined together by hydrogen bonds to generate a 3D supramolecular structure.Gas/vapor adsorption and luminescence behavior of the two complexes were studied.It is meaningful that 1 and 2 can selectively adsorb CO2 over N2,and MeOH over EtOH.Furthermore,1 can selectively detect acetone through a fluorescence quenching mechanism in the organic solvents including MeOH,EtOH,2-PA,CH3CN,DMF,DMA,THF,CHCl3,CH2Cl2 and acetone.CCDC:1996242,1;1845264,2.

    Keywords:Zn(Ⅱ) and Cd(Ⅱ) MOFs;sorption properties;luminescent properties

    Over the past years,the rational design and synthesis of functional metal-organic frameworks(MOFs)materials have caused remarkable attention due to their rich and varied structures as well as potential application,such as gas storage and separation,magnetism,heterogeneous catalysis,drug delivery and luminescence[1-8].However,it still remains challenging by control-synthesizing and predicting structures of the functional MOFs because of many factors which can affect the structures and properties of MOFs.Among these factors,the selection of organic linkers is very crucial for formation of MOFs with definite framework structures and desired properties.Therefore,proper organic bridging linkers are significant in building the desired MOFs materials.As for as we know,biphenyl-3,4′,5-tricarboxylic acid(H3BPT)and 4,4′,4″-benzene-1,3,5-triyl-tribenzoic acid (H3BTB)(Scheme 1)are good bridging ligands because of their diversified coordination modes and rigid multicarboxylic groups[9-12].

    Scheme 1 Coordination modes of BPT3-and HBTB2-in 1 and 2

    In our previous studies,a rigid tridentate ligand 1,3,5-tris(1-imidazolyl)benzene(tib)as a N-donor ligand have been used in construction of MOFs,and the results showed that it can react with varied metal salts leading to the formation of MOFs with specific structures and interesting properties[13-15].Thus,it is meaningful for using mixed N-donor ligand tib and multicarboxylic acids H3BPT/H3BTB to construct MOFs with novel structures and properties.In this work,two new metal-organic frameworks, [Cd3(tib)2(BPT)2(H2O)2]·DMA·6H2O(1)and[Zn2(tib)(HBTB)2(H2O)]·2H2O(2)(tib=1,3,5-tris(1-imidazolyl)benzene,H3BPT=biphenyl-3,4′,5-tricarboxylic acid,H3BTB=4,4′,4″-benzene-1,3,5-triyl-tribenzoic acid,DMA=N,N-dimethylacetamide),were synthesized and characterized.Structural characterization reveals that complex 1 is a 4-nodal 3D framework with point symbol{83}4{85·12}{86}2,while 2 is a 2D network to be joined togetherby hydrogen bonds to generate a 3D supramolecular structure.Gas/vapor adsorption and luminescence behavior of the two complexes were studied.It is meaningful that 1 and 2 can selectively adsorb CO2over N2,and MeOH over EtOH.Furthermore,1 can selectivity detect acetone through a fluorescence quenching mechanism in the organic solvents including MeOH,EtOH,2-PA,CH3CN,DMF,DMA,THF,CHCl3,CH2Cl2and acetone.

    1 Experimental

    1.1 Materials and measurements

    All commercially available chemicals and solvents are of reagent grade and were used as received without further purification.Ligand tib was prepared according to the procedures reported previously[16].Elemental analyses for C,H and N were performed on a FLASH EA 1112 elemental analyzer.Thermogravimetric analyses(TGA)were carried out on a Mettler-Toledo (TGA/DSC1)thermal analyzer under nitrogen with a heating rate of 10℃·min-1.FT-IR spectra were recorded in a range of 400~4 000 cm-1on a BRUKER TENSOR 27 spectrophotometer using KBr pellets.Powder X-ray diffraction (PXRD)analyses were performed on a Bruker D8 Advance X-ray diffractometer with Cu Kα (λ=0.154 18 nm)radiation,in which the X-ray tube was operated at 40 kV and 40 mA,and the scanning angle range was between 5°and 50°.Sorption experiments were carried out on a Belsorp-max volumetric gas sorption instrument.The lumine-scence spectra were recorded on an Aminco Bowman Series 2 spectrofluorometer with a xenon arc lamp as the light source.The pass width of 10 nm was used in the measurements of emission and excitation spectra,and all the measurements were performed under the same experimental conditions.

    1.2 Synthesis of[Cd3(tib)2(BPT)2(H2O)2]·DMA·4H2O(1)

    A mixture of tib (13.8 mg,0.05 mmol),H3BPT(14.3 mg,0.05 mmol),and Cd(NO3)2·4H2O(30.0 mg,0.1 mmol)in DMA/H2O (8 mL,3∶1,V/V)was placed in an 18 mL Teflon-lined stainless steel container and heated at 90 ℃ for 72 h.Thereafter,colorless blockshaped crystals of 1 were isolated in 80%yield(based on tib).Elemental analysis Calcd.for C64H63N13O21Cd3(%):C 45.55,H 3.76,N 10.79;Found(%):C 45.28,H 3.91,N 10.72.IR(KBr pellet,cm-1):3 357(m),3 143(m),1 670(m),1 610(m),1 569(s),1 403(s),1 357(m),1 278(m),1 191(m),1 096(m),1 051(m),932(m),852(m),792(s),674(m),558(m),447(m).

    1.3 Synthesis of[Zn2(tib)(HBTB)2(H2O)]·2H2O(2)

    Complex 2 was synthesized by tib(13.8 mg,0.05 mmol),H3BTB (22.0 mg,0.05 mmol)and Zn(NO3)2·6H2O(30.0 mg,0.1 mmol)in H2O(8 mL)in a 18 mL glass vial and heated at 160℃for 72 h.After cooling to room temperature,colorless block crystals of 2 were obtained with a yield of 75%based on tib.Anal.Calcd.for C69H50N6O15Zn2(%):C 62.13,H 3.78,N 6.30;Found(%):C 62.07,H 3.85,N 6.25.IR(KBr pellet,cm-1):3 449(m),1 689(s),1 662(s),1 620(s),1 511(m),1 401(s),1 240(m),1 177(m),1 075(s),1 015(s),946(m),854(m),774(s),683(m),646(m),482(m).

    1.4 Sample activation

    Solvent-exchanged samples were prepared by immersing the as-synthesized samples 1 in THF for 3 days to remove the nonvolatile solvates,the solvent was decanted every 8 h,and fresh THF was added.The activated sample 1′was obtained by heating the solvent-exchanged samples at 423 K under a dynamic high vacuum for 10 h.The activated samples 2′was obtained by heating the sample 2 directly at 423 K under a dynamic high vacuum for 10 h.

    1.5 X-ray crystallography

    Crystallographic data of 1 and 2 were collected on a Bruker Smart ApexⅡCCD area-detector diffractometer with graphite-monochromated Mo Kα radiation(λ =0.071 073 nm)using the ω-scan technique.The diffraction data were integrated using the SAINT program[17],which were also used for the intensity corrections for the Lorentz and polarization effects.Semi-empirical absorption correction was applied using the SADABS program[18].Complex 1 was solved by direct methods using SHELXT-2014 and all the non-hydrogen atoms were refined anisotropically on F2by the full-matrix least-squares technique with the SHELXL-2018[19-20].Complex 2 was solved by direct methods using SHELXT-2014 and all the nonhydrogen atoms were refined anisotropically on F2by the full-matrix least-squares technique with the SHELXL-2014[19].All the hydrogen atoms,except for those of water molecules,were generated geometrically and refined isotropically using the riding model.The hydrogen atoms of the coordinated water molecules were found from the Fourier map directly,while those of free water molecules were not found.Because some free solvent molecules in 1 are highly disordered and impossible to refine using conventional discrete-atom models,the SQUEEZE subroutine of the PLATON software suite[21-22]was applied to remove the scattering from the highly disordered solvent molecules.The formula of 1 was calculated based on volume/count_electron analysis,thermogravimetric analysis(TGA)and elemental analysis.The reported refinements are of the guest-free structures obtained by the SQUEEZE routine,and the results are attached to the CIF file.The details of the crystal parameters,data collection,and refinements for the 1 and 2 are listed in Table 1.Selected bond lengths and angles are given in Table S1,and the hydrogen bond data for 2 are provided in Table S2.

    CCDC:1996242,1;1845264,2.

    Table 1 Crystal data and structure refinements for 1 and 2

    Continued Table 1

    2 Results and discussion

    2.1 Crystal structure of[Cd3(tib)2(BPT)2(H2O)2]·DMA·6H2O(1)

    X-ray crystallographic analyses show that1 crystallizes in the C2/c space group (Table 1).As shown in Fig.1a,the asymmetric unit of 1 contains two crystallographically independent Cd(Ⅱ) cations,which have different coordination environments.The Cd1 is in a distorted tetrahedral coordination geometry with two N atoms(N1,N1A)from two different tib ligands and two carboxylate O atoms (O1,O1A)from two distinct BPT3-anions,while the Cd2 is six-coordinated with a distorted octahedral geometry by two imidazole N atoms (N6B,N4C)from two different tib ligands,three carboxylate O atoms(O3D,O4D,O5)from two different BPT3-anions,and one coordinated water molecule.The Cd-N and Cd-O bond lengths are found to be 0.227 7(3)~0.236 0(3)and 0.217 7(3)~0.248 0(3)nm,respectively(Table S1).Moreover,the coordination angles around Cd are in a range of 55.12(8)°~178.81(12)°(Table S1).In 1,each Cd(Ⅱ) ion connects two tib and every tib joins three Cd(Ⅱ)ions to form a 2D network (Fig.1b).Meanwhile,each BPT3-ligand adopts the coordination mode (κ1)-(κ1)-(κ2)-μ3-BPT coordination mode (Scheme 1,mode Ⅰ)to connect three Cd(Ⅱ) cations and every Cd(Ⅱ) links two ligands to build a 2D Cd-BPT structure(Fig.1c).The 2D Cdtib and 2D Cd-BPT are interspersed with Cd ions as nodes to generate the final 3D structure(Fig.1d).According to the simplification principle,Cd1,Cd2,tib,and BPT3-can be viewed as four-,four-,three-,and three-connectors,respectively.So,the resulting structure of 1 is a (3,3,4,4)-connected 4-nodal 3D framework with a{83}4{85·12}{86}2topology(Fig.1e)[23].Additionally,the solvent-accessible volume of 1 is 2.025 4 nm3per 7.338 4 nm3unit cell volume(27.6%of the total crystal volume)[24].

    2.2 Crystal structure of[Zn2(tib)(HBTB)2(H2O)]·2H2O(2)

    Fig.1 (a)Coordination environment around Cd(Ⅱ)in 1;(b)2D Cd-tib network in 1;(c)2D Cd-BPT network structure in 1;(d)3D packing structure of 1(Grey color:2D Cd-tib network,Green color:1D Cd-BPT chain structure);(e)Topological presentation of 1

    When the H3BPT was replaced by H3BTB,complex 2 was isolated.As illustrated in Fig.2a,the asymmetric unit of 2 contains two crystallographically independent Zn ions.Zn1 is six-coordinated with distorted octahedral geometry by two imidazole N atoms (N1,N5A)from two different tib and four carboxylate O ones(O1,O2,O7,O8)from two distinct HBTB2-,with Zn1-N bond distance from 0.201 9(3)to 0.202 3(4)nm and the Zn1-O one from 0.196 2(3)to 0.198 2(3)nm.Furthermore,the coordination angles around Zn1 are in the scope of 97.54(13)°~121.79(15)°(Table S1).While Zn2 is five-coordinated by one imidazole N atom (N3B)from tib ligand,three carboxylate O atoms(O3,O11C,O12C)from different HBTB2-and one terminal water molecule(O1W).The bond lengths and coordination angles around Zn2 are in normal range (Table S1).In 2,each Zn1 ions joins two tib molecules and each tib ligand connects two Zn1 ions to construct a 1D chain(Fig.2b).Meanwhile,partly deprotonated HBTB2-ligand adopts(κ1)-(κ2)-μ2-HBTB or(κ2)-(κ2)-μ2-HBTB coordination mode(Scheme 1,modeⅡ andⅢ)to connect two Zn(Ⅱ) ions to form a 1D chain structure (Fig.2c).The combination of 1D Zn-tib chain and 1D Zn-HBTB chain generate a final 2D network structure of 2 (Fig.2d).Eventually,hydrogen bonding C(10)-H(10A)…O1W and C(3)-H(3)…O11(Table S2)bridge the layers to form a 3D supramolecular structure of 2(Fig.2e).

    Fig.2 (a)Coordination environment of Zn(Ⅱ)in 2;(b)1D chain structure of Zn-tib in 2 along b axis;(c)1D chain structure of Zn-HBTB in 2 along c axis;(d)2D layer structure of 2;(e)3D supramolecular structure of 2 with hydrogen bonds indicated by dashed lines

    2.3 Powder X-ray diffraction(PXRD)and thermal stability

    The purity for the bulky samples of synthesized 1 and 2 were confirmed by PXRD tests and the results are provided in Fig.S1.Each PXRD pattern of the asprepared sample was well consistent with the simulated one,confirming the phase purity of the products.

    Thermogravimetric analysis (TGA)was carried out in evaluating the thermal stability of the frameworks and the TGA curves of 1 and 2 are shown in Fig.S2.Complex 1 showed a weight loss of 13.2%between 30 and 245℃corresponding to the removal of free and coordinated H2O molecules as well as free DMA molecules(Calcd.13.4%).Further weight loss was observed at about 350℃,implying collapse of the framework of complex 1(Fig.S2a).TGA curve of 2 gave weight loss of 4.4% from 30 to 185℃,originating from the loss oftwo free and one coordinated H2O molecules (Calcd.4.0%),and the framework is stable up to about 395℃(Fig.S2b).

    2.4 Gas and vapor adsorption properties

    The porosity and high stability of the frameworks prompted us to examine their gas/vapor sorption behavior.The sorption performances of the activated samples 1′and 2′for N2at 77 K,CO2at 195 K,MeOH and EtOH at 298 K are discussed here.

    From the Fig.3a,we can see the adsorption isotherm of N2at 77 K for 1′,which suggests only surface adsorption[25].However,as shown in Fig.3a and 3b,the adsorption capacities of CO2,MeOH,and EtOH on 1′are considerable.The CO2adsorption capacity of 1′at 195 K and 100 kPa was 81.12 cm3·g-1,corresponding to about 5.8 CO2molecules per formula unit,while the uptake amount of CH3OH and CH3CH2OH at 298 K and 100 kPa was 105.81 cm3·g-1(151.04 mg·g-1)and 33.32 cm3·g-1(68.54 mg·g-1),corresponding to 7.6 MeOH molecules and 2.4 EtOH molecules per formula unit,respectively.The observed hysteretic adsorption and incomplete desorption behavior suggest strong interactions between adsorbed CO2and the framework[26-29].Considering all of the above analysis results,it can be seen that complex 1 can selectively adsorb CO2and MeOH molecules.

    It is noteworthy that almost no adsorption of N2at 77 K and EtOH at 298 K was found for 2′(Fig.4a and 4b).The final value of CO2adsorption at 195 K and 100 kPa was 32.14 cm3·g-1corresponding to about 1.9 CO2molecules per formula unit for 2′.As for MeOH adsorption of 2′at 298 K (Fig.4b),the final value of 47.3 cm3·g-1(71.8 mg·g-1)at 100 kPa corresponds to 2.8 MeOH molecules per formula unit for 2′.The hysteresis and incomplete desorption suggest the strong interactions between the adsorbate and adsorbent,which include the hydrogen bond interactions between the guest molecules and framework,as well as the guest molecules and the guest molecules.

    Fig.3 (a)Sorption isotherms of N2 at 77 K and CO2 at 195 K for 1′;(b)Sorption isotherms of MeOH and EtOH at 298 K for 1′

    Fig.4 (a)N2 at 77 K and CO2 at 195 K sorption isotherms for 2′;(b)MeOH and EtOH at 298 K sorption isotherms for 2′

    2.5 Fluorescence sensing properties

    MOFs constructed from d10-metal ions and πconjugated skeleton ligands are usually considered to be potential luminescent materials[30-34].Accordingly,the luminescence properties of tib,H3BPT ligands and 1 were studied in the solid state at room temperature.It was found that 1 displayed apparent fluorescence enhancement and the intense emission bands were observed at λem=398 nm (λex=335 nm)as exhibited in Fig.5,which may be attributed to the tib and H3BPT ligands emission since the free tib and H3BPT ligands exhibited emission at 402 and 408 nm (λex=295 nm),respectively[35-36].It has been reported that the construction of architectures can enhance the rigidity ofthe aromatic backbone ofthe ligands and strengthen the intramolecular/intermolecular interactions among the organic ligands,which are beneficial to energy transfer[37].Compared with the free tib and H3BPT ligands,the observed much stronger emission intensity of 1 implies that the formation of MOFs enhances the fluorescence of the ligand.

    Fig.5 Solid-state photoluminescence spectra of the free tib and H3BPT ligands(λex=295 nm)and 1(λex=335 nm)at room temperature

    To examine the potential sensing properties for small organic solvent molecules,the fluorescence experiments of 1 were carried out by dispersing 5 mg well-ground crystalline powder samples in 3 mL different organic solvents including MeOH,EtOH,2-propanol(2-PA),CH3CN,DMF,DMA,THF,CHCl3,CH2Cl2and acetone.As illustrated in Fig.6,the intensity of the photoluminescent(PL)of 1 distinctly depended on the identity of the solvent molecule and the emission intensity of 1 in MeOH dispersion was stronger than those in other solvent dispersions under the same concentration.Therefore,MeOH was chose as dispersion solvent in the sensing studies.Furthermore,only addition of acetone can quench the fluorescence emissions of 1 efficiently.These experimental phenomena can be mainly attributed to dierent interactions between the framework architecture and distinct organics[38].

    Fig.6 Photoluminescence intensities of 1 introduced into different pure organic solvents when excited at 335 nm

    To examine the sensing sensitivity of 1 toward acetone in detail,a batch of suspensions of 1 were dispersed in MeOH solution,respectively,with gradually increasing acetone concentration.As exhibited in Fig.7,with the addition of acetone into the suspensions of 1,a gradual decrease of the fluorescence intensity was observed.The results of fluorescence titration of 1 show that about 50%decrease of the luminescence intensity was reached with the addition of 5 μL acetone,and the luminescence was almost completely quenched with the addition of 50 μL acetone.Therefore the tib-composed complex 1 may be served as a potential fluorescent sensing material.

    Fig.7 Fluorescence titrations of compound 1 dispersed in 1 mg·mL-1MeOH with gradual addition of acetone

    3 Conclusions

    In summary,two new Cd(Ⅱ) and Zn(Ⅱ)-based MOFs with mixed tib and tricarboxylate ligands have been synthesized.Gas/vapor adsorption and luminescence behavior of the complexes were investigated and the results indicate that complexes 1 and 2 both show the ability to selectively adsorb CO2over N2,MeOH over EtOH,suggesting a possible application in selective gas/vapor adsorption and separation.More importantly,complex 1 shows unique selectivity for detection of acetone through luminescence quenching mechanism.It can be seen that the mixed ligand is an effective strategy for assembling MOF-based functional material.

    Acknowledgements:We gratefully acknowledge the Key Projects of Henan Provincial High School (GrantNo.18A150042)for financial support of this work.This work was also financially supported by the National Research Project Incubation Fund of Zhengzhou University of Technology(Grant No.GJJKTPY2018K1).

    Supporting information is available at http://www.wjhxxb.cn

    老汉色av国产亚洲站长工具| 婷婷成人精品国产| 成年美女黄网站色视频大全免费| 一个人免费在线观看的高清视频 | 王馨瑶露胸无遮挡在线观看| 一级毛片精品| 又黄又粗又硬又大视频| 老司机深夜福利视频在线观看 | 90打野战视频偷拍视频| 啦啦啦啦在线视频资源| 黑人巨大精品欧美一区二区mp4| 性色av一级| 老汉色∧v一级毛片| 精品亚洲成国产av| 国产一卡二卡三卡精品| 他把我摸到了高潮在线观看 | 一区福利在线观看| 精品少妇黑人巨大在线播放| 中文字幕人妻丝袜制服| 亚洲国产欧美一区二区综合| 日本a在线网址| 天天操日日干夜夜撸| 午夜精品久久久久久毛片777| 18禁裸乳无遮挡动漫免费视频| 成人三级做爰电影| 免费在线观看日本一区| 91九色精品人成在线观看| 97人妻天天添夜夜摸| 亚洲国产成人一精品久久久| 国产亚洲精品第一综合不卡| 欧美变态另类bdsm刘玥| 一二三四社区在线视频社区8| 日韩欧美免费精品| 美女大奶头黄色视频| 免费在线观看黄色视频的| 欧美黄色淫秽网站| 国产精品一区二区免费欧美 | 19禁男女啪啪无遮挡网站| 欧美xxⅹ黑人| 欧美人与性动交α欧美精品济南到| 国产区一区二久久| 国产片内射在线| 中文字幕高清在线视频| 欧美精品亚洲一区二区| 久久久久久人人人人人| 男女无遮挡免费网站观看| 捣出白浆h1v1| 狠狠婷婷综合久久久久久88av| 日韩大码丰满熟妇| 99热国产这里只有精品6| 色综合欧美亚洲国产小说| xxxhd国产人妻xxx| 美女国产高潮福利片在线看| 激情视频va一区二区三区| 精品亚洲成a人片在线观看| 久久中文看片网| 午夜福利免费观看在线| 大陆偷拍与自拍| 纵有疾风起免费观看全集完整版| 久久九九热精品免费| 亚洲欧美成人综合另类久久久| 亚洲av男天堂| 中文字幕色久视频| √禁漫天堂资源中文www| 精品少妇内射三级| 91九色精品人成在线观看| 老司机亚洲免费影院| 亚洲av成人一区二区三| 黑人巨大精品欧美一区二区mp4| 国产日韩欧美亚洲二区| 宅男免费午夜| 亚洲精品美女久久久久99蜜臀| 高清黄色对白视频在线免费看| 亚洲欧美一区二区三区黑人| av有码第一页| 亚洲一码二码三码区别大吗| 黄片大片在线免费观看| 国产97色在线日韩免费| 淫妇啪啪啪对白视频 | 自线自在国产av| 久久亚洲精品不卡| 黄色视频不卡| av超薄肉色丝袜交足视频| 少妇人妻久久综合中文| 国产精品欧美亚洲77777| 一级毛片女人18水好多| 又黄又粗又硬又大视频| 成年人午夜在线观看视频| 在线观看www视频免费| 精品亚洲成国产av| 日韩欧美一区二区三区在线观看 | videosex国产| 免费观看av网站的网址| 99国产精品一区二区蜜桃av | 欧美 日韩 精品 国产| 午夜两性在线视频| 男人舔女人的私密视频| 三上悠亚av全集在线观看| 国产真人三级小视频在线观看| 美女高潮到喷水免费观看| 又大又爽又粗| 成人国产av品久久久| 90打野战视频偷拍视频| 大型av网站在线播放| 国产欧美日韩综合在线一区二区| 美女扒开内裤让男人捅视频| 日日摸夜夜添夜夜添小说| 亚洲国产精品成人久久小说| 自线自在国产av| 国产一区有黄有色的免费视频| 亚洲国产精品999| 肉色欧美久久久久久久蜜桃| 国产精品久久久久久人妻精品电影 | 老司机午夜福利在线观看视频 | 美女大奶头黄色视频| 中文字幕人妻熟女乱码| 夜夜夜夜夜久久久久| 欧美大码av| 国产成人av激情在线播放| 国产1区2区3区精品| 亚洲午夜精品一区,二区,三区| 12—13女人毛片做爰片一| 亚洲第一av免费看| 亚洲精品国产精品久久久不卡| 亚洲精品中文字幕一二三四区 | 欧美xxⅹ黑人| 制服诱惑二区| 男女国产视频网站| 国产在视频线精品| 蜜桃国产av成人99| 久久天堂一区二区三区四区| 精品国产乱码久久久久久男人| 两性夫妻黄色片| 男女高潮啪啪啪动态图| 丰满少妇做爰视频| 下体分泌物呈黄色| 亚洲精品国产av蜜桃| 两个人免费观看高清视频| 亚洲av日韩精品久久久久久密| 中文字幕另类日韩欧美亚洲嫩草| 青草久久国产| 国产亚洲欧美精品永久| av在线播放精品| 欧美精品啪啪一区二区三区 | 亚洲成av片中文字幕在线观看| 亚洲七黄色美女视频| 欧美日韩福利视频一区二区| √禁漫天堂资源中文www| 黄色毛片三级朝国网站| 日韩中文字幕欧美一区二区| 午夜免费成人在线视频| 91麻豆精品激情在线观看国产 | 岛国毛片在线播放| 欧美精品人与动牲交sv欧美| 99热网站在线观看| 亚洲欧洲日产国产| 无限看片的www在线观看| 每晚都被弄得嗷嗷叫到高潮| 波多野结衣av一区二区av| 欧美日本中文国产一区发布| 在线看a的网站| 日本一区二区免费在线视频| 国产高清videossex| 亚洲专区字幕在线| 好男人电影高清在线观看| 另类亚洲欧美激情| 国产av一区二区精品久久| 一二三四社区在线视频社区8| 纵有疾风起免费观看全集完整版| 国产麻豆69| 亚洲av电影在线观看一区二区三区| av不卡在线播放| 老熟女久久久| 国产一卡二卡三卡精品| 中文字幕另类日韩欧美亚洲嫩草| 成人手机av| 大码成人一级视频| 日日摸夜夜添夜夜添小说| 黑人巨大精品欧美一区二区mp4| 女人被躁到高潮嗷嗷叫费观| tube8黄色片| 女性生殖器流出的白浆| 亚洲国产欧美一区二区综合| av片东京热男人的天堂| 精品少妇久久久久久888优播| 一本综合久久免费| 每晚都被弄得嗷嗷叫到高潮| 一区二区日韩欧美中文字幕| 午夜福利乱码中文字幕| 久久国产精品大桥未久av| 久久性视频一级片| 国产国语露脸激情在线看| 黑人猛操日本美女一级片| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品国产区一区二| 蜜桃在线观看..| 男女下面插进去视频免费观看| 精品国产乱码久久久久久小说| 欧美精品av麻豆av| 女性被躁到高潮视频| 国产在线一区二区三区精| av有码第一页| 国产熟女午夜一区二区三区| www.精华液| 免费日韩欧美在线观看| 波多野结衣av一区二区av| 精品国产一区二区三区久久久樱花| av福利片在线| 看免费av毛片| 亚洲国产欧美日韩在线播放| 亚洲男人天堂网一区| 欧美亚洲 丝袜 人妻 在线| 国产激情久久老熟女| 两性午夜刺激爽爽歪歪视频在线观看 | 一级a爱视频在线免费观看| 女人高潮潮喷娇喘18禁视频| 国产一区二区激情短视频 | 亚洲精品国产区一区二| 久久亚洲国产成人精品v| 最近最新免费中文字幕在线| 欧美另类亚洲清纯唯美| 欧美 亚洲 国产 日韩一| 超碰97精品在线观看| 一本一本久久a久久精品综合妖精| 如日韩欧美国产精品一区二区三区| 成人影院久久| 一边摸一边做爽爽视频免费| 午夜福利一区二区在线看| 99国产精品一区二区蜜桃av | 久久久久网色| 男人舔女人的私密视频| 十八禁网站网址无遮挡| 一区在线观看完整版| 成人影院久久| 97精品久久久久久久久久精品| 欧美精品高潮呻吟av久久| 香蕉丝袜av| 久久久久久亚洲精品国产蜜桃av| 一区二区三区乱码不卡18| 国产精品影院久久| 国产成人精品在线电影| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇内射三级| 日韩制服丝袜自拍偷拍| 久久精品人人爽人人爽视色| 人人妻人人澡人人看| 王馨瑶露胸无遮挡在线观看| 老熟妇仑乱视频hdxx| 亚洲精品美女久久久久99蜜臀| 精品熟女少妇八av免费久了| av在线播放精品| 狠狠精品人妻久久久久久综合| 精品少妇黑人巨大在线播放| 嫁个100分男人电影在线观看| 中文字幕最新亚洲高清| 亚洲五月色婷婷综合| 久久中文看片网| 欧美成狂野欧美在线观看| 久久综合国产亚洲精品| 又紧又爽又黄一区二区| 啦啦啦免费观看视频1| 成在线人永久免费视频| 日本wwww免费看| 天天躁日日躁夜夜躁夜夜| 天天躁夜夜躁狠狠躁躁| 人人妻人人澡人人爽人人夜夜| 菩萨蛮人人尽说江南好唐韦庄| 久久国产亚洲av麻豆专区| 亚洲伊人色综图| 美女脱内裤让男人舔精品视频| 国产97色在线日韩免费| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区二区激情短视频 | 国产精品久久久久久精品古装| 国产精品久久久人人做人人爽| av网站免费在线观看视频| 午夜激情久久久久久久| 欧美日韩av久久| 91成年电影在线观看| 夜夜夜夜夜久久久久| 欧美 亚洲 国产 日韩一| 精品视频人人做人人爽| 国产黄色免费在线视频| 搡老乐熟女国产| 婷婷成人精品国产| 国产在线免费精品| 久久这里只有精品19| 欧美国产精品va在线观看不卡| 一区福利在线观看| 国产成人影院久久av| 我的亚洲天堂| 国产日韩欧美视频二区| 亚洲视频免费观看视频| 国产色视频综合| 久久人人爽av亚洲精品天堂| 午夜精品国产一区二区电影| 精品久久久久久久毛片微露脸 | 亚洲国产精品一区三区| 999精品在线视频| 色94色欧美一区二区| 国产成人欧美在线观看 | 日韩精品免费视频一区二区三区| 最近最新中文字幕大全免费视频| 欧美日韩亚洲国产一区二区在线观看 | 成人国产av品久久久| 亚洲综合色网址| 97精品久久久久久久久久精品| 十八禁网站网址无遮挡| 亚洲伊人久久精品综合| 咕卡用的链子| 一区二区日韩欧美中文字幕| 制服诱惑二区| 国产成人a∨麻豆精品| tube8黄色片| a级毛片在线看网站| 两个人看的免费小视频| 嫩草影视91久久| 欧美xxⅹ黑人| 我的亚洲天堂| av在线老鸭窝| 51午夜福利影视在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品国产亚洲av高清一级| 亚洲欧洲精品一区二区精品久久久| 婷婷成人精品国产| 国内毛片毛片毛片毛片毛片| 国产精品一区二区免费欧美 | 国产97色在线日韩免费| 欧美成人午夜精品| 黑丝袜美女国产一区| 国产亚洲午夜精品一区二区久久| 黑人巨大精品欧美一区二区蜜桃| 69av精品久久久久久 | 欧美人与性动交α欧美软件| 欧美午夜高清在线| 久久久久久亚洲精品国产蜜桃av| 动漫黄色视频在线观看| 99精国产麻豆久久婷婷| 免费不卡黄色视频| 久久国产精品影院| 国产免费现黄频在线看| 亚洲国产中文字幕在线视频| www.自偷自拍.com| 色精品久久人妻99蜜桃| 夜夜骑夜夜射夜夜干| 另类亚洲欧美激情| 欧美黄色淫秽网站| 国产无遮挡羞羞视频在线观看| 久久99一区二区三区| 日日摸夜夜添夜夜添小说| 另类亚洲欧美激情| 18禁裸乳无遮挡动漫免费视频| 999精品在线视频| 男女之事视频高清在线观看| 制服人妻中文乱码| 丰满饥渴人妻一区二区三| 国产亚洲精品久久久久5区| 午夜激情久久久久久久| 日本五十路高清| 国产精品成人在线| 欧美国产精品va在线观看不卡| 国产主播在线观看一区二区| 老司机午夜十八禁免费视频| 妹子高潮喷水视频| 大型av网站在线播放| 午夜日韩欧美国产| 午夜免费观看性视频| 国产欧美日韩综合在线一区二区| 亚洲自偷自拍图片 自拍| 捣出白浆h1v1| 免费久久久久久久精品成人欧美视频| 中文字幕制服av| 欧美亚洲 丝袜 人妻 在线| 在线观看舔阴道视频| 亚洲成av片中文字幕在线观看| 久久久久久亚洲精品国产蜜桃av| 热re99久久精品国产66热6| 狠狠婷婷综合久久久久久88av| 91老司机精品| 久久狼人影院| 中文欧美无线码| 老司机亚洲免费影院| 美女福利国产在线| 99国产极品粉嫩在线观看| 中文欧美无线码| 久久99热这里只频精品6学生| 97人妻天天添夜夜摸| 我要看黄色一级片免费的| 黄色视频不卡| 法律面前人人平等表现在哪些方面 | 黄色a级毛片大全视频| 成人国产一区最新在线观看| 女人久久www免费人成看片| 中国国产av一级| 国产精品麻豆人妻色哟哟久久| 波多野结衣一区麻豆| 久久国产精品影院| 国产欧美亚洲国产| 精品久久蜜臀av无| 久久久久久人人人人人| 伊人亚洲综合成人网| 午夜日韩欧美国产| 国产日韩欧美亚洲二区| 国产亚洲精品久久久久5区| 精品高清国产在线一区| 亚洲国产看品久久| 欧美日韩成人在线一区二区| 国产片内射在线| 国产一区有黄有色的免费视频| 人人妻人人澡人人看| 黄色片一级片一级黄色片| 国产精品一区二区精品视频观看| 五月开心婷婷网| 久久久精品94久久精品| 无遮挡黄片免费观看| 老司机午夜十八禁免费视频| 久久久精品区二区三区| 亚洲七黄色美女视频| av国产精品久久久久影院| 80岁老熟妇乱子伦牲交| 久久久久久亚洲精品国产蜜桃av| 妹子高潮喷水视频| 日本黄色日本黄色录像| 在线av久久热| 国产亚洲一区二区精品| 成年美女黄网站色视频大全免费| 淫妇啪啪啪对白视频 | 国产又色又爽无遮挡免| 亚洲色图 男人天堂 中文字幕| 国产成人免费无遮挡视频| 在线观看人妻少妇| 成人国语在线视频| 免费少妇av软件| 欧美日本中文国产一区发布| 久久久国产精品麻豆| 亚洲avbb在线观看| 国产深夜福利视频在线观看| 嫁个100分男人电影在线观看| 王馨瑶露胸无遮挡在线观看| 1024香蕉在线观看| 少妇人妻久久综合中文| 国产成人欧美| 中亚洲国语对白在线视频| 我要看黄色一级片免费的| 五月开心婷婷网| 人人澡人人妻人| avwww免费| 一本—道久久a久久精品蜜桃钙片| 狠狠精品人妻久久久久久综合| 精品国产一区二区久久| 天天影视国产精品| 男女国产视频网站| 精品少妇黑人巨大在线播放| 咕卡用的链子| 日韩人妻精品一区2区三区| 亚洲欧美日韩另类电影网站| 最黄视频免费看| 嫩草影视91久久| 精品久久蜜臀av无| 久久毛片免费看一区二区三区| 91老司机精品| 国产精品一区二区在线观看99| 免费在线观看视频国产中文字幕亚洲 | 99精品久久久久人妻精品| 成人av一区二区三区在线看 | 亚洲成人免费电影在线观看| 精品久久久久久久毛片微露脸 | 久久中文字幕一级| 精品少妇久久久久久888优播| 人人妻人人爽人人添夜夜欢视频| 高清在线国产一区| 免费少妇av软件| 精品欧美一区二区三区在线| 亚洲欧美色中文字幕在线| 精品久久蜜臀av无| 国产精品影院久久| 极品人妻少妇av视频| 老熟女久久久| 亚洲伊人久久精品综合| 亚洲精品国产av蜜桃| 麻豆国产av国片精品| 久久人人爽人人片av| 天堂中文最新版在线下载| 99久久99久久久精品蜜桃| 国产欧美亚洲国产| 国产av国产精品国产| 亚洲国产日韩一区二区| 久久综合国产亚洲精品| 午夜两性在线视频| 91国产中文字幕| 青青草视频在线视频观看| 午夜福利视频在线观看免费| 免费不卡黄色视频| 水蜜桃什么品种好| 欧美激情 高清一区二区三区| 国产成人精品久久二区二区91| 亚洲精品国产av成人精品| 日韩电影二区| 成人黄色视频免费在线看| 午夜福利视频精品| kizo精华| 久久久久精品国产欧美久久久 | 国产免费av片在线观看野外av| 在线av久久热| 一个人免费看片子| 亚洲人成电影免费在线| 一区二区三区激情视频| av天堂在线播放| 在线精品无人区一区二区三| 亚洲欧洲精品一区二区精品久久久| 久久亚洲精品不卡| 波多野结衣一区麻豆| 在线十欧美十亚洲十日本专区| 性色av乱码一区二区三区2| 2018国产大陆天天弄谢| 99热全是精品| a级毛片在线看网站| 午夜福利视频精品| 国产欧美日韩精品亚洲av| 黑人欧美特级aaaaaa片| 男女无遮挡免费网站观看| 少妇人妻久久综合中文| www.自偷自拍.com| 久久久国产成人免费| 久久人人爽人人片av| av网站免费在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久天躁狠狠躁夜夜2o2o| av国产精品久久久久影院| 免费在线观看完整版高清| 国产精品一区二区免费欧美 | 国产精品一区二区在线不卡| 另类亚洲欧美激情| 欧美精品av麻豆av| 国产免费av片在线观看野外av| 久久ye,这里只有精品| 人妻 亚洲 视频| 啦啦啦视频在线资源免费观看| 永久免费av网站大全| 国产高清视频在线播放一区 | 亚洲国产看品久久| 50天的宝宝边吃奶边哭怎么回事| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦啦在线视频资源| 日本撒尿小便嘘嘘汇集6| 国产欧美日韩一区二区三 | 国产又色又爽无遮挡免| 久久综合国产亚洲精品| 大陆偷拍与自拍| 国产精品国产三级国产专区5o| 亚洲一卡2卡3卡4卡5卡精品中文| 巨乳人妻的诱惑在线观看| 高潮久久久久久久久久久不卡| 国产有黄有色有爽视频| 如日韩欧美国产精品一区二区三区| 免费黄频网站在线观看国产| 色视频在线一区二区三区| 亚洲七黄色美女视频| 亚洲国产欧美日韩在线播放| 91麻豆av在线| 国产精品九九99| 欧美乱码精品一区二区三区| 91国产中文字幕| 国产成人系列免费观看| 我的亚洲天堂| 亚洲一码二码三码区别大吗| 999久久久精品免费观看国产| 亚洲国产欧美在线一区| 亚洲,欧美精品.| 老司机深夜福利视频在线观看 | 亚洲精品一区蜜桃| 欧美国产精品一级二级三级| 国产成人精品在线电影| 亚洲三区欧美一区| 精品欧美一区二区三区在线| 考比视频在线观看| 精品久久久精品久久久| 欧美成狂野欧美在线观看| 国产一区有黄有色的免费视频| 一级毛片女人18水好多| 99国产精品一区二区蜜桃av | 亚洲欧美清纯卡通| 亚洲激情五月婷婷啪啪| 99国产极品粉嫩在线观看| 2018国产大陆天天弄谢| 日韩欧美一区二区三区在线观看 | 午夜福利,免费看| 欧美精品av麻豆av| 午夜福利,免费看| 免费在线观看日本一区| 91成年电影在线观看| 咕卡用的链子| 人成视频在线观看免费观看| 亚洲欧美精品综合一区二区三区| 国产精品偷伦视频观看了| 婷婷成人精品国产| 国产精品秋霞免费鲁丝片| 久久国产精品男人的天堂亚洲| 国产男女内射视频| 欧美老熟妇乱子伦牲交| 午夜免费鲁丝| 国产av精品麻豆| 在线 av 中文字幕| 亚洲精品日韩在线中文字幕| 热re99久久精品国产66热6| 亚洲国产av新网站| 久久久国产欧美日韩av| 2018国产大陆天天弄谢| 久久av网站| 一区二区三区四区激情视频| 老司机影院毛片| 亚洲欧美激情在线| 亚洲精品乱久久久久久| 五月开心婷婷网| 下体分泌物呈黄色|