• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鮮棗中糖精的快速、無標(biāo)簽檢測

    2020-06-05 12:44:27吳昊邵菲郭小玉吳一萍楊海峰
    關(guān)鍵詞:吳昊鮮棗糖精

    吳昊 邵菲 郭小玉 吳一萍 楊海峰

    Fund Project: The National Natural Science Foundation of China(21475088)

    Biography: WU Hao(1990—),male,graduate student,research area:Raman application.E-mail:qingdaodaxueguzi@163.com;SHAO Fei(1995—),female,graduate student,research area:design of novel SERS substrates for detection application.E-mail:1446573055@qq.com

    ?Co-first authors:WU Hao carried out the preparation of materials,data acquisition and writing,SHAO Fei completed the characterization of part materials,detection of real sample and corresponding writing.These authors contributed equally to this work.

    *Corresponding authors:WU Yiping(1987—),female,associate professor,research area:construction of Raman probe for biological and chemical applications.E-mail:yipingwu@shnu.edu.cn;YANG Haifeng(1968—),male,professor,research area:design of Raman detection strategies for biochemical application.E-mail:hfyang@shnu.edu.cn

    引用格式: 吳昊,邵菲,郭小玉,等.鮮棗中糖精的快速、無標(biāo)簽檢測 [J].上海師范大學(xué)學(xué)報(自然科學(xué)版),2020,49(2):121-133.

    Citation format: WU H,SHAO F,GUO X Y,et al.Rapid and label-free detection of saccharin in fresh jujube fruit [J].Journal of Shanghai Normal University(Natural Sciences),2020,49(2):121-133.

    Rapid and label-free detection of saccharin in fresh jujube fruit

    WU Hao?, SHAO Fei?, GUO Xiaoyu, WU Yiping*, YANG Haifeng*

    (College of Chemistry and Materials Science,Shanghai Normal University,Shanghai 200234,China)

    Abstract: Saccharin is one of the oldest artificial sweeteners used in food industries because it has no calories.However,the abuse of saccharin is illegal.According to the National Standard of China,the maximum permitted level is 8.189×10-4mol·L-1in food.In this work,inositol hexakisphosphate(IP6) as protection agent was introduced to synthesize silver(Ag) nanoparticles(Ag NPs),designated as Ag NPs@IP6,and a rapid method based on surface-enhanced Raman scattering (SERS) was explored for the determination of saccharin in food products.The minimal detectable concentration for saccharin in water by using the optimal SERS assay was 50 nmol·L-1,which meets the requirement of National Food Safety Standard for tolerance level of food additives.This proposed Ag NPs@IP6-based SERS method with the portable Raman system could be implemented for on-site detection of saccharin in food such as fresh jujube fruit,a kind of Chinese date product.

    Key words: saccharin; silver(Ag) nanoparticles(Ag NPs); surface-enhanced Raman scattering(SERS); rapid detection

    CLC number: CLC number:O 614.24? Document code: A? Article ID: 1000-5137(2020)02-0121-13

    摘 要: 糖精是食品工業(yè)中最古老的人造甜味劑之一,因為沒有卡路里而被廣泛使用,但其濫用是非法的,食品中最大允許添加量為8.189×10-4mol·L-1.介紹了以六磷酸肌醇(IP6)為保護(hù)劑合成的銀(Ag)納米粒子(Ag NPs),即Ag NPs@IP6,并提出了一種基于表面增強(qiáng)拉曼散射(SERS)的快速方法.探討了食品中糖精的測定,用最佳SERS法測定水中糖精的最低可檢測濃度可達(dá)50 nmol·L-1,符合食品添加劑耐受性水平的國家食品安全標(biāo)準(zhǔn).提出了基于便攜式拉曼的Ag NPs@IP6的SERS方法,可用于現(xiàn)場檢測食品中的糖精,如新鮮棗果.

    關(guān)鍵詞: 糖精; 銀(Ag)納米粒子(Ag NPs); 表面增強(qiáng)拉曼散射光譜(SERS); 快速檢測

    1 Introduction

    The abuse of the additives is a current problem in the field of food safety,which is a major issue of concern to the peoples healthcare[1].Saccharin is one of the oldest artificial sweeteners used in food industries because it has no calories.In the 1970s,PRICE et al[2] found that saccharin had close correlation with bladder cancer in rodents.Consequently,foods containing saccharin must be labeled with a warning to match the requirement of the “Saccharin Study and Labeling Act” of 1977.However,in the year 2000,due to some reports exploring the different rodents cellular microenvironment,involving high pH,high calcium phosphate,and high protein levels[3-4],from human situation,the United States removed the warning labels from the external packing of food containing saccharin.Next,some researches showed saccharin might give rise to the release of insulin in humans and rats,which has not been confirmed by the later control studies[5-7].In 2012,Qin[8-9]found the close relationship between inflammatory bowel disease and the intake amount of saccharin,meaning that the saccharin is health risk for human as food additives.In China,the acceptable daily intake (ADI) value of the saccharin is in the range from 8.189×10-4to 2.729×10-2 mol·L-1for different foods.Thereupon,even if it remains controversy over the safety for saccharin as the food additive,some methods to detect saccharin have been developed.WANG et al[10]proposed a competitive enzyme-linked immunosorbent assay to determine the sodium saccharin in food samples.This immunosorbent method showed an excellent specificity for sodium saccharin with the limit of detection (LOD) of 1.146×10-8mol·L-1by the diazo-reaction,but it needed more than 1.5 h for a whole test process and even 12 h in a preparatory process.Bergamo et al[11]demonstrated an accurate analytical technique for simultaneous determination of different artificial sweeteners by using capillary electrophoresis with capacitively coupled contactless conductivity with the 30 kV separation voltages and 450 kHz operating condition,but it was not easy to actualize an on-site strategy.GREMBECKA et al[12] reported a HPLC-CAD-UV/DAD protocol to analyze the mixture of artificial sweeteners with the LOD less than 3×10-6 mol·L-1and relative standard deviation (RSD) less than 2% but it has to perform the tedious pre-treatments,control exorbitant operating conditions,and require large-sized instrument.Therefore,it is necessary to explore some fast approaches for pre-screening in food on field or market.

    The surface-enhanced Raman scattering(SERS) technique has become one of the most potential spectroscopic tools for label-free determination of the metal ions,bio-analytes or food additives[13-16],due to its extraordinary capability for signal enhancement and inherent narrow width of Raman peak.The amplified Raman intensities could be attributed to the contributions of electromagnetic (EM) field enhancement[17-18]and chemical enhancement (CE)[19].With the huge electromagnetic field from “hot spots” between neighbor noble metal nanoparticles by laser inducing[20],Raman signal for some especial molecules could be dramatically elevated even down to single molecule level[21-22].The additional merits of SERS technique such as rapidness,no interference by water,and simple pre-treatment of sample have aroused great interests of many analysts in various disciplines.As above-mentioned,SERS-based methods have lots of applications in life science[23-25],biotherapy[26],and chemical analysis[27].Also,SERS spectroscopy provides fingerprint vibrational information of molecule moieties adsorbed on a metallic surface,bringing an intrinsic selectivity.It is perspective that with the development of reasonably active and stable SERS substrates,Raman spectroscopy will play the key role in quality control application for goods and foods.

    According to our previous work[28-30],inositol hexakisphosphate (IP6) as a naturally non-toxic substance,which has the strong interaction with metallic ions,could be used to synthesize and stabilize the SERS substrates.In this work,tuning the ratio of IP6and AgNO3amounts for obtaining silver(Ag)nanoparticles (Ag NPs) (designated as Ag NPs@IP6)with optimal sensitivity was explored.Herein,we proposed the Ag NPs@IP6-based SERS method to determine saccharin in the food product of fresh jujube fruit.The lowest detectable concentration for saccharin was 50 nmol·L-1,which meets the requirement of National Food Safety Standard for tolerance level of food additives.This SERS protocol with good reproducibility can be employed for on-market monitoring the food quality by using the portable Raman system.

    2 Materials and methods

    2.1 Chemicals and materials

    Silver nitrate (AgNO3),sodium salt of IP6and saccharin 98% (mass fraction) were obtained from Sigma-Aldrich (USA).Crystal violet,perchloric acid,acetic anhydride,sodium hydroxide(NaOH),Rhodamine 6G (R6G),hydroxyl-ammonium chloride (NH2OH·HCl) and acetic acid were purchased from Sinopharm Chemical Reagent (Shanghai,China).Ethanol was obtained from Shanghai Titan Scientific Co.,Ltd.Raw fresh jujube fruit (Raw-J) was purchased from a local supermarket,and retail jujube fruit (Retail-J) was bought from a local agricultural trade market.All reagents were of analytical grade and used without further purification.Deionized water (18 MΩ·cm) was produced using a Millipore water purification system.

    The SERS experiment was carried after the mixture totally dried at the condition of 20 ℃ and 60% relative humidity.

    2.4 Titration determination of saccharin

    According to suggestion by the National Standard of China,the titration method was a routine technique to analyze the saccharin in foods.In detail,the sample containing saccharin was added into the 20 mL of acetic acid and 5 mL of acetic anhydride.Then,two drops of crystal violet (1.23×10-2mol·L-1) were injected as an indicator.Finally,the above solution was titrated by 0.1 mol·L-1of perchloric acid until the color of the solution turned cyan and the experiment was repeated for three times.

    3 Results and discussion

    3.1 Preparation and characterizations of Ag NPs@IP6

    Silver substrates have their inherent surface plasmon resonance (SPR) phenomenon to enhance the Raman scattering of adsorbed species,and the enhancement factor is related to their geometry[32-33],chemical composition[34],and size distribution[35].In this work,silver nanoparticles were picked out as SERS substrates to carry out the detection of saccharin residue on the surface of foods because of Raman signal-enhancing peculiarity of Ag NPs[36].Unfortunately,silver nanoparticles are unstable under ambient condition.Normally,the citrate salt was used as reducing agent to obtain Ag NPs and citrate salt residue on the Ag NPs resulted in the Raman spectroscopic interference to the trace detection.We used NH2OH·HCl with no Raman activity as the reduction reagent to prepare Ag NPs.IP6molecules were introduced into the synthesis procedure to stabilize Ag NPs for real application requirement.Interestingly,tuning the ratio of AgNO3and IP6,the as-obtained Ag NPs@IP6products showed different SERS effects (R6G as Raman probe).As shown in figure 1(a),Raman intensity of R6G rises with the increase of the dosage of AgNO3.However,the stability of Ag NPs becomes worse and results in a serious aggregation in the case of amount of AgNO3increased from 5.0 to 7.0 mL.As a result,the optimal volume of 1×10-2mol·L-1AgNO3solution is fixed at 5.0 mL.Additionally,the usage of IP6is also carefully examined for the long-term stability of Ag NPs.As shown in figure 1(b),3.0 mL of 1.0×10-3mol·L-1IP6may be the best one for constructing SERS substrate.The excessive amount of IP6will increase the thickness of IP6at the surface of Ag NPs,which suppresses the Raman signals of target sample.

    FX_GRP_ID80000315

    Figure 1 SERS spectra of 5×10-7mol·L-1R6G based on the optimized conditions.(a) the volume of the AgNO3,from line 1 to line 5:3,4,5,6,7 mL,respectively;(b) the volume of the IP6,from line 1 to line 5:1,2,3,4,5 mL,respectively(λex=785 nm,laser poweris 300 mW,t=5 s)

    Figure 2 depicts the TEM images of the Ag NPs and Ag NPs@IP6.It is found that their average diameters are around 50 nm.The thickness of IP6shell for Ag NPs@IP6 is about 6±2 nm.In figure 2(e),the SPR bands for Ag NPs and Ag NPs@IP6are observed at 403 nm and 408 nm,respectively.Closely investigating the TEM image in figure 3 shows that the gap between Ag NPs @IP6is less than 10 nm and the distribution of Ag NPs@IP6exhibits more uniform than that of Ag NPs,which agrees with the narrow band in SPR spectrum of Ag NPs@IP6.

    3.2 The SERS performance

    For the evaluation of the SERS effects of the Ag NPs@IP6 and Ag NPs,1.0×10-7mol·L-1R6G solution was used as the Raman probe.It was found from figure 4 that the SERS signal of R6G from Ag NPs@IP6is stronger than that from Ag NPs.The enhancement should arise from “hot-spot” formation via Ag NPs@IP6bridging each other.In figure 5(a),in case of R6G,the lowest detectable concentration could be down to 1.0×10-9mol·L-1.As a consequence,the Ag NPs@IP6 colloid is regarded as a promising substrate to elevate the SERS sensitivity for analyzing saccharin in real samples.

    The stability of the as-made Ag NPs@IP6was also monitored by the time-dependent SERS experiments.The statistical results as column diagrams in comparison with Ag NPs are given in figure 5(b).Obviously,with a storage time within 3 weeks,as compared with the original signal intensity from newly prepared substrate,the SERS signal of Ag NPs@IP6 could keep about 90% even under ambient condition (20 ℃ and 60% relative humidity) and it exhibits a long-term stability,which is beneficial to the real application.

    Figure 2 TEM images of (a),(b)Ag NPs and (c),(d) Ag NPs@IP6with different scales,and corresponding (e) UV-vis absorption spectra

    Figure 3 The TEM image of Ag NPs@IP6with large magnification

    Figure 4 SERS spectra of 1×10-7mol·L-1R6G mixed with different substrates:Ag NPs@IP6(blue curve) and Ag NPs (red curve)

    Figure 5 SERS spectra of various concentrations of R6G and the stability of Ag NPs@IP6and Ag NPs.(a) SERS spectra (1-5) of R6G at different concentrations of 1×10-5,1×10-6,1×10-7,1×10-8,and 1×10-9mol·L-1,acquired from Ag NPs@IP6and spectrum 6 is acquired from blank Ag NPs @IP6λex=785 nm,laser poweris 300 mW,t=5 s);(b) Column diagrams of normalized intensity ratio (I/I0) of R6G signals recorded on novel prepared substrates (Ag NPs (green color) or Ag NPs@IP6(red color)) and after different storage time (error bar:each datum was acquired by repeating 6 times)

    3.3 Detection of saccharin with portable Raman system

    For the interpretation of the SERS bands,normal Raman spectrum of powder saccharin and SERS spectrum of saccharin (5.0×10-4mol·L-1) together with the structure formula were given in figure 6.Clearly,the diversities between normal Raman spectrum of solid saccharinand SERS spectrum could be due to the saccharin molecules adsorbed onto the surface of Ag NPs@IP6.According to the calculation based on B3LYP/LANL2DZ level,the assignments to main vibration bands of saccharin were tabulated in table 1.SERS peak at 779 cm-1is attributed toνas(C-S-N) andνs(C-C) and a band at 1 175 cm-1could be due toδ(C-C-H) andρ(N-H).SERS band at 1 287 cm-1belongs to co-contributions ofρ(C-H) andν(C-N-O).The strongest characteristic band at 1 385 cm-1in SERS spectrum is from the asymmetric stretching modes of O=S=O group while it is a very weak band in normal Raman spectrum.This indicates that the saccharin molecules are anchored on the Ag NPs@IP6surface via lone pairs of oxygen atom.

    Figure 6 SERS spectrum of 5×10-4mol·L-1saccharin adsorbed on Ag NPs@IP6(blue color) and normal Raman spectrum of solid saccharin (red color) (λex=785 nm,laser power is 300 mW,t=5 s)

    As shown in figure 7,concentration dependent SERS spectra of saccharin in the aqueous solution are recorded with the Ag NPs@IP6 substrates.The linear relationship was plotted by the intensities of the Raman band at 1 385 cm-1versus the varying concentrations of saccharin in the range from 1.0×10-4to 1.0×10-3mol·L-1.The SERS substrate of blank Ag NPs@IP6was also recorded with no interference on the spectrum of target molecule (figure 8).The error bars given by six independent measurements are for the indication of the standard deviation.The lowest detectable concentration reaches 5.0×10-8mol·L-1,indicating that this optimized Ag NPs@IP6-based SERS method could be performed for a practical analysis.

    Figure 7 SERS spectra of various concentraction of saccharin and calibration plot based on Raman intensity at 1 385 cm-1.(a) SERS spectra of saccharin obtained from Ag NPs@IP6(the concentration of saccharin from top to bottom:5×10-2,5×10-3,5×10-4,5×10-5,5×10-6,5×10-7,5×10-8,and 5×10-9mol·L-1,respectively);(b) SERS intensities at 1 385 cm-1versus the different concentrations of saccharin(inset is the linear relationship between SERS intensity and the concentration ranging from 1.0×10-4to 1.0×10-3mol·L-1in aqueous solution,λex=785 nm,laser power is 300 mW,t=5 s)

    Figure 8 SERS spectrum of Ag NPs@IP6 without saccharin

    The investigation of SERS reproducibility of saccharin on the Ag NPs@IP6was given in figure 9 and the RSD is about 10.4%.The RSD value of Ag NPs@IP6is less than 20.0%,remarking the good reproducibility[37]of such Ag NPs@IP6substrates.

    3.4 Detection of saccharin in real sample

    The SERS-based protocol to determine saccharin might have interference of food matrix,such as acesulfame potassium,sucrose and so on.Especially,in food production process,acesulfame potassium is routinely mixed with saccharin to offer sweeter tastes by some enterprises[38].Herein,SERS spectra of saccharin,acesulfame potassium,sorbitol,sucrose,and glucose together with the mixture of above 5 species were recorded,which were shown in figure 10.It is confirmed that the characteristic Raman band of saccharin at 1 385 cm-1without interfering could be distinguished from the others.

    Figure 9 30 sequential 3D SERS spectra of 1×10-4mol·L-1saccharin mixed with Ag NPs@IP6for examining thereproducibility of SERS substrates

    Figure 10 SERS spectra of (a) mixture of 5 species,(b) saccharin,(c) acesulfame potassium,(d) sorbitol,(e) sucrose and (f) glucose

    Pitifully in news report,some fresh jujube fruits were added with excessive saccharin by bad vendors to obtain illegal economic benefits.For conducting SERS detection,the pre-treatment approach for sample has an important process[39-42].We used 20%(volume fraction)ethanol aqueous solution to extract the raw jujubes(Raw-J),the retail jujubes(Retail-J),and the spiked jujubes (Spiked-J).All of the SERS signals were recorded from the ethanol extract solution after they were mixed with Ag NPs@IP6substrates.In figure 11(line 1),no obvious Raman signal from the extract solution of Raw-J is visible,while in figure 11(line 2),the Raman spectrum of the extract solution from Spiked-J shows the characteristic bands of saccharin.The SERS spectrum of the extract from Retail-J presents the characteristic bands at 779 and 1 385 cm-1of saccharin as shown in figure 11(line 3),meaning that Retail-J might be added by saccharin.We also tested the same sample of Retail-J according to the titration method recommended by GB 4578-2008.As demonstrated in table 2,the results obtained by the? titration method are not exactly same as those from the SERS method,but the SERS results are still in acceptable values,especially for quick on-market analysis with the help of the portable Raman system.

    Figure 11 Ag NPs@IP6-based SERS spectra of the Raw-J(line 1,green),the Spiked-J(line 2,red) and the Retail-J(line 3,blue)extract solutions (λex=785 nm,laser power is 300 mW,t=5 s)

    Through preparing an optimal Ag NPs@IP6with an IP6shell of around 6 nm in thickness,the Ag NPs@IP6-based SERS approach for the rapid determination of saccharin in fresh jujube fruit was developed.The Ag NPs@IP6showed a much stronger Raman scattering enhancement factor and long-term stability.The lowest detectable concentration of saccharin down to 50 nmol·L-1was achieved.For real application,by using the ethanol solution,after a facile pre-treatment method was done to extract the saccharin from the food products,the SERS test could be conducted.Although the SERS result had about 25% RSD in comparison with the result from the titration method recommended by the National Standard of China,as a perspective,this Ag NPs@IP6-based SERS approach with the aid of portable Raman spectrometer could realize rapid,sensitive and on-site detection of saccharin for food quality control.

    References:

    [1]???? JACKSON L S.Chemical food safety issues in the United States:past,present,and future [J].Journal of Agricultural and Food Chemistry,2009,57(18):8161?????-8170.

    [2]???? PRICE J M,BIAVA C G,OSER B L,et al.Bladder tumors in rats fed cyclohexylamine or high doses of a mixture of cyclamate and saccharin [J].Science,1970,167(3921):1131-1132.

    [3]???? WHYSNER J,WILLIAMS G M.Saccharin mechanistic data and risk assessment:urine composition,enhanced cell proliferation,and tumor promotion [J].Pharmacology and Therapeutics,1996,71(1/2):225-252.

    [4]???? DYBING E.Development and implementation of the IPCS conceptual framework for evaluating mode of action of chemical carcinogens [J].Toxicology,2002,181/182(1/2/3):121-125.

    [5]???? JUST T,PAU H W,ENGEL U,et al.Cephalic phase insulin release in healthy humans after taste stimulation? [J].Appetite,2008(3)51:622-627.

    [6]???? IONESCU E,ROHNER-JEANRENAUD F,PROIETTO J,et al.Taste-induced changes in plasma insulin and glucose turnover in lean and genetically obese rats [J].Diabetes,1988,37(6):773-779.

    [7]???? BERTHOUD H R,TRIMBLE E R,SIEGEL E G,et al.Cephalic-phase insulin secretion in normal and pancreatic islet-transplanted rats [J].American Journal of Physiology,1980,238(4):E336-E340.

    [19]???? ALBRECHT M G,CREIGHTON J A.Anomalously intense Raman spectra of pyridine at a silver electrode [J].Journal of the American Chemical Society,1977,99(15):5215-5217.

    [20]???? WANG Y,YAN B,CHEN L.SERS tags:novel optical nanoprobes for bioanalysis [J].Chemical Review,2013,113(3):1391-1428.

    [21]???? NIE S M,EMORY S R.Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J].Science,1997,275(5303):1102-1106.

    [22]???? KNEIPP K,WANG Y,KNEIPP H,et al.Single molecule detection using surface-enhanced Raman scattering (SERS) [J].Physical Review Letters,1997,78(9):1667-1670.

    [23]???? LIU T Y,TSAI K T,WANG,H H,et al.Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood [J].Nature Communication,2011,2:538-545.

    [24]???? LI Y T,LI D W,CAO Y,et al.Label-free in-situ monitoring of protein tyrosine nitration in blood by surface-enhanced Raman spectroscopy [J].Biosensors & Bioelectronics,2015,69:1-7.

    [25]???? QIAN X,PENG X H,ANSARI D O,et al.In vivotumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags [J].Nature Biotechnology,2008,26(1):83-90.

    [26]???? MOHS A M,MANCINI M C,SINGHAL S,et al.Hand-held spectroscopic device forin vivoand intraoperative tumor detection:contrast enhancement,detection sensitivity,and tissue penetration [J].Analytical Chemistry,2010,82(21):9058-9065.

    [27]???? WILLETS K A,VAN DUYNE R P.Localized surface plasmon resonance spectroscopy and sensing [J].Annual Review of Physical Chemistry,2007,58(1):267-297.

    [28]???? WANG N,YANG H F,ZHU X,et al.Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate [J].Nanotechnology,2009,20(31):315603.

    [29]???? FOX C H,EBERL M.Phytic acid (IP6),novel broad spectrum anti-neoplastic agent:a systematic review [J].Complementary Therapies in Medicine,2002,10(4):229-234.

    [30]???? LIU J R,GUO Y N,HUANG W D.Study on the corrosion resistance of phytic acid conversion coating for magnesium alloys [J].Surface & Coatings Technology,2006,201(3/4):1536-1541.

    [31]???? LEOPOLD N,LENDL B.A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride [J].Journal of Physical Chemistry B,2003,107(24):5723-5727.

    [32]???? RODRIGUEZ L L,ALVAREZ P R A,PASTORIZA S I,et al.Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering [J].Journal of the American Chemical Society,2009,131(13):4616-1618.

    [33]???? HUANG X,EL-SAYED I H,QIAN W,et al.Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J].Journal of the American Chemical Society,2006,128(6):2115-2120.

    [34]???? LIU B H,HAN G M,ZHANG Z P,et al.Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels [J].Analytical Chemistry,2012,84:255-261.

    [35]???? LINK S,EL-SAYED M A.Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles [J].Jouranl of Physical Chemistry B,1999,103(21):4212-4217.

    [36]???? ABALDE-CELA S,ALDEANUEVA-POTEL P,MATEO-MATEO C,et al.Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles [J].Journal of the Royal Society Interface,2010,7(4):S435-S450.

    [37]???? SANTOS E D B,SIGOLI F A,MAZALI I O.Surface-enhanced Raman scattering of 4-aminobenzenethiol on silver nanoparticles substrate [J].Vibratioanl Spectroscopy,2013,68:246-250.

    [38]???? ALLEN A L,MCGEARY J E,KNOPIK V S,et al.Bitterness of the non-nutritive sweetener acesulfame potassium varies with polymorphisms in TAS2R9 and TAS2R31 [J].Chemical Senses,2013,38(5):379-389.

    [39]???? ZHANG H,ZHAI S D,LI Y M,et al.Effect of different sample pretreatment methods on the concentrations of excitatory amino acids in cerebrospinal fluid determined by high-performance liquid chromatography [J].Journal of Chromatography B,2003,784(1):131-135.

    [40]???? GONG W B,LIU C,MU X D,et al.Hydrogen peroxide-assisted sodium carbonate pretreatment for the enhancement of enzymatic saccharification of cornstover [J].ACS Sustainable Chemistry and Engineering,2015,3(12):3477-3485.

    [41]???? LIU H,PANG B,WANG H S,et al.Optimization of alkaline sulfite pretreatment and comparative study with sodium hydroxide pretreatment for improving enzymatic digestibility of corn stover [J].Journal of Agricultural and Food Chemistry,2015,63(12):3229-3234.

    [42]???? ZHANG H D,WU S B.Efficient sugar release by acetic acid ethanol-based organosolv pretreatment and enzymatic saccharification [J].Journal of Agricultural and Food Chemistry,2014,62(48):11681-11687.

    (責(zé)任編輯:郁 慧,顧浩然)

    猜你喜歡
    吳昊鮮棗糖精
    彩虹糖精
    山西臨猗:舉辦中國農(nóng)民豐收節(jié)暨第三屆鮮棗文化節(jié)
    僑領(lǐng)吳昊:傳遞中俄世代友好的接棒者
    華人時刊(2019年21期)2019-05-21 03:30:38
    吳昊、呂十鎖國畫作品
    品嘗糖精的味道
    紅棗到底生吃好還是泡水喝好
    女子世界(2017年8期)2017-08-07 11:34:05
    一把鮮棗補(bǔ)足維C
    對糖精生產(chǎn)過程中重氮化反應(yīng)的初步研究
    河南科技(2014年7期)2014-02-27 14:11:12
    美國例外主義的神話
    日常生活中的化學(xué)知識
    看十八女毛片水多多多| 满18在线观看网站| 在线精品无人区一区二区三| 一区二区日韩欧美中文字幕| 国产精品麻豆人妻色哟哟久久| 欧美成人午夜精品| 人妻少妇偷人精品九色| 久久人人爽人人片av| 啦啦啦中文免费视频观看日本| 亚洲精品乱久久久久久| 久久久久精品久久久久真实原创| 国产精品无大码| 免费高清在线观看视频在线观看| 成人毛片a级毛片在线播放| 老司机影院毛片| 老司机影院毛片| 狠狠婷婷综合久久久久久88av| 日本黄色日本黄色录像| 国产一区二区三区综合在线观看| kizo精华| 深夜精品福利| 欧美 日韩 精品 国产| 26uuu在线亚洲综合色| 欧美日韩成人在线一区二区| 大香蕉久久成人网| 母亲3免费完整高清在线观看 | 老汉色av国产亚洲站长工具| 在线天堂中文资源库| 久久久国产欧美日韩av| 精品久久久久久电影网| 2022亚洲国产成人精品| 国产精品一区二区在线观看99| 亚洲国产日韩一区二区| 黄色一级大片看看| 免费大片黄手机在线观看| 看十八女毛片水多多多| 最近中文字幕2019免费版| 人人妻人人澡人人看| 在线观看美女被高潮喷水网站| 少妇 在线观看| 亚洲伊人色综图| 黄色配什么色好看| 大香蕉久久成人网| 亚洲精品国产色婷婷电影| 中文字幕精品免费在线观看视频| 久久人人97超碰香蕉20202| 91精品三级在线观看| 男女啪啪激烈高潮av片| 视频区图区小说| 久久人人爽av亚洲精品天堂| 一二三四在线观看免费中文在| 日本91视频免费播放| 久久久国产精品麻豆| 国产 一区精品| 亚洲av.av天堂| 亚洲国产av影院在线观看| 免费看不卡的av| 免费在线观看完整版高清| 久久婷婷青草| 欧美av亚洲av综合av国产av | 自拍欧美九色日韩亚洲蝌蚪91| 制服诱惑二区| 国产黄频视频在线观看| 26uuu在线亚洲综合色| 国产97色在线日韩免费| 啦啦啦在线观看免费高清www| 久久久久久久久免费视频了| 97精品久久久久久久久久精品| 国产色婷婷99| 黄频高清免费视频| 久久久久视频综合| 亚洲精品国产av成人精品| 日韩制服丝袜自拍偷拍| www.av在线官网国产| 日韩中字成人| 人人澡人人妻人| 三级国产精品片| 成年动漫av网址| 亚洲欧美精品自产自拍| 一级片'在线观看视频| 欧美 亚洲 国产 日韩一| 亚洲国产精品国产精品| 最近中文字幕2019免费版| 久久精品久久久久久噜噜老黄| 久久精品久久精品一区二区三区| 熟妇人妻不卡中文字幕| 色94色欧美一区二区| 精品国产乱码久久久久久小说| 日日摸夜夜添夜夜爱| 天天躁夜夜躁狠狠躁躁| 国产欧美亚洲国产| 国产麻豆69| 亚洲国产欧美网| 精品亚洲成a人片在线观看| 黑丝袜美女国产一区| 日本vs欧美在线观看视频| 一本大道久久a久久精品| 国产精品麻豆人妻色哟哟久久| 永久网站在线| 国产男人的电影天堂91| 黄色视频在线播放观看不卡| 午夜免费男女啪啪视频观看| 超色免费av| 国产日韩一区二区三区精品不卡| 在线观看www视频免费| 亚洲久久久国产精品| 午夜av观看不卡| 亚洲,一卡二卡三卡| 香蕉精品网在线| 老汉色av国产亚洲站长工具| 国产麻豆69| 国语对白做爰xxxⅹ性视频网站| 日本91视频免费播放| 永久网站在线| 男女国产视频网站| 麻豆精品久久久久久蜜桃| 宅男免费午夜| 午夜av观看不卡| av卡一久久| 涩涩av久久男人的天堂| 亚洲第一区二区三区不卡| 午夜激情久久久久久久| 99热全是精品| 黄片小视频在线播放| 男女免费视频国产| 男女免费视频国产| 丰满饥渴人妻一区二区三| 男女午夜视频在线观看| 日韩欧美一区视频在线观看| 丁香六月天网| 亚洲精品一二三| 亚洲经典国产精华液单| 男女免费视频国产| 欧美bdsm另类| 七月丁香在线播放| 性高湖久久久久久久久免费观看| 免费高清在线观看日韩| 最新中文字幕久久久久| 美国免费a级毛片| 日韩欧美一区视频在线观看| 国产熟女午夜一区二区三区| 春色校园在线视频观看| av视频免费观看在线观看| 婷婷色麻豆天堂久久| 午夜免费鲁丝| 国产乱人偷精品视频| 国产成人精品久久久久久| 国产精品三级大全| 免费看av在线观看网站| 欧美日韩综合久久久久久| 亚洲精品乱久久久久久| 少妇熟女欧美另类| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 有码 亚洲区| 黄网站色视频无遮挡免费观看| 亚洲久久久国产精品| 日韩不卡一区二区三区视频在线| 又黄又粗又硬又大视频| 国产成人午夜福利电影在线观看| 哪个播放器可以免费观看大片| 久久韩国三级中文字幕| 国产精品麻豆人妻色哟哟久久| 男的添女的下面高潮视频| 国产人伦9x9x在线观看 | 国产97色在线日韩免费| 9191精品国产免费久久| 婷婷色av中文字幕| 精品国产一区二区三区久久久樱花| 亚洲一区二区三区欧美精品| 久久久久人妻精品一区果冻| 999久久久国产精品视频| 人体艺术视频欧美日本| 亚洲欧洲日产国产| 国产精品久久久久久精品古装| 精品酒店卫生间| 国产97色在线日韩免费| 亚洲精品成人av观看孕妇| 日本黄色日本黄色录像| 大码成人一级视频| 少妇熟女欧美另类| 亚洲人成77777在线视频| 亚洲综合色网址| 日韩一区二区三区影片| 午夜福利在线免费观看网站| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久人妻| 精品国产露脸久久av麻豆| 免费av中文字幕在线| 性色av一级| 国产免费现黄频在线看| 中文字幕色久视频| 日韩一区二区三区影片| 夫妻性生交免费视频一级片| 欧美少妇被猛烈插入视频| 欧美亚洲日本最大视频资源| 黑丝袜美女国产一区| 大片电影免费在线观看免费| 成人二区视频| 熟女电影av网| 制服人妻中文乱码| 精品亚洲乱码少妇综合久久| 男女啪啪激烈高潮av片| 国产精品久久久久久av不卡| 精品人妻在线不人妻| 哪个播放器可以免费观看大片| 最近手机中文字幕大全| 少妇的逼水好多| 成人黄色视频免费在线看| 亚洲国产最新在线播放| 日韩在线高清观看一区二区三区| 日本wwww免费看| 不卡av一区二区三区| 国产毛片在线视频| 日韩大片免费观看网站| 黄网站色视频无遮挡免费观看| 人人妻人人澡人人爽人人夜夜| 亚洲内射少妇av| 婷婷成人精品国产| 永久网站在线| 国产av国产精品国产| 久久久国产欧美日韩av| 欧美亚洲 丝袜 人妻 在线| 美女福利国产在线| 两个人免费观看高清视频| 欧美日韩精品成人综合77777| 久久青草综合色| 日本欧美视频一区| 亚洲av中文av极速乱| 激情五月婷婷亚洲| 狂野欧美激情性bbbbbb| 久久久久国产网址| 有码 亚洲区| 最近2019中文字幕mv第一页| 欧美日韩综合久久久久久| 欧美少妇被猛烈插入视频| 日韩制服丝袜自拍偷拍| 欧美日韩成人在线一区二区| 最近手机中文字幕大全| av有码第一页| 激情五月婷婷亚洲| 国产野战对白在线观看| 2022亚洲国产成人精品| 2021少妇久久久久久久久久久| 国产成人一区二区在线| 亚洲国产欧美在线一区| 男人舔女人的私密视频| 日韩av不卡免费在线播放| 久久久久人妻精品一区果冻| 欧美亚洲日本最大视频资源| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区久久| 精品少妇黑人巨大在线播放| 欧美日韩一级在线毛片| 亚洲五月色婷婷综合| 丝袜美腿诱惑在线| www.熟女人妻精品国产| 女人高潮潮喷娇喘18禁视频| 婷婷色麻豆天堂久久| 王馨瑶露胸无遮挡在线观看| 欧美黄色片欧美黄色片| 性少妇av在线| 婷婷色综合www| 免费少妇av软件| 夫妻性生交免费视频一级片| av免费观看日本| 有码 亚洲区| 女性被躁到高潮视频| 国产免费又黄又爽又色| videosex国产| 日韩一卡2卡3卡4卡2021年| 精品少妇内射三级| 亚洲图色成人| 90打野战视频偷拍视频| 亚洲欧洲国产日韩| 91精品伊人久久大香线蕉| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人爽人人夜夜| 免费观看a级毛片全部| 在线观看美女被高潮喷水网站| 在线观看www视频免费| 欧美+日韩+精品| 中文字幕人妻熟女乱码| 一区二区三区四区激情视频| 男女无遮挡免费网站观看| 日本wwww免费看| 久久久精品区二区三区| 天天操日日干夜夜撸| 一二三四中文在线观看免费高清| 久久精品国产鲁丝片午夜精品| 18在线观看网站| 久久国内精品自在自线图片| 99国产综合亚洲精品| 久久人人爽av亚洲精品天堂| 少妇被粗大的猛进出69影院| 精品午夜福利在线看| av线在线观看网站| 一区在线观看完整版| 欧美日韩精品网址| 精品国产乱码久久久久久男人| 最近中文字幕高清免费大全6| 日韩精品免费视频一区二区三区| 一本色道久久久久久精品综合| 美女视频免费永久观看网站| 美女大奶头黄色视频| 好男人视频免费观看在线| 亚洲成av片中文字幕在线观看 | 99久久人妻综合| 欧美日韩视频精品一区| 一级黄片播放器| 欧美xxⅹ黑人| 久久精品国产综合久久久| 欧美+日韩+精品| 一级毛片电影观看| 一个人免费看片子| 久久这里只有精品19| 国产精品久久久久久久久免| 久久精品亚洲av国产电影网| 亚洲欧美精品综合一区二区三区 | 啦啦啦在线免费观看视频4| 老熟女久久久| 精品国产露脸久久av麻豆| av国产精品久久久久影院| 天天影视国产精品| 亚洲成国产人片在线观看| 纯流量卡能插随身wifi吗| 婷婷色麻豆天堂久久| 男人爽女人下面视频在线观看| 国产男女超爽视频在线观看| 毛片一级片免费看久久久久| av有码第一页| 亚洲精品av麻豆狂野| 国产伦理片在线播放av一区| 欧美少妇被猛烈插入视频| 日韩一区二区三区影片| 亚洲激情五月婷婷啪啪| 老司机影院成人| 老司机影院毛片| 日本爱情动作片www.在线观看| 成人午夜精彩视频在线观看| 男女边吃奶边做爰视频| 亚洲精品久久成人aⅴ小说| 午夜福利乱码中文字幕| 亚洲精品乱久久久久久| 久久久a久久爽久久v久久| 色婷婷av一区二区三区视频| 熟妇人妻不卡中文字幕| 免费播放大片免费观看视频在线观看| 晚上一个人看的免费电影| 18在线观看网站| 欧美日韩精品网址| 亚洲精品视频女| 五月天丁香电影| 大话2 男鬼变身卡| 亚洲国产精品成人久久小说| 男女下面插进去视频免费观看| 一本大道久久a久久精品| 丝袜美腿诱惑在线| av不卡在线播放| 丝袜美腿诱惑在线| 欧美 亚洲 国产 日韩一| 欧美日韩一区二区视频在线观看视频在线| av不卡在线播放| 制服丝袜香蕉在线| 在线 av 中文字幕| 边亲边吃奶的免费视频| 亚洲欧美一区二区三区国产| a级毛片在线看网站| 美女国产高潮福利片在线看| a级毛片在线看网站| 欧美精品亚洲一区二区| 一级,二级,三级黄色视频| 亚洲四区av| 日本免费在线观看一区| 老司机影院成人| 成人毛片60女人毛片免费| 久久久久网色| 午夜日本视频在线| 日韩一区二区三区影片| 亚洲色图 男人天堂 中文字幕| 亚洲成人一二三区av| 亚洲色图 男人天堂 中文字幕| 超碰97精品在线观看| 久久99蜜桃精品久久| 久久久久国产精品人妻一区二区| 日韩av不卡免费在线播放| 在线免费观看不下载黄p国产| 人成视频在线观看免费观看| 9热在线视频观看99| 免费女性裸体啪啪无遮挡网站| 亚洲四区av| 高清黄色对白视频在线免费看| 国产片特级美女逼逼视频| 电影成人av| 一级黄片播放器| 国产黄频视频在线观看| 999久久久国产精品视频| 一区二区av电影网| 国产一区有黄有色的免费视频| 18禁裸乳无遮挡动漫免费视频| 天天影视国产精品| 成年女人毛片免费观看观看9 | 丝袜脚勾引网站| 老鸭窝网址在线观看| 精品少妇一区二区三区视频日本电影 | 成人亚洲精品一区在线观看| 国产在视频线精品| 亚洲一码二码三码区别大吗| 国产精品99久久99久久久不卡 | 国产精品女同一区二区软件| 亚洲国产精品999| 亚洲情色 制服丝袜| 欧美黄色片欧美黄色片| 天美传媒精品一区二区| 尾随美女入室| 亚洲 欧美一区二区三区| 亚洲经典国产精华液单| 热99国产精品久久久久久7| 狠狠婷婷综合久久久久久88av| 欧美 亚洲 国产 日韩一| 国产在线视频一区二区| 制服人妻中文乱码| 一个人免费看片子| 免费播放大片免费观看视频在线观看| 国产成人aa在线观看| 国产免费现黄频在线看| 国产日韩一区二区三区精品不卡| 国产爽快片一区二区三区| 欧美激情高清一区二区三区 | 精品卡一卡二卡四卡免费| 久久久欧美国产精品| 69精品国产乱码久久久| 国产精品99久久99久久久不卡 | 老鸭窝网址在线观看| 精品少妇内射三级| 久久亚洲国产成人精品v| 亚洲成国产人片在线观看| 亚洲国产成人一精品久久久| 老司机影院毛片| 黑人欧美特级aaaaaa片| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产一区二区久久| 韩国av在线不卡| 久久鲁丝午夜福利片| 国产av精品麻豆| 亚洲激情五月婷婷啪啪| 五月开心婷婷网| 欧美亚洲日本最大视频资源| 在线观看美女被高潮喷水网站| 91成人精品电影| 中文天堂在线官网| 亚洲精品国产av成人精品| 在现免费观看毛片| 1024香蕉在线观看| 大码成人一级视频| 欧美国产精品va在线观看不卡| 国产高清不卡午夜福利| 综合色丁香网| 精品亚洲成a人片在线观看| 中文字幕人妻熟女乱码| 亚洲精品中文字幕在线视频| 欧美日韩成人在线一区二区| 久久精品夜色国产| av网站免费在线观看视频| 亚洲综合精品二区| 边亲边吃奶的免费视频| 国产一级毛片在线| 一本色道久久久久久精品综合| 精品人妻在线不人妻| 黄色怎么调成土黄色| 黄色配什么色好看| 春色校园在线视频观看| 国产男女超爽视频在线观看| 亚洲情色 制服丝袜| 欧美亚洲日本最大视频资源| 两个人免费观看高清视频| 亚洲一级一片aⅴ在线观看| 国产在视频线精品| 尾随美女入室| 久久热在线av| 欧美亚洲日本最大视频资源| 欧美日韩视频精品一区| 久久久精品区二区三区| 国产熟女欧美一区二区| 美女福利国产在线| 黄色配什么色好看| 啦啦啦在线观看免费高清www| 久久久久久久国产电影| 国产欧美日韩综合在线一区二区| 国产精品蜜桃在线观看| 永久网站在线| 人妻人人澡人人爽人人| 久久精品国产亚洲av天美| av免费观看日本| 妹子高潮喷水视频| 叶爱在线成人免费视频播放| 亚洲婷婷狠狠爱综合网| 黄色一级大片看看| 亚洲欧洲日产国产| 成年动漫av网址| 亚洲欧洲日产国产| 精品人妻在线不人妻| 亚洲欧洲日产国产| 少妇被粗大的猛进出69影院| 丰满乱子伦码专区| 精品人妻在线不人妻| 激情五月婷婷亚洲| 国产又色又爽无遮挡免| 欧美国产精品一级二级三级| 久久久精品免费免费高清| 久久久国产一区二区| 国产淫语在线视频| 大码成人一级视频| 美女午夜性视频免费| 一级片'在线观看视频| 久久这里有精品视频免费| 丰满乱子伦码专区| a级片在线免费高清观看视频| 日本猛色少妇xxxxx猛交久久| 国产淫语在线视频| 日本猛色少妇xxxxx猛交久久| 久久精品aⅴ一区二区三区四区 | 欧美bdsm另类| 在线亚洲精品国产二区图片欧美| 制服诱惑二区| 欧美成人午夜免费资源| 精品久久蜜臀av无| 亚洲少妇的诱惑av| av片东京热男人的天堂| 免费少妇av软件| 欧美中文综合在线视频| 考比视频在线观看| 2018国产大陆天天弄谢| 秋霞伦理黄片| 欧美另类一区| 成年动漫av网址| 两个人看的免费小视频| 亚洲成av片中文字幕在线观看 | 精品亚洲成a人片在线观看| 亚洲综合色惰| tube8黄色片| 伦理电影免费视频| 欧美人与善性xxx| 人人澡人人妻人| 欧美激情 高清一区二区三区| 中国国产av一级| 国产探花极品一区二区| 桃花免费在线播放| 日韩电影二区| 伦理电影免费视频| 日韩,欧美,国产一区二区三区| av国产久精品久网站免费入址| 欧美激情高清一区二区三区 | 亚洲欧美精品综合一区二区三区 | 嫩草影院入口| 成年美女黄网站色视频大全免费| 五月天丁香电影| 2022亚洲国产成人精品| 美女视频免费永久观看网站| 久久精品久久久久久噜噜老黄| 欧美 日韩 精品 国产| 精品酒店卫生间| 久久午夜福利片| 叶爱在线成人免费视频播放| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品美女久久av网站| av国产精品久久久久影院| 亚洲人成77777在线视频| 人妻系列 视频| 日韩三级伦理在线观看| 99国产精品免费福利视频| 欧美 亚洲 国产 日韩一| 五月伊人婷婷丁香| 久久精品熟女亚洲av麻豆精品| 毛片一级片免费看久久久久| 汤姆久久久久久久影院中文字幕| 欧美av亚洲av综合av国产av | 熟妇人妻不卡中文字幕| 伦理电影免费视频| 亚洲中文av在线| 亚洲欧美一区二区三区国产| 亚洲国产av新网站| 韩国精品一区二区三区| 国产片内射在线| 日本免费在线观看一区| 亚洲国产成人一精品久久久| 91久久精品国产一区二区三区| 亚洲欧美色中文字幕在线| 免费久久久久久久精品成人欧美视频| 久久女婷五月综合色啪小说| 啦啦啦啦在线视频资源| 国产激情久久老熟女| 日韩在线高清观看一区二区三区| 亚洲四区av| 亚洲美女视频黄频| 深夜精品福利| √禁漫天堂资源中文www| 90打野战视频偷拍视频| 久久久久久免费高清国产稀缺| av又黄又爽大尺度在线免费看| 国产欧美亚洲国产| 咕卡用的链子| 婷婷色综合大香蕉| 久热这里只有精品99| 午夜福利影视在线免费观看| 成年美女黄网站色视频大全免费| 18禁观看日本| 国产精品欧美亚洲77777| 精品国产乱码久久久久久男人| 亚洲av综合色区一区| 久久久精品国产亚洲av高清涩受| 巨乳人妻的诱惑在线观看| 夫妻午夜视频| 国产又色又爽无遮挡免| 在现免费观看毛片| 亚洲伊人久久精品综合|