• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wind Speed Prediction by a Hybrid Model Based on Wavelet Transform Technique

    2020-06-04 06:39:20LIShengpeng李生鵬ZHANGShunYAOHongyu姚洪宇CAOShibao曹士保ZHAOBing

    LI Shengpeng (李生鵬), ZHANG Shun (張 順), YAO Hongyu (姚洪宇), CAO Shibao (曹士保), ZHAO Bing (趙 冰)

    State Power Grid Gansu Electric Power Company Electric Power Science Research Institute, Lanzhou 730000, China

    Abstract: It is difficult to predict wind speed series accurately due to the instability and randomness of the wind speed series. In order to predict wind speed, authors propose a hybrid model which combines the wavelet transform technique(WTT), the exponential smoothing (ES) method and the back propagation neural network(BPNN), and is termed as WTT-ES-BPNN. Firstly, WTT is applied to the raw wind speed series for removing the useless information. Secondly, the hybrid model integrating the ES method and the BPNN is used to forecast the de-noising data. Finally, the prediction of raw wind speed series is caught. Real data sets of daily mean wind speed in Hebei Province are used to evaluate the forecasting accuracy of the proposed model. Numerical results indicate that the WTT-ES-BPNN is an effective way to improve the accuracy of wind speed prediction.

    Key words: wind speed; forecasting; wavelet transform technique(WTT); exponential smoothing(ES) method; back propagation neural network(BPNN)

    Introduction

    Recently, since global environmental pollution issues have become more and more serious, the production of renewable energy has been drawn much attention to. As one of non-pollution renewable energy, wind has huge potentials for its development. Wind energy is the kinetic energy of the air and mainly depends on wind speed. As a result, it is significant to forecast wind speed accurately in order to improve the reliability of the wind power generation system[1-2].

    In the past several years, many scholars proposed a large amount of models on wind speed series forecasting. In general, these methods can be divided into two parts[3]. One is a statistical model, such as the auto regressive integrated moving average (ARIMA) model[4-8], the regression method[9-10], and the exponential smoothing (ES) method[11]. These statistical models have low prediction accuracy. Wind speed series are instability and randomness. However, these models only catch the linear component and neglect the nonlinear component. The other is an artificial intelligence(AI) model, and it is proposed by overcoming the limitation of the statistical model, which is mainly covered by artificial neural networks (ANNs)[12-14]. The AI model has more accurate results in wind speed forecasting than statistical models, and there are a large amount of important applications about daily wind speed forecasting. Zhongetal.[2]employed both an ARIMA and a Kalman filter to build an optimized hybrid model for daily wind speed forecasting in Gansu Corridor. Shukur and Lee[15]proposed a hybrid Kalman filter artificial neural network(KF-ANN) model based on ARIMA forecasting daily wind speed data from Iraq and Malaysia. Guoetal.[16]built a new hybrid daily wind speed prediction model based on the BP neural network and seasonal adjustment, which used a daily mean wind speed series from the year 2001 to 2006 about the Minqin area in Gansu Province, China. Wang and Xiong[17]and Wangetal.[18]proposed a hybrid model consisting of an outlier detection and bivariate fuzzy time series to forecast daily wind speed data sets from January 2008 to December 2012 in Hainan Province, China, and successfully applied support vector regression(SVR) to seasonal index adjustment and Elman recurrent neural network methods analyzed for three different sites in Xinjiang, China. Mohandesetal.[19]built and tested the support vector machine(SVM) model based on daily mean wind speed series from Madina City, Saudi Arabia. Ramasamyetal.[3]used an ANN model to predict daily wind speeds for more than ten locations in the Western Himalayan Indian state of Himachal Pradesh, and temperature, air pressure, solar radiation and altitude were taken as inputs for the ANN model.

    The wind speed is affected by comprehensive factors such as topography, climate, temperature and so on, so the wind speed series are unstable and contain noisy. While it will produce large errors when forecasting the series that contain noise directly. Considering the actual characteristics of wind speed series, in this paper, a model named wavelet transform technique exponential smoothing back propagation neural network (WTT-ES-BPNN) for wind speed forecasting is proposed by applying wavelet transform technique(WTT) into a hybrid model which integrates the exponential smoothing and back propagation neural network(BPNN). As we all know, WTT is used to process de-noising in this paper. ES and BPNN capture the linear component and the nonlinear component separately, and then put the prediction values together to get the forecasting values of original data.

    The paper is organized as follows: section 1 presents the hybrid model WTT-ES-BPNN for the prediction of wind speed; section 2 provides the evaluation criteria and the numerical results that are compared with other models; section 3 is the conclusions.

    1 Proposed Approach

    1.1 Wavelet transform and de-noising

    WTT is a basic tool for data pre-processing, and its basic idea is the same as the traditional Fourier transform[20]. WTT can be mainly divided into two categories: continuous wavelet transform(CWT) and discrete wavelet transform(DWT).

    The expression of CWT is defined as[21]

    CWTf(a,b) =〈f(x),ψa, b(x)〉=

    (1)

    Signalf(x) must be discreted into a discrete series, as well asaandb. Leta=1/2j, andb=i/2j. The expression of DWT is defined as

    (2)

    wherei,j∈Z.

    A one-dimensional signal which contains noisy can be expressed as[22]

    s(x)=f(x)+ε×e(x),

    (3)

    wheref(x) is a real signal,e(x) is a noise signal ands(x) is a signal with noisy. The real signalf(x) often represents low-frequency signal or stable signal.e(x) often represents high-frequency signal. The soft threshold processing method[23]or hard threshold processing method[24]can be used in the process of threshold for the wavelet coefficient.

    1.2 Exponential smoothing method

    S1=y0,St=αyt-1+(1-α)St-1,t≥2,

    (4)

    where,αis the smoothing factor and 0<α<1;Stis the smooth value of exponential smoothing at timet;St-1denotes the smoothed value at timet-1;y0is the first data of {yi}.

    The value ofαand the initial valueS1are important in ES. However, no formally correct procedure exists for the value choosing. Generally, an appropriate value is also based on the statistician’s judgement[11].

    The prediction formula of ES is

    1.3 Back propagation neural network

    The topological structure about BPNNs has three layers: an input layer, a hidden layer and an output layer. Figure 1 is a typical three layer structure of a BPNN. As shown in Fig. 1,xjis the input value of thejth node in the input layer andj=1, 2, ...,m;wi, jis the weight fromith node in the hidden layer tojth node in the input layer;θirepresents the threshold aboutith node in hidden layer;φis the excitation function in the hidden layer;wk, irepresents the weight fromkth node in the output layer toith node in the hidden layer, andi=1, 2, ...,q;αkrepresents the threshold aboutkth node in the output layer, andk=1, 2, ...,L;ψis the excitation function in the output layer;ykis the output value aboutkth node in the output layer.

    Fig. 1 Three layer feed-forward BPNN

    In the process of the BPNN, the mainly challenge is how to decide the number of nodes in the hidden layer[25-27], but there is not an uniform approach. In this paper, 2n+ 1 hidden neurons are sufficient to map some functions forninputs, which are based on the Hecht-Nelson method[23], and all weights are assigned with random values initially. The input layer includes five nodes, and each node represents one historical data. The output layer includes one node representing one forecast data.

    1.4 Proposed approach

    The proposed hybrid model WTT-ES-BPNN for predicting wind speed is a combination of the WTT, the ES and the BPNN. The hybrid model used in this paper is described as follows.

    Step 1: The raw wind speed data series are decomposed into two parts, namely the low-frequency component and the high-frequency component by the WTT. The low-frequency component represents the main features of the raw data series, and the high-frequency component is often termed as the noisy signal. The idea of this step is to extract the main characteristics and remove the random disturbance from the raw data series.

    Step 2: The ES is used to catch the linear pattern from the low-frequency component of the wind speed series.

    Step 3: The BPNN is used to catch the non-linear pattern from the low-frequency component of the wind speed series. The BPNN is constructed from the error between the low-frequency component and the predicted values of the ES.

    Step 4: The prediction values of the raw wind speed data series are calculated by adding the predicted values of the residual error series to the predicted values of the ES .

    2 Experimental Design and Comparison Results

    2.1 Evaluation criteria

    In this paper, in order to test the model prediction effect, three forecast error measures are employed as the evaluation criteria: the mean absolute error (MAE), the root mean-square error (RMSE), and the mean absolute percentage error (MAPE).

    2.2 Data sets and results

    In this paper, real data sets of mean daily wind speed in Hebei Province are used to evaluate the forecasting accuracy of the proposed model. The data are collected from October 1, 2013 to September 21, 2014 with a total of 356 values. The mean daily wind speed data from the site are presented in Fig. 2.

    It is obvious that the raw data have noise. The WTT is used to remove the noise information from the raw data series. There are many types of wavelet functions. However, in this paper, the wavelet function db2 is applied to remove the noise from the raw data sets and level 1 work best with the series of this paper. Figure 3 shows the low-frequency series and the high-frequency series.

    Fig. 2 Mean daily wind speed data

    (a)

    (b)Fig. 3 WTT decomposition process of the raw data: (a) low-frequency component; (b) high-frequency component

    Next, the raw wind speed series are predicted. Firstly, the linear component of the low-frequency signals is predicted by the ES. Secondly, the BPNN is used to predict the error between the low-frequency signals and the predicted values of the ES. Finally, the predicted values of the residual error series are added to the predicted values of the ES in order to get the forecasting results of the raw wind speed series.

    In the calculation, we use the first 320 data of the low-frequency component as the training sets, while the last 36 data are used to validate the model identified. Figure 4 shows the forecasting results of the raw wind speed.

    Fig. 4 Forecasting results of the raw wind speed

    2.3 Model comparisons

    In order to validate the prediction capacity of the proposed hybrid model, the model comparisons are given in this section. The WTT-ES-BPNN is compared with the BPNN, the ARIMA, the WTT-BPNN, the WTT-ES and the ES-BPNN. The comparison results are shown in Table 1, and the data in Table 1 are obtained by the MATLAB program. It can be clearly seen that the proposed model has the minimum errors of MAE, RMSE and MAPE, which are 0.575 2, 0.763 8 and 0.138 7, respectively. Compared with the hybrid model, the results of the BPNN and the ARIMA present that they have higher values of MAPE(0.327 0 and 0.259 2), which can be indicted that the hybrid model has stronger prediction capacity than the single model. Compared with the hybrid model, the results of the WTT-BPNN and the WTT-ES(0.183 6 and 0.224 9) present that the proposed approach also performs better, which indicates that the WTT-ES-BPNN captures both linearity and non-linearity of the wind speed. When comparing the proposed model with the ES-BPNN, we find wavelet transform and de-noising are reasonable for the daily wind speed series in this study, because the three indices(MAE, RMSE and MAPE) are all greatly improved. As a result, the proposed hybrid model can improve the forecasting performance and it is an effective approach to predict daily wind speed, especially the data in Hebei Province used in this paper.

    Table 1 Comparison results among different models

    3 Conclusions

    Considering instability, randomness and highly-noisy of wind speed, we proposed a hybrid model which combines the WTT, the ES and the BPNN for wind speed forecasting. The main idea of the proposed model is to delete the useless information, and take the linear component and the nonlinear component into consideration. The daily mean wind speed series in Hebei Province are used to evaluate the forecasting accuracy of the proposed model. The WTT-ES-BPNN makes full use of the advantages of single models and numerical results also indicate that the approach is a more effective way to improve the prediction accuracy.

    In this paper, we only use the daily wind speed series to prove the proposed hybrid model WTT-ES-BPNN, and realize the one-step prediction by the daily wind speed series in Hebei Province. In the later study, we can also develop a hybrid model for forecasting hourly, monthly, quarterly or even yearly wind speed data, and the multi-step prediction hybrid model will be discussed.

    国产精品九九99| 亚洲av电影不卡..在线观看| 人人妻人人看人人澡| 九九在线视频观看精品| 黄色女人牲交| 十八禁人妻一区二区| 国产97色在线日韩免费| 亚洲午夜理论影院| 国产乱人视频| 成人特级av手机在线观看| 高清毛片免费观看视频网站| 国产又黄又爽又无遮挡在线| 国产精品久久久久久久电影 | 国产精品香港三级国产av潘金莲| 免费大片18禁| 夜夜夜夜夜久久久久| 免费一级毛片在线播放高清视频| 一进一出抽搐gif免费好疼| 精品乱码久久久久久99久播| 嫩草影院入口| 操出白浆在线播放| 日日夜夜操网爽| 国产亚洲精品综合一区在线观看| 老汉色∧v一级毛片| 91麻豆精品激情在线观看国产| 中亚洲国语对白在线视频| 欧美成人免费av一区二区三区| 国产精品亚洲美女久久久| 麻豆久久精品国产亚洲av| 国产精品一及| 久久九九热精品免费| 中文字幕最新亚洲高清| 精品国产超薄肉色丝袜足j| 99久久精品热视频| 成年人黄色毛片网站| 久久国产精品人妻蜜桃| 两个人的视频大全免费| 欧美性猛交黑人性爽| 99精品久久久久人妻精品| 最近最新中文字幕大全电影3| av天堂中文字幕网| 99热只有精品国产| 亚洲色图 男人天堂 中文字幕| 久久人妻av系列| 黑人巨大精品欧美一区二区mp4| 丰满的人妻完整版| 久久天躁狠狠躁夜夜2o2o| 亚洲国产中文字幕在线视频| 九九在线视频观看精品| 国产黄a三级三级三级人| tocl精华| 午夜日韩欧美国产| 午夜福利在线在线| 国产伦人伦偷精品视频| 亚洲国产精品久久男人天堂| 亚洲人成网站在线播放欧美日韩| 色吧在线观看| 美女cb高潮喷水在线观看 | 久久精品综合一区二区三区| 桃色一区二区三区在线观看| 亚洲成av人片在线播放无| 12—13女人毛片做爰片一| 草草在线视频免费看| 亚洲av免费在线观看| 久久精品综合一区二区三区| 国产精品av久久久久免费| 亚洲国产精品成人综合色| 久久性视频一级片| 在线免费观看不下载黄p国产 | www日本在线高清视频| 老熟妇乱子伦视频在线观看| 999久久久精品免费观看国产| 少妇人妻一区二区三区视频| 一区福利在线观看| 国产高清视频在线观看网站| 国产成人av教育| 99国产精品99久久久久| 91av网一区二区| 国产高清有码在线观看视频| 中文字幕最新亚洲高清| 日本黄色视频三级网站网址| 亚洲精品美女久久av网站| 在线观看免费午夜福利视频| 国产精品乱码一区二三区的特点| 五月伊人婷婷丁香| 免费搜索国产男女视频| 看免费av毛片| 午夜免费成人在线视频| 免费人成视频x8x8入口观看| 亚洲av成人精品一区久久| 人妻夜夜爽99麻豆av| 久久久水蜜桃国产精品网| 99久久国产精品久久久| 日本熟妇午夜| 久久精品国产清高在天天线| 亚洲色图 男人天堂 中文字幕| www.精华液| 国产成人影院久久av| 亚洲熟妇中文字幕五十中出| 欧美性猛交黑人性爽| 90打野战视频偷拍视频| 每晚都被弄得嗷嗷叫到高潮| 此物有八面人人有两片| 亚洲精品色激情综合| 欧美一区二区国产精品久久精品| 男女床上黄色一级片免费看| 黄片小视频在线播放| 亚洲精品色激情综合| 色播亚洲综合网| 97超级碰碰碰精品色视频在线观看| 精品久久久久久久久久免费视频| 亚洲国产精品合色在线| 亚洲av成人不卡在线观看播放网| 亚洲激情在线av| 制服丝袜大香蕉在线| 在线观看日韩欧美| 天堂影院成人在线观看| 国产伦在线观看视频一区| 亚洲一区二区三区色噜噜| av欧美777| 欧美日韩中文字幕国产精品一区二区三区| 色播亚洲综合网| 黄色片一级片一级黄色片| 脱女人内裤的视频| 国产av麻豆久久久久久久| 亚洲国产欧美网| 又黄又粗又硬又大视频| 欧美日韩瑟瑟在线播放| 国产高潮美女av| 国产精品久久久久久精品电影| 国产黄色小视频在线观看| 欧美日韩一级在线毛片| 国产精品一区二区免费欧美| 曰老女人黄片| 亚洲精品一区av在线观看| 国产精品一区二区三区四区久久| 亚洲av熟女| 午夜激情福利司机影院| 久久午夜综合久久蜜桃| 亚洲一区二区三区不卡视频| 国产一区在线观看成人免费| 舔av片在线| 别揉我奶头~嗯~啊~动态视频| 午夜激情欧美在线| 一本精品99久久精品77| 国产精品国产高清国产av| www.自偷自拍.com| 在线观看一区二区三区| 欧美成狂野欧美在线观看| 成人欧美大片| 色噜噜av男人的天堂激情| 青草久久国产| 香蕉久久夜色| 亚洲av美国av| 欧美中文日本在线观看视频| 亚洲精品在线美女| 91在线精品国自产拍蜜月 | 国产伦精品一区二区三区四那| 无遮挡黄片免费观看| 国产精品久久久久久人妻精品电影| 久久国产精品人妻蜜桃| 午夜影院日韩av| 中国美女看黄片| 99热精品在线国产| 久久亚洲精品不卡| 亚洲成人久久爱视频| 亚洲最大成人中文| 国产午夜精品久久久久久| 日本黄色片子视频| 亚洲精品在线美女| 色播亚洲综合网| 人妻丰满熟妇av一区二区三区| 国产野战对白在线观看| 午夜福利视频1000在线观看| 老司机深夜福利视频在线观看| 国产精品,欧美在线| 国产美女午夜福利| 在线观看66精品国产| 国产av不卡久久| 免费看日本二区| 亚洲av五月六月丁香网| 露出奶头的视频| 欧美另类亚洲清纯唯美| 国产三级中文精品| 亚洲精品久久国产高清桃花| 久久精品亚洲精品国产色婷小说| 中文字幕人妻丝袜一区二区| 成熟少妇高潮喷水视频| 男人舔奶头视频| 99国产精品一区二区蜜桃av| 国产1区2区3区精品| 少妇丰满av| 真人一进一出gif抽搐免费| 国产成+人综合+亚洲专区| 日韩欧美一区二区三区在线观看| 久久久久性生活片| 国产一级毛片七仙女欲春2| 国产精品自产拍在线观看55亚洲| 国产又黄又爽又无遮挡在线| 中文字幕人成人乱码亚洲影| 久久午夜亚洲精品久久| 国产精品99久久久久久久久| 一a级毛片在线观看| 男插女下体视频免费在线播放| 国产激情欧美一区二区| 美女黄网站色视频| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久久久亚洲av鲁大| 青草久久国产| 免费av不卡在线播放| 九九热线精品视视频播放| 精品久久久久久成人av| 色在线成人网| 无人区码免费观看不卡| 亚洲 欧美 日韩 在线 免费| 国产成人精品久久二区二区91| 欧美一级a爱片免费观看看| 欧美日本亚洲视频在线播放| 欧美日韩福利视频一区二区| 欧美日韩综合久久久久久 | 精品久久久久久久人妻蜜臀av| 草草在线视频免费看| 精品乱码久久久久久99久播| 性欧美人与动物交配| 亚洲成人免费电影在线观看| 香蕉丝袜av| 亚洲在线观看片| 亚洲国产精品999在线| 后天国语完整版免费观看| 欧美激情久久久久久爽电影| or卡值多少钱| 日日摸夜夜添夜夜添小说| 啦啦啦免费观看视频1| 亚洲成av人片免费观看| av福利片在线观看| 国产成人精品久久二区二区91| 美女被艹到高潮喷水动态| 久久精品国产亚洲av香蕉五月| 久久这里只有精品19| 国产精品亚洲一级av第二区| 久久久久久久精品吃奶| 又黄又粗又硬又大视频| 噜噜噜噜噜久久久久久91| 国产综合懂色| 午夜福利欧美成人| 桃色一区二区三区在线观看| 又粗又爽又猛毛片免费看| 久久天躁狠狠躁夜夜2o2o| 中文资源天堂在线| 国产精品日韩av在线免费观看| 日本在线视频免费播放| 亚洲国产精品sss在线观看| 99精品久久久久人妻精品| 亚洲欧美精品综合一区二区三区| 亚洲九九香蕉| 看黄色毛片网站| 日韩欧美三级三区| 亚洲精品456在线播放app | 一卡2卡三卡四卡精品乱码亚洲| 久久久久久九九精品二区国产| 夜夜爽天天搞| 日本熟妇午夜| 88av欧美| 给我免费播放毛片高清在线观看| 久久伊人香网站| 亚洲熟女毛片儿| 国产高清视频在线观看网站| 性色avwww在线观看| 免费观看精品视频网站| 久久精品国产亚洲av香蕉五月| 日本撒尿小便嘘嘘汇集6| 午夜福利在线观看免费完整高清在 | 成人特级黄色片久久久久久久| 免费观看人在逋| 日日摸夜夜添夜夜添小说| 1024香蕉在线观看| 精品久久久久久久久久久久久| 日韩精品青青久久久久久| 俺也久久电影网| 国产精品一区二区三区四区免费观看 | 亚洲七黄色美女视频| 成人欧美大片| 九色成人免费人妻av| 国产av一区在线观看免费| 日韩欧美精品v在线| 一级作爱视频免费观看| 国产极品精品免费视频能看的| 母亲3免费完整高清在线观看| 搡老熟女国产l中国老女人| 久久香蕉国产精品| 免费观看精品视频网站| 国产欧美日韩精品亚洲av| 国产精品永久免费网站| 久久精品国产亚洲av香蕉五月| 老司机午夜福利在线观看视频| 亚洲av成人不卡在线观看播放网| 亚洲成人久久爱视频| 精品一区二区三区视频在线观看免费| 性色avwww在线观看| 婷婷亚洲欧美| 狠狠狠狠99中文字幕| 国产亚洲精品综合一区在线观看| 90打野战视频偷拍视频| 人人妻人人看人人澡| 天堂√8在线中文| 最近最新中文字幕大全电影3| 最新中文字幕久久久久 | 999精品在线视频| 精品久久久久久久末码| 国产乱人伦免费视频| 精品免费久久久久久久清纯| 成人永久免费在线观看视频| 极品教师在线免费播放| 国产午夜精品论理片| 久久久国产精品麻豆| 国产成人av激情在线播放| 黄色女人牲交| 国产高清videossex| 巨乳人妻的诱惑在线观看| 日本黄色片子视频| 久久国产乱子伦精品免费另类| 国产麻豆成人av免费视频| 成年女人看的毛片在线观看| 亚洲成av人片免费观看| 亚洲电影在线观看av| 亚洲国产欧美一区二区综合| 亚洲精品一卡2卡三卡4卡5卡| 国产精品av久久久久免费| 成人精品一区二区免费| 精品久久久久久久毛片微露脸| 国产精品野战在线观看| 国产精品九九99| 日韩大尺度精品在线看网址| 日韩三级视频一区二区三区| 欧美一级a爱片免费观看看| 国产精品久久久久久精品电影| 亚洲男人的天堂狠狠| 国产精品久久久av美女十八| 久久久久国产一级毛片高清牌| 午夜影院日韩av| 免费在线观看成人毛片| 亚洲真实伦在线观看| 99热6这里只有精品| 伊人久久大香线蕉亚洲五| 熟女人妻精品中文字幕| 亚洲一区二区三区色噜噜| 久久性视频一级片| 两个人的视频大全免费| 麻豆成人午夜福利视频| 在线永久观看黄色视频| 欧美中文日本在线观看视频| 久久国产乱子伦精品免费另类| e午夜精品久久久久久久| 伊人久久大香线蕉亚洲五| 在线观看免费午夜福利视频| 国产三级中文精品| 色视频www国产| 此物有八面人人有两片| 桃色一区二区三区在线观看| 美女大奶头视频| 欧美3d第一页| 国产一区二区在线观看日韩 | 日韩欧美在线二视频| 在线视频色国产色| 欧美黄色淫秽网站| 国产不卡一卡二| 99久久综合精品五月天人人| avwww免费| 人妻久久中文字幕网| 五月伊人婷婷丁香| 久久伊人香网站| 99久久精品热视频| 黑人欧美特级aaaaaa片| 国产欧美日韩精品亚洲av| 国产探花在线观看一区二区| 床上黄色一级片| 国产av麻豆久久久久久久| 国产精品九九99| 少妇的逼水好多| 久久久久久大精品| 搡老熟女国产l中国老女人| 久久中文字幕一级| 国产精品国产高清国产av| 色播亚洲综合网| 亚洲欧美精品综合一区二区三区| 十八禁人妻一区二区| 动漫黄色视频在线观看| 最近在线观看免费完整版| 999精品在线视频| 亚洲人成电影免费在线| 最好的美女福利视频网| 午夜福利成人在线免费观看| 黄色女人牲交| 亚洲欧美日韩高清在线视频| 九九热线精品视视频播放| 欧美日本视频| 国产精品av久久久久免费| 欧美绝顶高潮抽搐喷水| 男女视频在线观看网站免费| 亚洲 欧美 日韩 在线 免费| 可以在线观看的亚洲视频| 亚洲专区中文字幕在线| 亚洲一区高清亚洲精品| 一a级毛片在线观看| 日本在线视频免费播放| 中文字幕人妻丝袜一区二区| 中文字幕高清在线视频| 91av网站免费观看| 白带黄色成豆腐渣| 日本一二三区视频观看| 18禁观看日本| 国产亚洲欧美98| 18禁黄网站禁片免费观看直播| 美女扒开内裤让男人捅视频| 久久精品国产清高在天天线| 欧美最黄视频在线播放免费| 国产精品精品国产色婷婷| 特级一级黄色大片| 久久天躁狠狠躁夜夜2o2o| 亚洲 欧美 日韩 在线 免费| 国产麻豆成人av免费视频| 最好的美女福利视频网| 国产精品久久电影中文字幕| 精品乱码久久久久久99久播| 国产激情偷乱视频一区二区| 少妇裸体淫交视频免费看高清| 日韩国内少妇激情av| 欧美黑人巨大hd| 国产精品亚洲一级av第二区| 欧美日韩福利视频一区二区| 精品久久久久久,| 亚洲国产中文字幕在线视频| 国产成年人精品一区二区| 国产激情偷乱视频一区二区| 搡老妇女老女人老熟妇| 三级男女做爰猛烈吃奶摸视频| 黄片大片在线免费观看| 91字幕亚洲| e午夜精品久久久久久久| www日本黄色视频网| www.精华液| 岛国视频午夜一区免费看| 看免费av毛片| 日韩欧美免费精品| 在线a可以看的网站| 亚洲欧美日韩高清专用| 亚洲精品一区av在线观看| 人妻久久中文字幕网| 午夜免费观看网址| 波多野结衣巨乳人妻| 精品国产乱码久久久久久男人| 手机成人av网站| 丝袜人妻中文字幕| 又粗又爽又猛毛片免费看| 欧美中文日本在线观看视频| 国产私拍福利视频在线观看| 国产成人av激情在线播放| 欧美一区二区国产精品久久精品| 在线十欧美十亚洲十日本专区| 色精品久久人妻99蜜桃| 国产爱豆传媒在线观看| 亚洲第一欧美日韩一区二区三区| 丰满的人妻完整版| 天堂av国产一区二区熟女人妻| 91av网站免费观看| 国产视频一区二区在线看| 欧美乱妇无乱码| 日韩精品青青久久久久久| 亚洲第一欧美日韩一区二区三区| 精品久久久久久,| 欧美色欧美亚洲另类二区| 欧美av亚洲av综合av国产av| 丰满人妻熟妇乱又伦精品不卡| 在线观看一区二区三区| 国产激情久久老熟女| 1024香蕉在线观看| 亚洲av成人一区二区三| 亚洲五月天丁香| 黄色 视频免费看| 亚洲一区高清亚洲精品| 色吧在线观看| 亚洲成av人片在线播放无| 色播亚洲综合网| 老汉色∧v一级毛片| av片东京热男人的天堂| 久久婷婷人人爽人人干人人爱| 高潮久久久久久久久久久不卡| 极品教师在线免费播放| 女同久久另类99精品国产91| 中文字幕精品亚洲无线码一区| 国产又色又爽无遮挡免费看| 啦啦啦观看免费观看视频高清| 国内毛片毛片毛片毛片毛片| 久久香蕉精品热| 很黄的视频免费| 一区福利在线观看| 窝窝影院91人妻| 日日干狠狠操夜夜爽| 全区人妻精品视频| 老司机午夜十八禁免费视频| 99久久精品热视频| 亚洲中文日韩欧美视频| 日本 欧美在线| 999久久久国产精品视频| 老司机福利观看| 十八禁网站免费在线| 熟妇人妻久久中文字幕3abv| 国产亚洲精品久久久com| 99国产极品粉嫩在线观看| 欧美国产日韩亚洲一区| 国产精品日韩av在线免费观看| 久久久久国产精品人妻aⅴ院| 两性夫妻黄色片| 久久久国产欧美日韩av| xxx96com| 观看美女的网站| 九九在线视频观看精品| 99久久精品国产亚洲精品| 精品国产美女av久久久久小说| 中文字幕高清在线视频| 国产精品久久视频播放| 午夜福利在线在线| 天堂影院成人在线观看| 欧美性猛交╳xxx乱大交人| 精品不卡国产一区二区三区| aaaaa片日本免费| 国产主播在线观看一区二区| 小蜜桃在线观看免费完整版高清| 亚洲五月天丁香| 国产三级中文精品| 国产高清videossex| 亚洲狠狠婷婷综合久久图片| 精品不卡国产一区二区三区| 97超级碰碰碰精品色视频在线观看| 国产欧美日韩一区二区三| 9191精品国产免费久久| 成人无遮挡网站| 国产av在哪里看| av黄色大香蕉| a级毛片a级免费在线| 日本成人三级电影网站| 日本撒尿小便嘘嘘汇集6| 宅男免费午夜| 在线观看舔阴道视频| www.www免费av| 国产野战对白在线观看| 91老司机精品| 狠狠狠狠99中文字幕| 99久久久亚洲精品蜜臀av| 老司机福利观看| 国产一区二区激情短视频| 一个人看的www免费观看视频| 午夜激情欧美在线| 国产精品一及| 亚洲自偷自拍图片 自拍| 国产亚洲精品久久久com| 搡老岳熟女国产| 精品国产乱子伦一区二区三区| 国产黄色小视频在线观看| 人妻夜夜爽99麻豆av| 亚洲avbb在线观看| 成年女人永久免费观看视频| 变态另类成人亚洲欧美熟女| 色视频www国产| 国产精品一区二区三区四区久久| 亚洲va日本ⅴa欧美va伊人久久| 久9热在线精品视频| www日本黄色视频网| 日日摸夜夜添夜夜添小说| 麻豆av在线久日| 村上凉子中文字幕在线| 夜夜躁狠狠躁天天躁| 亚洲欧美日韩卡通动漫| 好男人电影高清在线观看| 亚洲欧洲精品一区二区精品久久久| 噜噜噜噜噜久久久久久91| 久久精品91蜜桃| 精品午夜福利视频在线观看一区| 亚洲精品粉嫩美女一区| 三级男女做爰猛烈吃奶摸视频| 日本黄色片子视频| АⅤ资源中文在线天堂| 精品福利观看| 亚洲成a人片在线一区二区| 国产精品免费一区二区三区在线| 国产精品乱码一区二三区的特点| 熟女人妻精品中文字幕| 国产精品一及| 亚洲欧美日韩东京热| bbb黄色大片| 美女黄网站色视频| 久久久久国产精品人妻aⅴ院| 国产成人av教育| 在线免费观看的www视频| 久久久久国产精品人妻aⅴ院| 热99re8久久精品国产| 亚洲欧美日韩无卡精品| av黄色大香蕉| 欧美一区二区国产精品久久精品| 特级一级黄色大片| 又大又爽又粗| 亚洲成人久久性| 女人被狂操c到高潮| 色吧在线观看| 国内精品一区二区在线观看| 久久这里只有精品19| 亚洲18禁久久av| 国产精品99久久99久久久不卡| 在线看三级毛片| 国产av不卡久久| 国产精品亚洲一级av第二区| 欧美一级毛片孕妇| 噜噜噜噜噜久久久久久91| 色哟哟哟哟哟哟| 法律面前人人平等表现在哪些方面|