王 濤,楊怡鈞,鄧 琳,何琳燕,許銘紋,楊才千,梁止水
不同固體微生物菌劑對砒砂巖土壤性質(zhì)和紫花苜蓿生長的影響
王 濤1,楊怡鈞1,鄧 琳1※,何琳燕2,許銘紋1,楊才千1,梁止水1
(1. 東南大學(xué)土木工程學(xué)院,南京 211189;2. 農(nóng)業(yè)部農(nóng)業(yè)環(huán)境微生物重點實驗室,南京農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,南京 210095)
為研制改良砒砂巖土壤、強化植物生長的微生物菌劑,該研究以嗜鹽芽孢桿菌P75、苜蓿中華根瘤菌D10、巨大芽孢桿菌H3和枯草芽孢桿菌HB01為原料,利用生物基材吸附混合,制備4種單一固體微生物菌劑和多種復(fù)合固體微生物菌劑。通過分析pH值、有機質(zhì)含量、有效氮磷鉀含量、酶活性和細菌數(shù)量等指標來研究添加微生物菌劑對砒砂巖土壤性質(zhì)和紫花苜蓿幼苗生長的影響。結(jié)果表明,與不添加微生物菌劑的對照組相比,微生物菌劑能夠使砒砂巖土壤pH值降到中性附近,促使土壤有機質(zhì)、堿解氮、速效磷、速效鉀含量顯著增加,提高了土壤蔗糖酶和脲酶活性,增加了土壤細菌數(shù)量,同時促進了紫花苜蓿幼苗生長,其中以含菌株P(guān)75、D10和H3以及含菌株P(guān)75、D10、H3和HB01的復(fù)合菌劑的效果最佳。該試驗研究可以為微生物菌劑在砒砂巖區(qū)土壤改良和植被恢復(fù)方面的應(yīng)用提供試驗基礎(chǔ)和參考。
土壤;微生物;育苗;砒砂巖;微生物菌劑;土壤改良
砒砂巖主要集中分布于中國黃河流域的晉陜蒙接壤地區(qū),面積約為1.67萬km2[1]。因砒砂巖具有成巖程度低和結(jié)構(gòu)松散等特點,致使其抗蝕能力差[2-3]。在遇到降雨時,砒砂巖遇水潰散,隨雨水進入河流,是黃河中上游粗泥沙的主要來源,同時砒砂巖區(qū)域也是黃土高原侵蝕最為劇烈的地區(qū)[4-5]。砒砂巖常年經(jīng)受著風(fēng)力、雨水和重力等多因素的復(fù)合侵蝕,其分布區(qū)域內(nèi)水土流失嚴重,植被覆蓋率低,甚至于大面積完全裸露,生態(tài)環(huán)境十分惡劣,且難以進行有效治理[6-8]。目前針對于砒砂巖區(qū)的治理主要有沙棘“柔性壩”、坡面工程和溝頭防護工程等一系列生物措施和工程措施[9]。微生物措施作為提升土壤肥力、改良土壤特性和促進植物生長的重要方式,可進一步研究應(yīng)用于砒砂巖區(qū)的土壤改良和植被恢復(fù)。
土壤微生物種類繁多,群落結(jié)構(gòu)復(fù)雜,是土壤生態(tài)系統(tǒng)的重要組成部分,其數(shù)量和分布受土壤類型、pH值、有機質(zhì)和氮磷鉀含量等因素的影響而有所差異[10-11]。土壤有益菌能夠幫助植物更好的吸收氮磷鉀等元素,提升植物的抗逆性,從而促進植物的生長[12]。同時土壤微生物在土壤養(yǎng)分循環(huán)系統(tǒng)中起到至關(guān)重要的作用,如土壤有機質(zhì)的形成和土壤養(yǎng)分的釋放均離不開土壤微生物的作用,土壤中一旦缺少微生物,硝化和礦化分解等過程都將難以進行,不利于土壤肥力的形成,甚至對土壤生態(tài)系統(tǒng)產(chǎn)生嚴重破壞[13-14]。因此,保證土壤微生物數(shù)量及合理分布,有利于土壤養(yǎng)分循環(huán)和肥力提升,進而更適于植物的健康生長[15-16]。微生物菌劑是通過將有益菌擴大培養(yǎng)后再經(jīng)加工而成的一種活菌劑,可直接施入土壤中,具有改良土壤性質(zhì)、促進植物生長和預(yù)防病害等作用[17]。目前,微生物菌劑在農(nóng)業(yè)中的應(yīng)用備受重視,在砂質(zhì)土壤改良方面也有一定的試驗研究[18],但未見微生物菌劑在砒砂巖改良方面的應(yīng)用研究。
本試驗探究4種單一固體微生物菌劑和多種復(fù)合固體微生物菌劑在砒砂巖土壤中對紫花苜蓿幼苗生長和土壤性質(zhì)的影響,以期為砒砂巖區(qū)植被恢復(fù)和水土流失的治理提供理論依據(jù)和技術(shù)支撐。
供試土壤:樣品為風(fēng)化的表層砒砂巖,采集于內(nèi)蒙古鄂爾多斯市準格爾旗砒砂巖資源區(qū),采集時間為2018年11月。在室內(nèi)陰涼通風(fēng)處,自然風(fēng)干后,通過5 mm標準土壤篩,裝袋待用。
供試菌株:實驗室保藏的嗜鹽芽孢桿菌()P75、苜蓿中華根瘤菌()D10、巨大芽孢桿菌()H3和枯草芽孢桿菌()HB01。
LB培養(yǎng)基:將10 g胰蛋白胨、5 g酵母粉和10 g NaCl溶于1000 mL蒸餾水中,pH值調(diào)整至7.0。
TY培養(yǎng)基:將5.0 g蛋白胨、3.0 g酵母膏、0.647 g無水CaCl2溶于1 000 mL蒸餾水中。
供試生物基材:將有機肥、草炭、蛭石(2~4 mm)、保水劑按質(zhì)量比1∶1∶1∶0.01均勻混合即可,且草炭和蛭石在使用前需經(jīng)過滅菌處理,此基材現(xiàn)配現(xiàn)用。
供試植物:紫花苜蓿(),種子購買于內(nèi)蒙古準格爾旗沙圪堵鎮(zhèn)。
將供試菌株P(guān)75、H3、HB01分別接種于LB液體培養(yǎng)基中,供試菌株D10接種于TY液體培養(yǎng)基中,30 ℃、150 r/min條件下振蕩18 h。然后,經(jīng)6 000 r/min離心10 min后收集各菌株的菌體沉淀,再將各菌體沉淀分別重懸于無菌水中,調(diào)節(jié)OD600=1.0,分別得菌株P(guān)75、D10、H3和HB01的菌懸液。
將菌株P(guān)75、D10、H3和HB01的菌懸液分別與供試生物基材按體積質(zhì)量比1∶1充分混合均勻,37 ℃條件下烘干,得4種單一微生物菌劑,記為P75、D10、H3和HB01。然后將各單一微生物菌劑按不同組合等質(zhì)量混合,得11種復(fù)合微生物菌劑。所有微生物菌劑的名稱和組分詳見表1。
表1 微生物菌劑的名稱及組分信息
注:“+”表示菌劑中含有該組分,“-”表示不含該組分。P75、D10、H3和HB01分別代表4種不同單一微生物菌劑處理;A2、B2、C2、D2、E2、F2、A3、B3、C3、D3和A4分別代表11種不同復(fù)合微生物菌劑處理;CK1代表空白對照,CK2代表生物基材處理,下同。
Note: “+” indicates that the component is contained in the microbial agent, and “-” indicates that the component is not contained. P75, D10, H3 and HB01 represent the treatments with 4 different single microbial agents, A2, B2, C2, D2, E2, F2, A3, B3, C3, D3 and A4 represent the treatments with 11 different compound microbial agents, CK1 represents the blank control treatment and CK2 represents the treatment with biological substrate, the same as below.
試驗于2019年3月~4月在溫室中進行,采用盆栽方式,每個盆里裝300 g砒砂巖。試驗設(shè)置17個試驗組,分別為:(1)CK1、(2)CK2、(3)P75、(4)D10、(5)H3、(6)HB01、(7)A2、(8)B2、(9)C2、(10)D2、(11)E2、(12)F2、(13)A3、(14)B3、(15)C3、(16)D3、(17)A4,每個試驗組設(shè)置3個重復(fù)。為確保土壤基質(zhì)里所接種的每種功能菌的數(shù)量達到106CFU/g以上,試驗組(3)~(17)按5%(質(zhì)量比)分別將相對應(yīng)的微生物菌劑與砒砂巖混合均勻,試驗組CK1不做任何處理,試驗組CK2添加等量的生物基材,且CK1作為空白對照組,CK2為生物基材組。用水完全澆透各組土壤,靜置1個月,采集土樣,進行一系列土壤指標的測定。
土樣采集完后,直接在原有盆栽土壤上進行育苗試驗。利用5%的次氯酸鈉溶液對紫花苜蓿種子進行表面消毒10 min,再用無菌水將種子清洗3遍,然后將種子均勻的撒到每盆土的表面,最后用細土輕輕覆蓋。室溫下培養(yǎng),發(fā)芽后間苗,直至每盆保留15株幼苗。定期適量澆水,保證植物成活。20 d后,測量幼苗株高、根長、鮮質(zhì)量和干質(zhì)量,評價各處理組土壤的育苗效果。
取采集的新鮮土壤,采用梯度稀釋、平板培養(yǎng)的方法計算土壤細菌總數(shù)。
取自然風(fēng)干的土壤樣品,按1:2.5的土水比例加入去離子水,充分振蕩2 h后離心,取上清液用pH計測定pH值;參照《土壤農(nóng)化分析》[19],采用重鉻酸鉀氧化-稀釋熱法測定土壤中有機質(zhì)的含量,堿解擴散法測定土壤中堿解氮的含量,0.5 mol/L NaHCO3浸提-鉬銻抗比色法測定土壤中速效磷的含量,NH4OAc-火焰光度法測定土壤中速效鉀的含量;參照關(guān)松蔭[20]的方法測定土壤酶活性,采用3,5-二硝基水楊酸比色法測定土壤蔗糖酶活性,以24 h后1 g土壤中葡萄糖的毫克數(shù)表示,苯酚鈉比色法測定脲酶活性,以24 h后1 g土壤中NH3-N的毫克數(shù)表示。
將各盆中紫花苜蓿幼苗收集后,洗凈并瀝干,用毫米直尺測量每個幼苗的株高和根長,取平均值。用天平測量地上部和根部鮮質(zhì)量,再經(jīng)75 ℃烘干至恒質(zhì)量,測量地上部和根部干質(zhì)量。
所有試驗數(shù)據(jù)均采用Microsoft Office Excel 2016和Origin 2018軟件處理并作圖,采用 SPSS 23.0對數(shù)據(jù)進行單因素方差分析,<0.05表示差異顯著。
如表2所示,從對照組(CK1)的數(shù)據(jù)可以看出,試驗用的砒砂巖屬于堿性土壤,pH值接近8.5。與對照組CK1相比,其余各處理組pH均顯著下降,且下降了1.22~1.34,接近于中性,說明微生物菌劑能夠改善土壤的酸堿性,但生物基材組和其余處理組之間的效果差異不明顯。
表2 不同微生物菌劑對砒砂巖土壤理化性質(zhì)、酶活性和細菌數(shù)量的影響
注:同列數(shù)據(jù)后不同小寫字母表示不同處理間有顯著差異(0.05)。
Note: Different lowercase letters after the same column of data indicate that there is significant difference between different treatments (0.05).
不同土壤基質(zhì)的有機質(zhì)含量如表2所示,與對照組相比,生物基材組的土壤有機質(zhì)含量顯著提高23.9%。與生物基材組相比,處理組B2、D2、E2、A3、B3、C3、A4的土壤有機質(zhì)含量明顯提高,增幅為18.4%~30.0%,差異表現(xiàn)為C3(18.4%)<A3(19.5%)<A4(21.5%)<E2(22.6%)<B2(22.8%)<B3(23.1%)<D2(30%),其余處理組與生物基材組相比無明顯增加。
土壤有效態(tài)氮磷鉀的含量直接反映了土壤的肥力水平,不同土壤基質(zhì)的有效氮磷鉀含量如表2所示。與對照組相比,生物基材組的土壤堿解氮含量顯著增加4.4倍。與生物基材組相比,處理組P75、D10、A2、C2、C3、A4的土壤堿解氮含量顯著增加,增幅為19.7%~30.4%,表現(xiàn)為P75(19.7%)<C2(21.2%)<A4(21.8%)<C3(23.2%)<D10(28.7%)<A2(30.4%),其余處理組與生物基材組相比無顯著增加。與對照組相比,生物基材組的土壤速效磷含量顯著增加6.9倍。與生物基材組相比,其余處理組的土壤速效磷含量均顯著增加,增幅為12.4%~47.8%,其中部分處理組速效磷含量的增幅達到30%以上,從小到大依次表現(xiàn)為A3(34.2%)<HB01(34.4%)<P75(34.8%)<F2(42.7%)<A4(47.8%)。與對照組相比,生物基材組的土壤速效鉀含量無明顯增加。與生物基材組相比,除處理組D10和HB01的效果不明顯以外,其余處理組的土壤速效鉀含量均顯著增加,增幅為25.3%~82.9%,其中部分處理組速效鉀含量的增幅達到60%以上,從小到大依次表現(xiàn)為D3(61.9%)<A2(66.5%)<C3(72.8%)<B3(73.6%)<A3(79.8%)<A4(82.9%)。
土壤酶活性能夠反映土壤酶催化物質(zhì)轉(zhuǎn)化的能力,本試驗測定了土壤基質(zhì)的蔗糖酶和脲酶活性。如表2所示,與對照組相比,生物基材組的土壤蔗糖酶活性顯著增加41.2%。與生物基材組相比,除處理組F2和B3的無明顯增加效果以外,其余處理組均使土壤蔗糖酶活性顯著增加,增幅為13.2%~58.0%,其中部分處理組蔗糖酶活性的增幅達到30%以上,從小到大依次表現(xiàn)為C2(36.4%)<C3(49.7%)<A3(51.0%)<E2(56.5%)<B2(58.0%)。與對照組相比,生物基材組的土壤脲酶活性顯著增加6.5倍。與生物基材組相比,除處理組D3的增加效果不顯著以外,其余處理組均使土壤脲酶活性顯著增加,增幅為13.0%~37.7%,其中部分處理組蔗糖酶活性的增幅達到25%以上,從小到大依次表現(xiàn)為A4(25.0%)<D2(25.2%)<D10(26.0%)<A2(30.7%)<C3(32.1%)<F2(37.7%)。
土壤細菌總數(shù)可以直接體現(xiàn)土壤的生物活性,由表2可知,對照組土壤的細菌數(shù)量超過105CFU/g,生物基材組土壤中的細菌數(shù)量超過106CFU/g。與生物基材組相比,處理組C2、F2和D3沒有顯著增加土壤中細菌數(shù)量;其余處理組土壤中的細菌數(shù)量均顯著增加,除HBO1外,細菌數(shù)量超過107CFU/g,且數(shù)量差異表現(xiàn)為HB01<C3<P75<D10<H3<E2<A3<A4<B3<D2<A2<B2。
由表3可知,與對照組相比,生物基材組處理后砒砂巖土壤中紫花苜蓿幼苗的株高、根長、地上部鮮質(zhì)量和地上部干質(zhì)量分別顯著增加29.7%、79.5%、124.8%和136.8%,而紫花苜蓿幼苗的根部鮮質(zhì)量和根部干質(zhì)量無顯著增加。添加不同微生物菌劑在對紫花苜蓿幼苗的培育上表現(xiàn)出差異性。與生物基材組相比,微生物菌劑處理后的砒砂巖土壤中紫花苜蓿幼苗的株高、根長、地上部鮮質(zhì)量、根部鮮質(zhì)量、地上部干質(zhì)量和根部干質(zhì)量均有顯著增加,增幅依次為18.0%~39.2%、37.4%~70.5%、56.3%~94.1%、106.5%~234.6%、32.8%~90.5%、108.8%~301.2%,其中處理組C3、A3和A4的幼苗株高顯著增加37.4%、38.3%和39.2%,處理組A2、D3、A3和A4的幼苗根長顯著增加61.3%、61.4%、66.3%和70.5%,處理組A3和A4的幼苗地上部鮮質(zhì)量顯著增加90.8%和94.1%,處理組A4和A3的幼苗根部鮮質(zhì)量顯著增加227.0%和234.6%,處理組A3和A4的幼苗地上部干質(zhì)量顯著增加89.9%和90.5%,處理組A4、D3和A3的幼苗根部干質(zhì)量顯著增加275.9%、291.4%和301.2%。
表3 不同微生物菌劑對砒砂巖土壤育苗效果的影響
土壤是土壤微生物生存的大本營,也是植物生長的基礎(chǔ)。土壤肥力是土壤的本質(zhì)和基本屬性,是土壤物理、化學(xué)和生物學(xué)等特性的綜合體現(xiàn),能夠反映土壤為植物生長提供各種所需養(yǎng)分以及協(xié)調(diào)營養(yǎng)環(huán)境的能力[21-22]。從本次試驗結(jié)果可以看出,砒砂巖偏堿性,且氮磷鉀等養(yǎng)分含量處于較低水平,土壤整體肥力水平低下,不滿足大多數(shù)植物生長的需求,這與伍艷等[23]的研究結(jié)果一致,同時這也是砒砂巖區(qū)植被稀少、裸露面積大的主要原因之一。因此,改善砒砂巖土壤質(zhì)量,提高砒砂巖土壤肥力水平,是砒砂巖區(qū)植被恢復(fù)的重要前提。
研究表明,微生物菌劑添加對土壤有著良好的改善作用,具有能夠改善土壤酸堿性和增加土壤有效氮磷鉀等效果[24-25]。本試驗中,添加微生物菌劑使砒砂巖土壤pH值降到中性附近,主要可能是因為菌劑中含有活性比較高的堿性菌, 能夠?qū)⑼寥乐械暮瑝A物質(zhì)分解轉(zhuǎn)化成果糖和氨基酸,從而使土壤堿性降低,有利于微生物的生命活動和植物的生長[26]。試驗中所添加的微生物菌劑是含碳較多的外源有機質(zhì),添加施用后,提高了土壤的有機質(zhì)含量,同時土壤微生物能夠分解植物殘體等有機物,進一步增加土壤有機質(zhì)的含量[27]。土壤微生物在土壤養(yǎng)分釋放和循環(huán)中具有重要意義,某些功能菌種能夠在固氮、磷溶解和鉀釋放等方面起到重要作用,并參與土壤中的碳氮循環(huán)和無機元素的轉(zhuǎn)化,在土壤肥力的形成過程中發(fā)揮著非常重要的作用[28-29]。從試驗結(jié)果可得,添加生物基材能夠增加土壤有效氮磷含量,主要是因為生物基材中含有較多的氮磷元素,同時土壤有益菌能夠通過固氮和轉(zhuǎn)化磷鉀元素的存在形式,進一步提高土壤中有效態(tài)氮磷鉀的含量。土壤細菌數(shù)量和酶活性是評價土壤肥力和土壤生態(tài)環(huán)境質(zhì)量的重要指標。微生物菌劑的添加,直接增加了土壤的細菌數(shù)量,同時也提供了有機質(zhì)和氮磷等營養(yǎng)物質(zhì),供細菌生長需求,而土壤酶的活性不僅與土壤微生物的活性相關(guān),還與土壤中氮磷等元素的含量相關(guān)[30-31]。本試驗中微生物菌劑的添加,使得土壤中有效氮磷鉀的含量和酶活性都有一定程度的增加,且土壤中氮磷等元素的含量處于一個正常的范圍內(nèi),未對土壤酶活性產(chǎn)生抑制作用。土壤微生物的生命活動能夠改善砒砂巖的土壤生態(tài)環(huán)境,提高土壤肥力,使其更適于紫花苜蓿的生長,同時紫花苜蓿屬于豆科植物,而添加的菌劑中含有根瘤菌,能與紫花苜蓿根部共生,促進根部的固氮作用和植物的生長。綜合以上數(shù)據(jù)分析可得,生物基材本身含有較豐富的有機質(zhì)和氮磷等營養(yǎng)元素,與砒砂巖混合后,直接增加了砒砂巖土壤有機質(zhì)和氮磷等營養(yǎng)成分含量,為微生物的生命活動和植物生長提供營養(yǎng),提高了土壤酶活性。制備成微生物菌劑后,供試菌株直接或通過刺激其他土壤菌的生命代謝活動以促進物質(zhì)合成和循環(huán),包括有機物質(zhì)的合成和積累、固氮、磷溶解和鉀釋放等過程,從而進一步提高了砒砂巖土壤生物活性和肥力水平,同時土壤有益菌可以促進植物根系對營養(yǎng)元素的吸收利用,促進了植物的生長。
本試驗的結(jié)果證明,微生物菌劑能夠明顯增加砒砂巖土壤的細菌數(shù)量和生物活性,提高土壤的養(yǎng)分含量和肥力水平,使砒砂巖土壤更適于植物的生長。本試驗研究的微生物菌劑能夠改善砒砂巖土壤質(zhì)量,在與砒砂巖復(fù)配后,形成一種更為有效的植物生長基質(zhì),可應(yīng)用于砒砂巖區(qū)土壤改良和植被恢復(fù),有利于砒砂巖區(qū)的水土流失治理和生態(tài)重建,同時可為其他貧瘠型土壤改良提供一定的參考價值,且微生物菌劑具備綠色無污染和生態(tài)環(huán)保的優(yōu)勢,具有良好的應(yīng)用前景。但是,本研究的試驗周期較短,且試驗地點是在室內(nèi),與內(nèi)蒙古準格爾旗砒砂巖區(qū)的現(xiàn)場環(huán)境差異較大,存在著諸多局限,特別是土壤水分的限制。不同土壤微生物對于干旱脅迫的耐受能力是不同的,土壤水分含量的變化會對微生物活性(包括土壤呼吸強度和酶活性等)產(chǎn)生影響,改變微生物群落結(jié)構(gòu),進一步影響土壤生態(tài)系統(tǒng)[32]。砒砂巖區(qū)土壤含水量低,且該地區(qū)降水量低,水資源匱乏,直接影響了土壤微生物的生命活性,同時限制了植物的生長。因此,在砒砂巖實際治理工程的前期,要做好水分供給等養(yǎng)護工作。此外,本試驗中所制備的微生物菌劑能否在砒砂巖的實際治理工程中起到良好效果還需進一步現(xiàn)場驗證,同時關(guān)于微生物菌劑改良砒砂巖土壤的機理還需進行進一步研究。
1)微生物菌劑能夠使砒砂巖土壤的pH值下降至中性附近,與添加生物基材的效果相比,添加微生物菌劑使得土壤有機質(zhì)增加18.4%~30.0%,堿解氮含量增加19.7%~30.4%,速效磷含量增加12.4%~47.8%,速效鉀含量增加25.3%~82.9%,同時使得土壤蔗糖酶和脲酶活性分別增加13.2%~58.0%和13.0%~37.7%,土壤細菌總數(shù)基本能達到107CFU/g以上。
2)添加微生物菌劑能夠促進紫花苜蓿幼苗的生長。與添加生物基材組的效果相比,使得幼苗株高增加18.0%~39.2%,根長增加37.4%~70.5%,地上部鮮質(zhì)量增加56.3%~94.1%,根部鮮質(zhì)量增加106.5%~234.6%,地上部干質(zhì)量增加32.8%~90.5%,根部干質(zhì)量增加108.8%~301.2%。
3)結(jié)合試驗結(jié)果,綜合分析可得微生物菌劑能夠明顯改善砒砂巖的土壤質(zhì)量,對紫花苜蓿植物幼苗有更好的培育效果,其中以含嗜鹽芽孢桿菌P75、苜蓿中華根瘤菌D10、巨大芽孢桿菌H3的微生物菌劑或含菌株P(guān)75、D10、H3和枯草芽孢桿菌HB01的微生物菌劑效果最佳,可以改良砒砂巖土壤、強化植物生長,在砒砂巖區(qū)的植被恢復(fù)治理中具有一定的應(yīng)用潛力。
[1] 冷元寶,姚文藝. 砒砂巖特征及其資源利用[J]. 中國水利,2015(8):15-17.
Leng Yuanbao, Yao Wenyi. Characteristics of arsenic sandstone and its resource utilization[J]. China Water Resources, 2015(8): 15-17. (in Chinese with English abstract)
[2] 陳科皓,韓霽昌,程杰,等. 砒砂巖研究進展及利用前景[J]. 中國農(nóng)學(xué)通報,2016,32(17):72-77.
Chen Kehao, Han Jichang, Cheng Jie, et al. Research progress and utilization prospect of soft rock[J]. Chinese Agricultural Science Bulletin, 2016, 32(17): 72-77. (in Chinese with English abstract)
[3] Liang Z S, Wu Z R, Mohammad N, et al. A new ecological control method for Pisha sandstone based on hydrophilic polyurethane[J]. Journal of Arid Land, 2017(5): 157-163.
[4] Li Y, Xie Z, Qin Y, et al. Temporal-spatial variation characteristics of soil erosion in the Pisha sandstone area, Loess Plateau, China[J]. Polish Journal of Environmental Studies, 2019, 28(4): 2205-2214.
[5] Gu Z K, Shi C X. Dynamical characteristics of geomorphologic evolution of the basins covered by Pisha-sandstone in the eastern wing of the Ordos Plateau, China[J]. Journal of Mountain Science, 2018, 15(5): 1046-1056.
[6] Liang Z S, Wu Z R, Yao W Y, et al. Pisha sandstone: Causes, processes and erosion options for its control and prospects[J]. International Soil and Water Conservation Research, 2019, 7(1): 1-8.
[7] Ma W, Zhang X. Effect of Pisha sandstone on water infiltration of different soils on the Chinese Loess Plateau[J]. Journal of Arid Land, 2016, 8(3): 331-340.
[8] Guo J, Shi Y C, Wu L J. Gravity erosion and lithology in Pisha sandstone in southern Inner Mongolia[J]. Journal of Groundwater Science and Engineering, 2015(1): 45-58.
[9] 肖培青,姚文藝,劉慧. 砒砂巖地區(qū)水土流失研究進展與治理途徑[J]. 人民黃河,2014,36(10):92-94.
Xiao Peiqing, Yao Wenyi, Liu Hui. Research progress and harnessing method of soil and water loss in Pisha sandstone region[J]. Yellow River, 2014, 36(10): 92-94. (in Chinese with English abstract)
[10] 張凱煜,谷潔,王小娟,等. 微生物有機肥對櫻桃園土壤細菌群落的影響[J]. 中國環(huán)境科學(xué),2019,39(3):1245-1252.
Zhang Kaiyu, Gu Jie, Wang Xiaojuan, et al. Effects of bio-organic fertilizer on the soil bacterial community in a cherry orchard[J]. China Environmental Science, 2019, 39(3): 1245-1252. (in Chinese with English abstract)
[11] Heijden M, Wagg C. Soil microbial diversity and agro- ecosystem functioning[J]. Plant and Soil, 2013, 363(1/2): 1-5.
[12] Lakshmanan V, Selvaraj G, Bais H P. Functional soil microbiome: Belowground solutions to an aboveground problem[J]. Plant Physiology, 2014, 166(2): 689-700.
[13] Ramakrishna W, Yadav R, Li K. Plant growth promoting bacteria in agriculture: Two sides of a coin[J]. Applied Soil Ecology, 2019, 138: 10-18.
[14] Wakelin S A, Gregg A L, Simpson R J, et al. Pasture management clearly affects soil microbial community structure and N-cycling bacteria[J]. Pedobiologia, 2009, 52(4): 237-251.
[15] Hayat R, Ali S, Amara U, et al. Soil beneficial bacteria and their role in plant growth promotion: A review[J]. Annals of Microbiology, 2010, 60(4): 579-598.
[16] Singh K. Microbial and enzyme activities of saline and sodic soils[J]. Land Degradation & Development, 2016, 27(3): 706-718.
[17] Baez-Rogelio A, Morales-García Y, Quintero-Hernández V, et al. Next generation of microbial inoculants for agriculture and bioremediation[J]. Microbial Biotechnology, 2017, 10(1): 19-21.
[18] 張建峰,張嘉旭,朱學(xué)軍,等. 微生物復(fù)合菌劑CAMP對砂質(zhì)土壤改良及白菜生長的影響[J]. 北方園藝,2018(12):112-118.
Zhang Jianfeng, Zhang Jiaxu, Zhu Xuejun, et al. Effects of microbial compound microbial agent CAMP on sandy soil improvement and Chinese cabbage growth[J]. Northern Horticulture, 2018(12): 112-118. (in Chinese with English abstract)
[19] 鮑士旦. 土壤農(nóng)化分析(第3版)[M]. 北京:中國農(nóng)業(yè)出版社,2000.
[20] 關(guān)松蔭. 土壤酶及其研究法[M]. 北京:農(nóng)業(yè)出版社,1986:274-276,294-297.
[21] 張明,潘國林,張宗應(yīng),等. 我國部分城市綠地土壤肥力質(zhì)量分析與評價[J]. 內(nèi)蒙古農(nóng)業(yè)大學(xué)學(xué)報:自然科學(xué)版,2019,40(3):46-51.
Zhang Ming, Pan Guolin, Zhang Zongying, et al. Soil fertility quality analysis and evaluation in some urban green space of China[J]. Journal of Inner Mongolia Agricultural University: Natural Science Edition, 2019, 40(3): 46-51. (in Chinese with English abstract)
[22] Zhang J, Balkovic J, Azevedo L B, et al. Analyzing and modelling the effect of long-term fertilizer management on crop yield and soil organic carbon in China[J]. Science of the Total Environment, 2018, 627: 361-372.
[23] 伍艷,楊忠芳,劉慧,等. 砒砂巖物質(zhì)組成及其對養(yǎng)分含量的影響[J]. 人民黃河,2016,38(6):18-21.
Wu Yan, Yang Zhongfang, Liu Hui, et al. Composition of arsenic sandstone and its effect on nutrient content[J]. Yellow River, 2016, 38(6): 18-21. (in Chinese with English abstract)
[24] Adnane B, Karim L, Mohamed C, et al. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system[J]. Frontiers in Microbiology, 2018, 9: 1606-1630.
[25] Guo D, Ren C Y, Amjad A, et al. Streptomyces pactum combined with manure compost alters soil fertility and enzymatic activities, enhancing phytoextraction of potentially toxic metals (PTMs) in a smelter-contaminated soil[J]. Ecotoxicology and Environmental Safety, 2019, 181: 312-320.
[26] 姚正學(xué),楊軍. 巖石坡面土壤菌永久綠化法原理[J]. 甘肅科學(xué)學(xué)報,2005,17(4):37-39.
Yao Zhengxue, Yang Jun. Principle of permanent greening of soil bacteria on rock slope[J]. Journal of Gansu Science, 2005, 17(4): 37-39. (in Chinese with English abstract)
[27] Cotrufo M F, Soong J L, Horton A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 2015, 8(10): 776-779.
[28] 宋雙雙,孫保平,張建鋒. 保水劑和微生物菌肥對半干旱區(qū)造林和土壤改良的影響[J]. 水土保持學(xué)報,2018,156(3):337-342.
Song Shuangshuang, Sun Baoping, Zhang Jianfeng. Research on soil absorbent polymer and microbial fertiliser to improve semi-arid soil and afforestation[J]. Journal of Soil and Water Conservation, 2018, 156(3): 337-342. (in Chinese with English abstract)
[29] Guo J J, Ling N, Chen Z J, et al. Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes[J].New Phytologist, 2020, 226(1): 232-243.
[30] 任靜,劉小勇,韓富軍,等. 施氮水平對旱塬覆沙蘋果園土壤酶活性及果實品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(8):214-221.
Ren Jing, Liu Xiaoyong, Han Fujun, et al. Effects of nitrogen fertilizer levels on soil enzyme activity and fruit quality of sand-covered apple orchard in Loess Plateau of Eastern Gansu[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 214-221. (in Chinese with English abstract)
[31] Allison V J, Condron L M, Peltzer D A, et al. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand[J]. Soil Biology & Biochemistry, 2007, 39(7): 1770-1781.
[32] 朱義族,李雅穎,韓繼剛,等. 水分條件變化對土壤微生物的影響及其響應(yīng)機制研究進展[J]. 應(yīng)用生態(tài)學(xué)報,2019,30(12):4323-4332.
Zhu Yizu, Li Yaying, Han Jigang, et al. Effects of changes in water status on soil microbes and their response mechanism: A review[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4323-4332. (in Chinese with English abstract)
Effects of different solid microbial agents on soil properties of Pisha sandstone and the growth of alfalfa
Wang Tao1, Yang Yijun1, Deng Lin1※, He Linyan2, Xu Mingwen1, Yang Caiqian1, Liang Zhishui1
(1.211189,; 2.,,210095,)
Pisha sandstone mainly distributes in the interprovincial border areas of Shanxi, Shaanxi and Inner Mongolia in the Yellow River Basin of China. These distribution areas are difficult to carry out effective treatment due to serious soil erosion and deteriorative ecological environment. Therefore, the main challenge is to improve the soil matrix of Pisha sandstone suitable for plant growth, which can be applied to soil ecological restoration and vegetation restoration in Pisha sandstone areas. In this study, the plant growth-promoting bacteriaP75,D10,H3 andHB01 were used as raw materials to meet the challenge. After the strains were activated and centrifuged, the bacterial cell pellets were re-suspended in sterile water to obtain the four bacterial suspension of P75, D10, H3 and HB01. Then, the bacterial suspension was thoroughly mixed with organic/inorganic substrates at a volume-mass ratio of 1:1, and dried at 37 ℃ to prepare four kinds of single solid bacterial agents. Afterwards, 11 kinds of composite solid bacterial agents were obtained by mixing the four kinds of single solid bacterial agents uniformly according to different combinations of equal mass. The greenhouse pot experiment was carried out from March to April, 2019. 17 test groups in total were set in each pot with 300 g Pisha sandstone, where 15 test groups were the soil matrix of Pisha sandstone containing 15 different microbial agents at a mass ratio of 5% respectively, and two groups were the Pisha sandstone with the same amount of biological substrate and the Pisha sandstone without treatment. Each pot of soil matrix was watered regularly, and the soil indexes for the soil matrix of Pisha sandstone in each test group were tested after one month. A 20-day seedling experiment was performed on the planted alfalfa under the condition of the original potted soil matrix. The improvement effects of different solid microbial agents on the properties of Pisha sandstone were evaluated by the soil pH, organic matter content, available nitrogen content, available phosphorus content, available potassium content, enzyme activities and the number of bacteria, as well the seedling growth. The results showed that the addition of organic/inorganic substrates can improve the soil quality of Pisha sandstone, and promote the growth of plant seedlings, compared with the untreated control group. Compared with the effect of organic/inorganic substrates on improving Pisha sandstone soil, the addition of microbial agents can significantly increase the content of organic matters by 18.4%-30.0%, the content of alkali-hydrolyzed nitrogen by 19.7%-30.4%, the content of available phosphorus by 12.4%-47.8%, the content of available potassium by 25.3%-82.9%, the invertase activity by 13.2%-58.0%, the urease activity by 13.0%-37.7%, and the total number of soil bacteria reached more than 107CFU/g. Compared with the effect of soil matrix containing biological substrate on Alfalfa seedling promoting, the soil matrix containing microbial agents can further increase the seedling height by 18.0%-39.2%, the root length by 37.4%-70.5%, the shoot fresh weight by 56.3%-94.1%, the root fresh weight by 106.5%-234.6%, the shoot dry weight by 32.8%-90.5%, and the root dry weight by 108.8%-301.2%. The optimum results were found in the compound agent A3 containing strains P75, D10 and H3, and A4 containing strains P75, D10, H3 and HB01. According to the soil indexes of each test group and the growth of Alfalfa seedlings, the optimal combination of P75+D10+H3 and P75+D10+H3+HB01 were finally determined for the improvement of the Pisha sandstone soil.
soils; microbiology; seedling; Pisha sandstone; microbial agent; soil improvement
王濤,楊怡鈞,鄧琳,等. 不同固體微生物菌劑對砒砂巖土壤性質(zhì)和紫花苜蓿生長的影響[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(8):96-102.doi:10.11975/j.issn.1002-6819.2020.08.012 http://www.tcsae.org
Wang Tao, Yang Yijun, Deng Lin, et al. Effects of different solid microbial agents on soil properties of Pisha sandstone and the growth of alfalfa[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 96-102. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.08.012 http://www.tcsae.org
2019-10-21
2020-04-04
國家重點研發(fā)計劃項目(2017YFC0504505);國家自然科學(xué)基金資助項目(21677032)。
王濤,主要從事砒砂巖土壤改良研究。Email:wangt127@163.com
鄧琳,副教授,博士,主要從事環(huán)境保護和砒砂巖土壤化改質(zhì)研究。Email:dlwhu@163.com
10.11975/j.issn.1002-6819.2020.08.012
S156; S182
A
1002-6819(2020)-08-0096-07