滕曉艷,江旭東,馬 睿
壓差式管道機器人柔性多體系統(tǒng)流固耦合模型構建
滕曉艷1,江旭東2※,馬 睿1
(1. 哈爾濱工程大學機電工程學院,哈爾濱 150001;2. 哈爾濱理工大學機械動力工程學院,哈爾濱 150080)
流體驅動下壓差式管道機器人的運動屬于復雜的流固耦合動力學問題,通過數(shù)值模擬方法分析機器人的動力響應,評估機器人在管道內(nèi)的巡線能力具有重要的工程意義。該文基于耦合的歐拉-拉格朗日(Coupled Eulerian-Lagrangian,CEL)方法,構建了機器人柔性多體系統(tǒng)的流固耦合動力學模型,以平均驅動壓差、平均摩擦力和密封皮碗的米塞斯應力峰值為指標,評價機器人對管道環(huán)境的適應性。數(shù)值模擬結果表明,與3艙段管道機器人相比,5艙段管道機器人的平均速度和速度波動幅值分別降低5.3%和18.6%,但是平均驅動壓差、摩擦力和峰值米塞斯應力分別增加了56.9%、95.7%和42.0%。由此,隨著艙段數(shù)增加,密封皮碗的變形進一步增加,流體需提供更大的驅動壓差克服摩擦力作用,但機器人系統(tǒng)的速度平穩(wěn)性有所提高。3艙段和5艙段機器人在管道焊瘤高度20 mm、彎道角度90°、彎道曲率半徑300 mm時的平均摩擦力、平均驅動壓差以及密封皮碗的米塞斯應力峰值均達到最大值:3艙段機器人分別為0.98 MPa、10.61 kN和28.30 MPa,5艙段機器人分別為0.63 MPa、5.64 kN和24.16 MPa。因此,與3艙段機器人相比,在彎道與焊瘤約束的聯(lián)合作用下,5艙段機器人需要消耗更多的流體壓力能克服管道的約束阻力;更高的摩擦力將使密封皮碗磨損加速,削弱密封性能,而更高的米塞斯應力峰值也將增加密封皮碗的脆性斷裂風險,導致5艙段機器人對于管道環(huán)境的適應性弱于3艙段機器人。研究結果可為管道機器人的巡線能力評價和設計優(yōu)化提供參考。
機器人;數(shù)值分析;流固耦合;柔性多體系統(tǒng);壓差式管道機器人;動力特性
管道運輸廣泛應用于工業(yè)、農(nóng)業(yè)、民生領域中。由于管道的掩埋性,管道的高效維護(清理、焊接、防腐與檢測等)主要由智能移動載體—管道機器人完成。壓差式管道機器人系統(tǒng)通過兩端流體壓差的作用,將管道內(nèi)流體壓力能轉變?yōu)閯幽埽瑢崿F(xiàn)長距離管道的巡線與維護[1-3]。壓差式管道機器人在作業(yè)過程中,運行速度平穩(wěn)性、彎管通過性和越障能力等直接關系到作業(yè)效果的好壞[4-6]。因此,建立壓差式管道機器人多體系統(tǒng)的計算模型,描述管道機器人在管內(nèi)的運行狀態(tài)和動力特性對于機器人的運動控制具有重要的理論與工程意義。
壓差式管道機器人在管內(nèi)運動時,驅動艙段和作業(yè)艙段在發(fā)生剛體運動的同時,也伴隨密封皮碗的超彈性變形、艙段與流體的相互作用以及艙段的振動,屬于典型的柔性多體動力學問題。Lesani等[7-8]構建了壓差式管道機器人驅動艙段的三維剛體動力學模型,研究了驅動艙段在彎管中的運動軌跡和速度響應。Liang等[9]研制了含有制動單元的壓差式管道機器人系統(tǒng),構建了機器人系統(tǒng)制動過程的分析力學模型,研究了機器人系統(tǒng)的制動性能。Zhang等[10-12]采用柔性多體動力學方法,將密封皮碗簡化為懸臂梁模型,分析了密封皮碗與管道環(huán)型焊縫之間的摩擦力,研究了單艙段機器人碰撞焊縫時的速度和加速度響應。由于壓差式管道機器人系統(tǒng)涉及剛體運動、結構振動和流體力學等多學科耦合問題,上述研究模型忽略了密封皮碗的大變形、艙段與流體的相互作用以及多艙段的協(xié)同運動,難以精確預測壓差式管道機器人系統(tǒng)的動力特性。
管內(nèi)流體脈動[13-15]、外界環(huán)境振動[16]以及外部激勵[17]引起的管道振動,將誘發(fā)管內(nèi)流體和管道的流固耦合作用,進而影響壓差式管道機器人的動力響應。本文以埋地輸流管道為壓差式管道機器人的運行環(huán)境,在沒有爆炸沖擊地震波等外部激勵作用下,可忽略管道的耦合振動而將其簡化為剛體,機器人的動力響應僅由管內(nèi)流體與其自身的流固耦合作用決定。
耦合的歐拉-拉格朗日(Coupled Eulerian-Lagrangian,CEL)方法采用基于體積分數(shù)的流固耦合邊界追蹤法,在結構和流體域間進行載荷、位移、速度等信息傳遞,適于解決金屬切削[18-19]、相互傾徹[20]、爆炸沖擊[21]等大變形損傷問題,以及復雜的流固耦合問題[22-25]。本文基于CEL方法,構建壓差式管道機器人柔性多體系統(tǒng)的流固耦合動力學模型,研究機器人在管道內(nèi)的運動速度、密封皮碗的應力場、驅動壓差和摩擦力等動力特性。建立多艙段壓差式管道機器人的參數(shù)化模型,揭示管道焊瘤高度、彎道曲率半徑和彎道傾角等幾何參數(shù)對機器人平均驅動壓差、平均摩擦力和密封皮碗峰值米塞斯應力等管道環(huán)境適應參數(shù)的影響規(guī)律,以期為管道機器人的巡線能力評價和設計優(yōu)化提供參考。
壓差式管道機器人由驅動艙段和若干作業(yè)艙段組成,各單元通過雙萬向聯(lián)軸節(jié)剛性連接,如圖1所示。由于管道機器人的動力特性涉及剛體運動、結構大變形和流體力學等多學科耦合問題,因而采用耦合的歐拉-拉格朗日方法求解上述流固耦合問題。管道機器人的聚氨酯密封皮碗處理為柔性部件,艙段、雙萬向聯(lián)軸節(jié)以及管道處理為剛性部件。聚氨酯密封皮碗與管道內(nèi)壁的接觸摩擦系數(shù)為0.3[26],管內(nèi)流體與機器人的摩擦系數(shù)遠小于密封皮碗與管道內(nèi)壁的摩擦系數(shù),因此忽略流體與管道和機器人之間的滑動摩擦[3]。
1.作業(yè)艙段 2.雙萬向聯(lián)軸節(jié) 3.驅動艙段 4.焊瘤 5.管道 6.驅動密封皮碗1 7.驅動密封皮碗2 8.支撐密封皮碗1 9.支撐密封皮碗2
1.Operating cabin 2.Double universal joint 3.Driving cabin 4.Weld beading 5.Pipeline 6.Driving sealing cup 1 7.Driving sealing cup 2 8.Supporting sealing cup 1 9.Supporting sealing cup 2
注:為焊瘤高度,mm;v為流體入口速度,m?s-1。
Note:is the height of weld beading, mm;vis the inlet velocity of fluid, m?s-1.
圖1 壓差式管道機器人
Fig.1 Pipeline robot driven by differential pressure
可壓縮流體介質的連續(xù)性方程為
流體介質的動量守恒方程為
假設流體為可壓縮牛頓流體,其Cauchy應力張量表示為
根據(jù)文獻[27],流體壓強可由Mie-Gruneisen狀態(tài)方程確定,即
將式(5)代入式(6),把第二Piola Kirchhoff應力張量轉變?yōu)镃auchy應力張量,則有:
為了獲得聚氨酯材料的超彈性本構參數(shù),通過標準試驗樣件(圖2)的單軸拉伸試驗,并根據(jù)不同模型計算結果,獲得材料的名義應力-名義應變曲線,如圖3所示。Mooney-Rivlin模型對聚氨酯橡膠材料的試驗數(shù)據(jù)擬合精度最高,模型參數(shù)為10=0.191 MPa,01=1.25 MPa。
注:L1為平行長度,mm;L2為原始標距,mm;w為寬度,mm;R和r為過渡半徑,mm。
圖3 聚氨酯橡膠的名義應力-應變曲線
將流體可能運動的空間離散為歐拉區(qū)域,每個歐拉單元關聯(lián)一個狀態(tài)變量-體積分數(shù)。當歐拉單元內(nèi)充滿流體時,體積分數(shù)為1,當歐拉單元內(nèi)無流體填充時,體積分數(shù)為0。
由于流體介質質量守恒,體積分數(shù)滿足守恒關系,則有:
注:圖中數(shù)字表示歐拉單元內(nèi)的流體體積分數(shù)。
Note: The numbers in the figure mean the volume fraction of the fluid in the Euler elements.
圖4 流體界面的分段線性重構結果
Fig.4 Results of piecewise linear reconstruction of fluid interface
如圖5所示,利用罰函數(shù)法,在結構濕表面上的單元節(jié)點與重構流體界面的錨點間放置一個虛擬彈簧,耦合非匹配的流體和結構網(wǎng)格,實現(xiàn)在結構和流體域間進行載荷、位移、速度等信息傳遞。跟蹤結構節(jié)點與流體界面錨點的相對位移,如果結構節(jié)點傾徹流體單元,形成的耦合貫穿力將分別施加于結構單元節(jié)點和流體界面錨點上。對于結構節(jié)點有:
式中FS為作用于結構節(jié)點上的接觸懲罰力,N;kp為虛擬彈簧的罰剛度系數(shù),N/m,取決于結構與流體的材料特性。
設置流體域入口流速,指定其出口為自由邊界。限制管道空間所有自由度,雙萬向聯(lián)軸節(jié)通過旋轉屬性的連接單元模擬運動副。在管道內(nèi)表面、流體域和機器人間施加通用接觸約束。根據(jù)機器人相對于流體域的位置,計算歐拉單元的體積分數(shù)進而確定初始流固耦合界面。
聯(lián)立式(1)~(11),通過非線性有限元法構造CEL方法的數(shù)值模型,考慮到流體動量守恒方程中含有的對流項和結構的超彈性本構關系,采用Newmark顯式積分格式求解上述控制方程,則有:
依據(jù)文獻[4],機器人運行的彎管曲率半徑變化范圍為1.5~4(為管道內(nèi)徑,mm),1.5彎管為機器人最難通過管道,因而作為機器人運行的極限工況;3彎管則作為機器人的一般工況來評價其動力特性。機器人系統(tǒng)至少包含3個艙段(驅動艙段、檢測艙段、作業(yè)艙段)至多5個艙段(驅動艙段、檢測艙段、3個作業(yè)艙段),因此進行3艙段和5艙段工況的動力特性分析。多艙段壓差式管道機器人運行于直徑=200 mm的蛇形管道環(huán)境,管道入口流速為6 m/s。為了后續(xù)分析管道參數(shù)對機器人動力特性的影響,定義機器人運行的基本工況為:入口段與出口段的彎道曲率半徑分別為3、1.5,兩段彎道的角度=90°,焊瘤高度=0 mm。利用Newmark顯式積分方法和算子劈分方法獲得機器人流固耦合動力學響應,分別提取驅動艙段的運行速度(機器人速度),管道內(nèi)機器人兩端的驅動壓差、總摩擦力(皮碗接觸切應力的合力)以及密封皮碗的米塞斯應力,結果如表1和圖6~9所示。
表1 不同艙段管道機器人的動力響應比較
如圖6所示,由于受到彎管幾何約束作用,3艙段管道機器人的密封皮碗在彎管處產(chǎn)生劇烈的局部擠壓。由于小曲率半徑彎道的運動空間更為狹小,曲率半徑1.5處產(chǎn)生的峰值米塞斯應力達到7.445 MPa。如圖7所示,機器人在啟動階段至末端艙段進入曲率半徑3(0 s<<0.13 s)的過程中,運動速度呈上升趨勢,最大速度達到9.1 m/s。末端艙段運動至曲率半徑3彎管段中間位置(0.13 s<<0.20 s)的過程中,由于驅動壓差減小、摩擦阻力增加,機器人的運動速度降至最低。當驅動艙段即將進入曲率半徑1.5的彎管段(=0.21 s)時,驅動壓差形成瞬時脈沖,致使機器人的運動速度瞬間躍升至峰點,隨后由于摩擦阻力形成9.2 kN的瞬時脈沖作用,機器人運動速度隨之降至最低。同理,在驅動艙段完全位于1.5彎管段(=0.26 s)以及完全離開1.5彎管段(=0.35 s)時,依次出現(xiàn)的驅動壓差瞬時脈沖導致機器人速度波動顯著,特別是驅動艙段離開1.5彎管段時,最大驅動壓差達到1.42 MPa,機器人最大運動速度達到了9.1 m/s。
圖6 3艙段壓差式管道機器人密封皮碗在不同時刻的應力場
圖7 3艙段壓差式管道機器人的動力響應
如圖8所示,5艙段管道機器人的密封皮碗的應力變化趨勢與3艙段管道機器人相似。由于5艙段管道機器人與彎道的擠壓作用更為強烈,形成的峰值米塞斯應力達到10.57 MPa。如圖9所示,由啟動階段至末端艙段即將進入管道彎曲段(0 s<<0.24 s),機器人的運動速度呈上升趨勢,峰值速度達到7.7 m/s。在機器人末端艙段即將進入3彎管段時驅動艙段則剛進入1.5彎管段(=0.37 s),此時機器人系統(tǒng)的負載達到最大,驅動壓差峰值達到3 MPa,致使機器人運動速度躍升至最大速度8.1 m/s。驅動艙段完全位于1.5彎管段時(=0.43 s),密封皮碗與管道內(nèi)壁的接觸相對均勻,最大瞬時摩擦力為20.8 kN。
圖8 5艙段壓差式管道機器人密封皮碗的應力場
圖9 5艙段壓差式管道機器人的動力響應
根據(jù)表1,與3艙段機器人相比,5艙段機器人的平均速度和速度波動幅值分別降低5.3%和18.6%,但是平均驅動壓差、摩擦力和峰值米塞斯應力分別增加了56.9% 、95.7%和42.0%。由此,隨著艙段數(shù)量的增加,密封皮碗的變形量增加,流體需提供更大的驅動壓差克服摩擦力作用,但機器人的運動平穩(wěn)性有所提高。
為了評價管道機器人對管道環(huán)境的適應性,從外載荷與結構應力角度分析管道幾何參數(shù)變化對機器人承受的平均驅動壓差、平均摩擦力和密封皮碗的米塞斯應力峰值的影響,結果如圖10~12和表2所示。為了對比分析管道參數(shù)對機器人動力特性的影響,定義機器人運行的基本工況為:入口段與出口段的彎道曲率半徑分別為3和1.5,兩段彎道的彎曲角度為90°,焊瘤高度為0。
根據(jù)文獻[6,10],焊瘤呈半橢球形狀,焊瘤高度=0~20 mm,其他參數(shù)與基本工況相同。因為在蛇形彎道內(nèi),曲率半徑1.5的彎道段為極端運動工況,因此將焊瘤設于1.5彎道段內(nèi)。如圖10所示,隨著焊瘤高度的增加,各艙段受到焊瘤的擠壓作用,機器人系統(tǒng)的平均摩擦力和驅動壓差顯著增加,密封皮碗的米塞斯應力峰值大幅提高。對比5艙段與3艙段機器人動力特性,由于前者需要克服更大的越障阻力,因而其平均驅動壓差、平均摩擦力和密封皮碗的米塞斯應力峰值均高于后者。
圖10 焊瘤高度對機器人動力特性的影響
根據(jù)文獻[4-5],管道出口段的彎道曲率半徑一般為300~800 mm。為便于分析,設管道機器人和管道幾何參數(shù)以及運動參數(shù)與基本工況相同。管道不同出口段彎道曲率半徑下管道機器人的動力特性如圖11所示。由圖可知,隨著彎道曲率半徑的增加,管道對機器人的運動約束作用減弱,機器人系統(tǒng)的平均驅動壓差和平均摩擦力減小;此外,由于密封皮碗與管道內(nèi)壁的相互作用減弱,密封皮碗的米塞斯應力峰值呈單調下降趨勢。對比5艙段與3艙段機器人的動力特性可知,由于彎道約束對前者的作用強于后者,因而其平均驅動壓差、平均摩擦力和密封皮碗的米塞斯應力峰值均高于后者。
圖11 管道彎曲段曲率半徑對機器人動力特性的影響
根據(jù)文獻[4-5],管道的彎道角度一般0°~90°。不同管道彎曲角度下管道機器人的動力特性如圖12所示。由圖可知,隨著管道彎曲角度的增加,管道對機器人的運動約束作用增強,機器人系統(tǒng)的平均驅動壓差和平均摩擦力增加;此外,由于密封皮碗與管道內(nèi)壁的相互作用增強,密封皮碗的米塞斯應力峰值呈單調上升趨勢。對比5艙段與3艙段機器人動力特性可知,由于彎道約束對前者的作用強于后者,因而其平均驅動壓差、平均摩擦力和密封皮碗的米塞斯應力峰值均高于后者。
根據(jù)圖10~12,在焊瘤高度20 mm、管道彎曲角度90°、管道彎曲段曲率半徑300 mm時,5艙段和3艙段機器人的平均摩擦力、平均驅動壓差以及密封皮碗的米塞斯應力峰值均達到最大:5艙段機器人分別為0.98 MPa、10.61 kN和28.30 MPa,3艙段機器人分別為0.63 MPa、5.64 kN和24.16 MPa。與3艙段機器人相比,在彎道與焊瘤的聯(lián)合約束作用下,5艙段機器人需要消耗更多的流體壓力能克服管道的約束阻力;此外,較大的摩擦力將導致密封皮碗磨損加速,進而削弱密封性能,而過高的米塞斯應力峰值也將增加密封皮碗的脆性斷裂風險。
圖12 管道彎曲段彎曲角度對機器人動力特性的影響
由于壓差式管道機器人結構復雜,管內(nèi)運動過程涉及流固耦合問題,其動力特性預示一直都是結構設計和實驗的難點問題。本文基于CEL方法對機器人動力參數(shù)及管道幾何參數(shù)對機器人管道環(huán)境適應性的影響進行了數(shù)值預測,得出如下結論:
1)與3艙段管道機器人相比,5艙段管道機器人平均速度和速度波動幅值分別降低5.3%和18.6%,但是,平均驅動壓差、摩擦力和峰值米塞斯應力分別提高56.9% 、95.7%和42.0%。由此,隨著艙段數(shù)量的增加,密封皮碗的變形進一步增加,流體需提供更大的驅動壓差克服摩擦力作用,但是機器人系統(tǒng)的速度平穩(wěn)性有所提高。
2)3艙段和5艙段機器人在管道焊瘤高度為20 mm、彎道角度為90°和彎道曲率半徑為300 mm時,兩者的平均摩擦力、平均驅動壓差以及密封皮碗的米塞斯應力峰值均達到最大。前者的上述指標分別為0.63 MPa、5.64 kN和24.16 MPa,后者的上述指標分別為0.98 MPa、10.61 kN和28.30 MPa。由此,與3艙段機器人相比,在彎道與焊瘤約束的聯(lián)合作用下,5艙段機器人在此危險工況下則消耗更多的流體壓力能克服管道的約束阻力;密封皮碗更易于磨損而削弱了密封性能以及面臨更高的脆性斷裂風險。
綜上,針對不同的管道環(huán)境,利用所建立的機器人計算模型優(yōu)化多艙段機器人的結構參數(shù),改善機器人的動力特性,對于提高機器人的管道環(huán)境適應性和巡線能力具有重要的理論與工程意義。
[1] 劉清友. 油氣管道機器人技術現(xiàn)狀及發(fā)展趨勢[J]. 西華大學學報:自然科學版,2016,35(1):1-6.
Liu Qingyou. Research status and development tendency of the oil and gas in-pipe robot[J]. Journal of Xihua University: Natural Science Edition, 2016, 35(1): 1-6. (in Chinese with English abstract)
[2] 郭靜波,皇甫奮宇,肖承翔,等. 流固耦合式管道檢測機器人自主發(fā)電系統(tǒng)[J]. 清華大學學報:自然科學版,2014,54(9):1155-1160.
Guo Jingbo, Huangfu Fenyu, Xiao Chengxiang, et al. Fluid-solid coupling based power generating system for a self-powered pipeline robot[J]. Journal of Tsinghua University: Science & Technology, 2014, 54(9): 1155-1160. (in Chinese with English abstract)
[3] Patricio R A C, Baptista R M, Rachid B F. Numerical simulation of pig motion in gas and liquid pipelines using the Flux-Corrected Transport method[J]. Journal of Petroleum Science and Engineering, 2020, 189(6): 1-14.
[4] Liu Chang, Wei Yungang, Cao Yuguang, et al. Traveling ability of pipeline inspection gauge (PIG) in elbow under different friction coefficients by 3D FEM[J]. Journal of Natural Gas Science and Engineering, 2020, 75(3): 1-12.
[5] Chen Jianheng, He Limin, Luo Xiaoming, et al. Characterization of bypass pig velocity in gas pipeline: an experimental and analytical study[J]. Journal of Natural Gas Science and Engineering, 2020, 73(1): 1-12.
[6] Zhang Hang, Zhang Shimin, Liu Shuhai, et al. Collisional vibration of PIGs (pipeline inspection gauges) passing through girth welds in pipelines[J]. Journal of Natural Gas Science and Engineering, 2017, 37(1): 15-28.
[7] Lesani M, Rafeeyan M, Sohankar A. Dynamic analysis of small Pig through two and three dimensional liquid pipeline[J]. Journal of Applied Fluid Mechanics, 2012, 5(2): 75-83.
[8] Malihe Mirshamsi, Mansour Rafeeyan. Dynamic analysis and simulation of long pig in gas pipeline[J]. Journal of Natural Gas Science and Engineering, 2015, 23(3): 294-303.
[9] Liang Z, He H G, Cai W L. Speed simulation of bypass hole PIG with a brake unit in liquid pipe[J]. Journal of Natural Gas Science and Engineering, 2017, 42(6): 40-47.
[10] Zhang Hang, Zhang Shimin, Liu Shuhai, et al. Measurement and analysis of friction and dynamic characteristics of PIG’s sealing disc passing through girth weld in oil and gas pipeline[J]. Measurement, 2015 , 64(3): 112-122
[11] Zhu X, Zhang S, Li X, et al. Numerical simulation of contact force on bi-directional pig in gas pipeline: At the early stage of pigging[J]. Journal of Natural Gas Science and Engineering, 2015, 23(3): 127-138.
[12] Zhu Xiaoxiao, Wang Deguo, Yeung Hoi, et al. Comparison of linear and nonlinear simulations of bidirectional pig contact forces in gas pipelines[J]. Journal of Natural Gas Science and Engineering, 2015, 27(11): 151-157.
[13] 趙江,俞建峰,樓琦. 基于流固耦合的T型管振動特性分析[J]. 振動與沖擊,2019,38(22):117-123.
Zhao Jiang, Yu Jianfeng, Lou Qi. Modal analysis of T-shaped pipes based on a fluid-solid interaction model[J]. Journal of Vibration and Shock, 2019, 38(22): 117-123. (in Chinese with English abstract)
[14] 周知進,何星,戴哲冰. 不同曲率情況下的液壓管道流固耦合特性仿真研究[J]. 振動與沖擊,2017,36(5):214-220.
Zhou Zhijin, He Xing, Dai Zhebing. Simulation for fluid-solid interaction characteristics of hydraulic pipes with different curvatures[J]. Journal of Vibration and Shock, 2017, 36(5): 214-220. (in Chinese with English abstract)
[15] 張建偉,王濤,曹克磊,等. 基于流固耦合效應的梯級泵站輸水管道振動特性分析[J]. 農(nóng)業(yè)機械學報,2017,48(3):134-140.
Zhang Jianwei, Wang Tao, Cao Kelei, et al. Analysis of water pipeline vibration characteristics in cascade pumping station based on fluid-solid coupling interaction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 134-140. (in Chinese with English abstract)
[16] 丁宇奇,戴子威,蘆燁,等. 爆炸地震波作用下埋地管道流固耦合動力響應研究[J]. 壓力容器,2019,36(11):34-43.
Ding Yuqi, Dai Ziwei, Lu Ye, et al. Study on fluid-structure coupling dynamic response of buried pipeline under action of explosive seismic waves[J]. Pressure Vessel Technology, 2019, 36(11): 34-43. (in Chinese with English abstract)
[17] 周知進,陳雄,康紅軍,等. 海流沖擊對深海采礦裝備液壓管道流固耦合振動的影響[J]. 噪聲與振動控制,2015,35(2):7-10.
Zhou Zhijin, Chen Xiong, Kang Hongjun, et al. Influence of ocean current impact on fluid-structure coupled vibration of deep-sea mining equipment’s hydraulic pipelines[J]. Noise and Vibration Control, 2015, 35(2): 7-10. (in Chinese with English abstract)
[18] Ducobu F, Rivière-Lorphèvre E, Filippi E. Finite element modelling of 3D orthogonal cutting experimental tests with the Coupled Eulerian-Lagrangian (CEL) formulation[J]. Finite Elements in Analysis & Design, 2017, 134(10): 27-40.
[19] Ducobu F, Rivière-Lorphèvre E, Filippi E. Application of the Coupled Eulerian-Lagrangian (CEL) method to the modeling of orthogonal cutting[J]. European Journal of Mechanics, 2016, 59(9/10): 58-66.
[20] Sherburn J A, Hammons M I, Roth M J. Modeling finite thickness slab perforation using a coupled Eulerian- Lagrangian approach[J]. International Journal of Solids & Structures, 2014, 51(25/26): 4406-4413.
[21] Mittal V, Chakraborty T, Matsagar V. Dynamic analysis of liquid storage tank under blast using coupled Euler-Lagrange formulation[J]. Thin-Walled Structures, 2014, 84(84): 91-111
[22] 李剛,唐霄漢,艾森,等. 大型整流罩地面分離仿真預示與試驗研究[J]. 宇航學報,2015,36(7):833-839.
Li Gang, Tang Xiaohan, Ai Sen, et al. Simulation and experimental research on ground separation of a large-scale payload fairing[J]. Journal of Astronautics, 2015, 36(7): 833-839. (in Chinese with English abstract)
[23] 姚小虎,黃愉太,歐智成,等. 基于CEL算法的水陸兩棲飛機水上降落動力特性分析[J]. 華南理工大學學報:自然科學版,2015,43(6):110-115.
Yao Xiaohu, Huang Yutai, Ou Zhicheng, et al. CEL algorithm-based analysis of dynamic characteristics of amphibious aircraft landing on water [J]. Journal of South China University of Technology: Natural Science Edition, 2015, 43(6): 110-115. (in Chinese with English abstract)
[24] 馬子遠,俞小莉,黃鈺期,等. 基于CEL算法的發(fā)動機潤滑液瞬態(tài)振蕩過程可視化研究[J]. 振動與沖擊,2018,37(1):72-76.
Ma Ziyuan, Yu Xiaoli, Huang Jueqi, et al. CEL algorithm-based visualization simulation of the transient oscillation of engine lubricant[J]. Journal of Vibration and Shock, 2018, 37(1): 72-76. (in Chinese with English abstract)
[25] Y Shi, G Xu, P Wei. Rotor wake and flow analysis using a coupled Eulerian-Lagrangian method[J]. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1): 386-404.
[26] 田雨,張杰,韋永繼,等. 聚氨酯彈性體摩擦系數(shù)影響因素探討[J]. 聚氨酯工業(yè),2002,17(1):37-40
Tian Yu, Zhang Jie, Wei Yongji, et al. The discussion on factors influencing the friction coefficient of polyurethane Elastomers[J]. Engineering Mechanics, 2002, 17(1): 37-40. (in Chinese with English abstract)
[27] Shyue Keh-ming. A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Gruneisen equation of state[J]. Journal of computational Physics, 2001, 171(2): 678-707.
[28] 胡小玲,劉秀,李明,等. 炭黑填充橡膠超彈性本構模型的選取策略[J]. 工程力學,2014,31(5):34-42.
Hu Xiaoling, Liu Xiu, Li Ping, et al. Selection strategies of hyperelastic constitutive models for carbon black filled rubber[J]. Engineering Mechanics, 2014, 31(5): 34-42. (in Chinese with English abstract)
[29] 劉禮華,王蒂,歐珠光,等. 橡膠類止水材料超彈性性能的研究與應用[J]. 四川大學學報:工程科學版,2011,43(4):199-204.
Liu Lihua, Wang Di, Ou Zhuguang, et al. Application and research on the hyper-elastic properties for rubber-like water-stop material[J]. Journal of Sichuan University: Engineering Science Edition, 2011, 43(4): 199-204. (in Chinese with English abstract)
Construction of fluid-solid coupling model of flexible multibody system for pipeline robots driven by differential pressure
Teng Xiaoyan1, Jiang Xudong2※, Ma Rui1
(1.150001,;2.150080,)
The movement of the differential pressure pipeline robots in the pipeline driven by the fluid belongs to the complex fluid structure coupling dynamics problem. It is of great engineering significance to analyze the dynamic responses of the robots and evaluate the ability of the robot to patrol the pipeline by numerical simulation. Based on the coupled Eulerian Lagrangian (CEL) method, a fluid structure coupling dynamic model of the flexible multibody system for pipeline robots driven by differential pressure was constructed in this paper. The govening equations of the pipeline robots and its surrounding compressible Newton’s fluid were derived and represented with CEL frame. In order to efficiently describe the experienced large deformation process of the sealing cups, two-parameter Mooney-Rivilin model was used and its coefficients was obtained based on the uniaxial tensile tests of polyurethane. Based on the method of immersion boundary, the volume fraction in each fluid element contained wass used to track the fluid boundary by piecewise linear interface calculation. A novel penalty coupling method was used to simulate the interaction of the fluid with the robot by implementing a virtual spring bwteen the nodes at structural surface element and the anchor points at the fluid interface. The adaptability of the robot to the pipeline environment was evaluated by the average driving pressure difference, the average friction and the Mises stress peak value of the sealing cup. The parametric model of the pipeline robots with three and five cabins were developed to investigate the influence of pipeline geometrical parameters on the robots adaptability to internal pipeline environment. The numerical analysis results indicated that compared with the pipeline robot with three cabins, the average velocity and amplitude of velocity of the pipeline robot with five cabins were decreased by 5.3% and 18.6%,. and the running stability was better than that of the pipeline robot with three cabins, the average driving different pressure, friction force and peak values of mises stress of the sealing cups for the the pipeline robot with five cabins increased by 56.9%, 95.7% and 42.0% compared with the pipeline robot with three cabins, which showed that with the increase of the numbers of the cabins, the deformation of the sealing cup increased further, and the fluid needed to provide a larger driving pressure difference to overcome the friction, but the running stability of the robot was improved. For the pipeline robots with three and five cabins, the average friction force, the average driving pressure difference and the Mises stress peak value of sealing cups were all the maximum when the height of weld beading was 20 mm, the bending angle of bending section was 90° and the radius of curvature was 300 mm, thats of the pipeline robot with three cabins were 0.63 MPa, 5.64 kN and 24.16 MPa, respectivly, and 0.98 MPa, 10.61 kN and 28.30 MPa for the pipeline robot with five cabins Therefore, compared with the pipeline robot with three cabins, the pipeline robot with five cabins need to consume more fluid pressure energy to overcome the constraint resistance of the pipeline under dangerous conditions, the sealing cup is easier to wear, which weakens the sealing performance and has higher risk of brittle fracture. The research results can provide reference for the evaluation and design optimization of pipeline robot.
robots; numerical analysis; fluid-solid interaction; flexible multibody system; pipeline robot driven by different pressure; dynamic characteristics
滕曉艷,江旭東,馬睿. 壓差式管道機器人柔性多體系統(tǒng)流固耦合模型構建[J]. 農(nóng)業(yè)工程學報,2020,36(8):31-39.doi:10.11975/j.issn.1002-6819.2020.08.004 http://www.tcsae.org
Teng Xiaoyan, Jiang Xudong, Ma Rui. Construction of fluid-solid coupling model of flexible multibody system for pipeline robots driven by differential pressure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 31-39. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.08.004 http://www.tcsae.org
2019-11-10
2020-03-23
國家自然科學基金項目(51505096);黑龍江省自然科學基金項目(QC2016056)
滕曉艷,博士,副教授,主要從事機械結構動力學與拓撲優(yōu)化設計。Email:tengxiapyan@hrbeu.edu.cn
江旭東,博士,副教授,主要從事復雜結構的流固耦合動力學分析與設計優(yōu)化。Email:xudongjiang@sina.com
10.11975/j.issn.1002-6819.2020.08.004
TH113.1; TH242.3
A
1002-6819(2020)-08-0031-09