• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of dynamic large deformation and fracture damage for solid armature in electromagnetic railgun

    2020-05-23 07:09:12QinghuaLinBaomingLi
    Defence Technology 2020年2期

    Qing-hua Lin, Bao-ming Li

    National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, P. O. Box, 210094, Nanjing, PR China

    Keywords:Electromagnetic railgun Solid armature Fracture Explicit finite element Numerical simulation

    ABSTRACT The design of solid armature of railgun should take full account of its operating conditions and material properties because the armature is subjected to dynamic loading conditions and experiences a complicated electrical, thermal and mechanical process in the interior ballistic cycle. In this paper present, we first introduced a multi-physical field model of railgun, followed by several examples to investigate the launching process. Especially, we used the explicit finite element method, in which material nonlinearity and geometric nonlinearity were accounted,to investigate the deform behaviors of solid armature. The results show that the dynamic mechanical process of armature is dependent on the armature geometry, material and exciting electric current. By the numerical simulation, the understanding of the fracture mechanism of solid armature was deepened.

    1. Introduction

    The electromagnetic railgun technology utilizes a high electric current of several mega-amperes to produce the Lorentz force and propel the projectile. Over the past few decades, researches have been focused mainly on the solid armature railgun that achieves the conversion from electric energy to kinetic energy by a sliding solid conductor [1].

    Although the solid armature serves as a key component during the interior ballistic cycle,it is only a parasitic mass for the launch package. The solid armature should be as light as possible. However, over-light armature often has insufficient structural strength and is prone to large deformation or even fracture. Broken armatures were often seen in the high-speed videos of launching experiments. Moreover, the recovered armatures present severe distortion or fracture sometimes, as shown in Fig. 1. These phenomena suggest that the structure design was inappropriate, or that launching parameters exceed the armature's carrying capacity.

    The large deformation and fracture inside the bore may lead to the failure of launching, even damage the bore materials and reduce the bore life. Moreover, the large deformation and fracture of the solid armature after it leaves the muzzle and before it is completely separated with the projectile, may disturb the flight of the projectile and increase its dispersion.Therefore,it is necessary to understand the deformation and fracture mechanisms of solid armature.

    During the launching process of a railgun, the rail damage and armature damage are always associated. The mechanisms of rail damage including the gouging, grooving and arc transition have been researched extensively [2-5]. In the armature aspect, the melting and wear are the two major kinds of damage.F.Stefani[6-7]investigated the current melt-wave erosion of the solid armature and found that the armature contact surface experienced a fast heating and melting process. R. Merrill [8] proposed a turbulent melt-lubrication model to describe the surface wear of the armature. In addition, T. J. Watt [9-11] conducted experimental and computational investigations on the melting and cracking in the throat region of C-Shaped solid armatures. He attributed the armature damage to the magnetic saw effect.

    Generally, it is thought that the armature damage is related to the material behaviors at the condition of rapid heating,high-speed impact and excessive force.In order to describe these details during the launching cycle, some computation software for railgun's multi-physical field were developed. D. Rodger [12] used the general 2D and 3D electromagnetic and heat transfer program (called MEGA)in some railgun simulations.Kuo-Ta Hsieh[13-14]analyzed the startup behavior in a “C-Shaped” armature using linked EMAP3D/DYNA3D finite element codes.H.Shatoff[15]developed a moving armature railgun code (called HERB) for coupled electromagnetic, thermal and structural fields using the general purpose code ANSYS as the underlying computational engine.Similar multiphysical field programs also included RGUN3D, EFFE, and others[16-19]. At present, LS-DYNA [20] is one of the few commercial software that have the capability to solve the railgun's coupled multi-physical field problem.

    Fig.1. Photos of damaged armature.

    Over the years we have been committed to develop the 3D transient multi-physical field model for railgun [21]. In order to make calculation more flexible in dealing with some key issues such as data exchange between fields,mesh deformation,element failure, contact and impact, we wrote a FORTRAN source code program for the coupled electromagnetic, thermal and structural fields. In this paper present, we utilized this multi-physical field solver to simulate the launching process, investigate the dynamic deformation behaviors, and explore the fracture damage mechanism of solid armature.

    2. Models

    The computation model is composed of three parts, which are the electromagnetic field model,thermal field model and structural field model. The computational regions of rails and armature are discretized by hexahedral elements,and each physical field shares the same mesh. The electromagnetic field is solved by the finiteelement/boundary-element coupling scheme, the thermal field is solved by the implicit finite element scheme, and the structural field is solved by the explicit finite element scheme. Furthermore,material nonlinearity is considered to model the complex mechanical behavior of solid armature.

    2.1. Multi-physical field model

    The electromagnetic field is described by the magnetic diffusion equations. With the assumptions that the thermal conductivity is isotropic and the railgun boundary is adiabatic, the thermal field model is simplified as a three-dimensional unsteady heat conduction problem. The ohmic heating source of thermal field is a function of the electric current density and electrical conductivity. The model of structural field is described by three equations,that is the mass conservation, momentum conservation and energy conservation, respectively. The Lorentz force density from the results of electromagnetic field is added to the structural field as body force.Detailed governing equations of the multi-physical field can be found in Ref. [21].

    2.2. Material model

    We chose the Johnson-cook material model [22]because it can not only account for the effects of elastic-plastic, temperature and strain rate,but also contains a damage model.

    2.2.1. Constitutive equation

    The yield stress is written as

    whereA,B,c,nandmare material constants,is the effective plastic strain,is the non-dimensional strain rate, andT* is the homologous temperature.

    2.2.2. Damage model

    The strain at fracture εfis given by

    where,σ*is the ratio of pressure divided by effective stress,D1~D5are the damage parameters.

    Fracture occurs when the damage parameterDexceeds the value of 1. The evolution of the damage parameter is given by

    where the summation is performed over all time steps in the analysis.

    2.2.3. Equation of state

    The equation of state (EOS) is used to describe the relations of pressure,volume and internal energy.There are two EOS model in our computing program, which are linear polynomial model and Gruneisen model.

    The linear polynomial EOS is linear in internal energy, the pressure is expressed as

    whereEis the internal energy,μ is the excess compression,andis the tension-limited excess compression. In our simulation, Eq. (4)served as the EOS for aluminum alloy 6061-T6, and the coefficients are:C0=0,C1=74.2 GPa,C2=60.5 GPa,C3=36.5 GPa,C4=1.97,C5=C6=0.

    The Gruneisen EOS with cubic shock velocity-particle velocity defines pressure for compressed materials (μ > 0) as

    whereCis the intercept of the shock velocity vs. particle velocity(vs-vp)curve,S1,S2,andS3are the coefficients of the slope of thevsvpcurve, γ0is the Gruneisen coefficient, andais the first order volume correction to γ0.

    In our simulation,Gruneisen model was used to aluminum alloy 7075-T6, and the parameters are: ρ0=2700 kg/m3,C=5386 m/s,S1=1.339,S2=S3=0,γ0=1.97,a=0.

    The other material parameters of aluminum alloy 6061 and 7075 are listed in Tables 1 and 2 [23-25].

    Table 1 Parameters of Johnson-cook strength model for Al 6061-T6 and 7075-T6.

    3. Results and discussion

    We conducted numerical simulations for the multi-physical fields of railgun. This section starts with a comparison of two examples with the same geometry and different material models.Then,the effects of exciting electric current,armature material,and railgun geometry on the deformation and fracture of armature were investigated.

    3.1. Mechanical behaviors of armature with linear and nonlinear material model

    The in-bore processes of a solid armature were calculated with the same model geometry, exciting electric current, as well as the different material models.The armature material is Al 6061,and the material models are elastic and Johnson-cook elastic-plastic respectively.In the elastic model,the Young's modulus is 68.9 GPa and the Poisson ratio is 0.33. The waveform of exciting electric current is the one labeled as “1.0” in Fig. 7.

    We selected an element to plot its stress histories and a node to plot its displacements.As shown in Fig.2,the element is marked as H1,which is located at the throat of the C-shape armature.The node is located at the outer surface of the armature arm.The armature is of a length of 50 mm,a width of 50 mm,and a thickness of 30 mm.The rail is of a length of 3 m,a width of 56 mm, and a thickness of 20 mm.

    Fig. 3 shows the stress histories of element H1. In the elastic example, the element stress reaches about 700 MPa at the time of 1.10 ms. Such high a stress is obviously impossible for real aluminum material. Moreover, the stress of elastic example presents an attenuated oscillation. The stress history of the elasticplastic example is quite different from that of the elastic one after 0.90 ms, and the magnitude of the elastic-plastic example before 0.90 ms is also lower than that of the elastic example.

    The x-directional displacements of node N1 are plotted in Fig.4.This node experiences different dynamic processes after 0.90 ms.These two examples indicate that the material model plays a key role in the numerical simulation of dynamic launching process of railgun.

    Besides the local mechanical behaviors,the material models also affect the motion behaviors of armature as a whole.Fig.5 shows the x-directional displacements of the armature's mass center. It is found that the armatures swing at the x direction, and their amplitudes present an increasing trend.

    Fig. 2. Model of railgun and mesh of armature.

    Fig. 3. Stress histories of element H1.

    Fig. 4. Comparison of x-directional displacements of node N1.

    Fig. 5. Comparison of x-directional displacements of the armature's mass center.

    It is well known that the dynamic response of the rails is induced by a moving magnetic pressure during launch of projectiles [26]. The deformation of rails acts directly on the armature through the rail-armature contact surface.Therefore,the local and global displacement fluctuations of armature are most likely caused by the rail deformation.Despite the different material models of armature, we found that the dynamic responses of rails were similar. Fig. 6 only shows the results of nonlinear material model case. The x-directional displacements of nodes at the centerline of the rail surface fluctuate during the launching cycle.Their amplitudes are smaller than that of the armature.

    3.2. Deformation and fracture of armature at different exciting electric currents

    Using the same model as Fig. 2, we calculated the launching processes with different electric current curves. Taken the bottom curve as the benchmark,the numbers in Fig.7 represent the fold of the magnitude of the electric current curve.

    The armature is made of Al 6061-T6, and the material model is Johnson-cook.We carried out the calculation for two stages,which were the in-bore process and the free flight process of armature.

    With the increase of electric current, we found that some elements successively failed outside the bore and inside the bore. In Fig.7,the muzzle time is marked by dotted line,the time of element failure inside the bore is labeled by the symbol“★”,and the time of element failure outside the bore is labeled by “·”. Fig. 7 indicates that the higher the electric current, the earlier the element failure occurs.

    3.2.1. Deformation and fracture of armature outside bore

    The motion of the armature was tracked after it was shot out the muzzle. For the example of 1.2-fold electric current, the time sequences of the armature shape are plotted in Fig. 8. It can be seen that the armature arms are experiencing an expanding and contracting process.The swings of arms may be related to the release of elastic strain energy at the situation that the constraint of the rails to the solid armature is abruptly removed.

    In the example of 1.4-fold electric current,it was found that the armature fractured outside the bore.Fig.9 shows the process of the armature's deformation and fracture. The armature keeps normal shape when it just leaves the muzzle at 1.76 ms.Then,the armature arms expand outward and the armature is severely deformed.High stress region appears in the armature throat at 2.36 ms. Element failure occurs at 2.46 ms, and the armature fractures from the throat.

    Fig. 7. Element failure time of Al 6061 armature at different electric currents.

    Fig. 8. Geometries of the armature after leaving the muzzle.

    In reality,a high tensile stress at the throat of the armature due to the large deformation should cause cracks first,and then leads to fracture. Although the detailed generation and evolution of cracks can not be simulated by the finite element method, the fracture model based on the element failure can predict the location and condition of the damage. This is enough for armature design.

    3.2.2. Deformation and element failure of armature inside the bore

    When the armature was drove by the 1.8-fold electric current in Fig. 7, element failure occurred inside the bore. Stress contours of the armature are shown in Fig. 10. At 0.70 ms, the current curve reaches peak value.Although the maximum stress of the armature is 340 MPa and has exceeded the 6061's yield strength,there is no obvious deformation. At 0.95 ms, the stress at the armature throat reaches 420 MPa, large deformation appears and element failure occurs. The element fails latter than the peak-value time of the electric current curve, which suggests that the occurrence of armature damage has time effect. It is likely to be related to the histories of temperature rise and plastic deformation.

    Fig. 9. Process of armature deformation and fracture.

    Fig.10. Stress contours of armature driven by the 1.8-fold electric current.

    Fig.11. Temperature contours of armature driven by the 1.8-fold electric current.

    In addition,it is found that when the armature is damaged,the stress is higher than the yield strength. This suggests that the armature can also work well within a certain range of plastic deformation.If the deformation of armature is only designed in the elastic range, the current carrying capacity of armature may be underestimated.

    Fig.12. Element failure time of Al 7075 armature at different electric currents.

    Fig.13. Stress contours of railgun with a different armature geometry.

    Fig.11 shows the temperature contours at 0.70 ms and 0.96 ms.The temperature rises rapidly under the action of high electric current. The temperature of the armature throat at 0.96 ms has reached about 900 K,and is very close to the melting point listed in Table 1. At such a high temperature, occurrences of strength reduction and element failure are inevitable.

    3.3. Effect of armature material

    For the Al 7075, similar calculations as Fig. 7 were conducted.The time of element failure are shown in Fig. 12. It is found that 7075 is of higher current carrying capacity than 6061.This is due to the higher yield strength of Al 7075.

    3.4. Effect of armature geometry

    In above examples, all of the fractures occur at the throat of armature.Actually,the location of the fracture is also dependent on the armature geometry.As shown in Fig.13 in which the armature geometry is different, the element failure occurs at the root of the armature arm.

    4. Conclusion

    Some issues about the armature's deformation and fracture were investigated in this paper. The major conclusions were summarized as following:

    (1) The large plastic deformation inside the bore and the release of elastic strain energy outside the bore are the two major mechanisms of armature fracture.

    (2) The deformation and fracture of armature are affected by the material, geometry and exciting electric current.

    (3) It is permissible for the armature to undergo a certain range of plastic deformation during the launching cycle.

    The multi-physical fields modeling and simulation provided a deeper understanding on the armature's mechanical behavior.

    男女啪啪激烈高潮av片| 欧美日韩精品成人综合77777| 两个人的视频大全免费| 亚洲经典国产精华液单| 高清视频免费观看一区二区| 美女高潮的动态| a级毛色黄片| 韩国av在线不卡| 在线观看美女被高潮喷水网站| 2021少妇久久久久久久久久久| 最后的刺客免费高清国语| 精品久久久精品久久久| 日本一二三区视频观看| 欧美激情在线99| 视频中文字幕在线观看| 国产在视频线精品| 国产视频内射| 在线观看人妻少妇| 男女那种视频在线观看| 高清在线视频一区二区三区| 亚洲天堂国产精品一区在线| 国产日韩欧美在线精品| 伊人久久精品亚洲午夜| 国产精品久久久久久久电影| 深夜a级毛片| 亚洲国产欧美人成| 亚洲欧美日韩卡通动漫| 成年人午夜在线观看视频| 亚洲精品国产av蜜桃| 国产欧美日韩精品一区二区| 亚洲在久久综合| 人妻一区二区av| 久久精品国产亚洲av涩爱| 欧美日韩一区二区视频在线观看视频在线 | 中文欧美无线码| 日本与韩国留学比较| 国内揄拍国产精品人妻在线| 激情五月婷婷亚洲| 久久韩国三级中文字幕| av国产精品久久久久影院| 嫩草影院新地址| 精品一区在线观看国产| 超碰av人人做人人爽久久| 色播亚洲综合网| 国产淫片久久久久久久久| 嫩草影院入口| 国产免费视频播放在线视频| 国产淫片久久久久久久久| 国产精品久久久久久精品古装| 国产一级毛片在线| 亚洲在线观看片| 国产伦在线观看视频一区| 欧美激情久久久久久爽电影| 国产成人午夜福利电影在线观看| 老司机影院毛片| 久久热精品热| 精品久久久久久久久亚洲| 精品久久久久久久久亚洲| 精品久久国产蜜桃| 日本爱情动作片www.在线观看| 大香蕉97超碰在线| 国产一级毛片在线| 亚洲在线观看片| 国产精品不卡视频一区二区| 少妇高潮的动态图| 国内精品美女久久久久久| 亚洲精品自拍成人| 2021天堂中文幕一二区在线观| 国产av不卡久久| 国产视频首页在线观看| 久久午夜福利片| 美女内射精品一级片tv| 国产精品一二三区在线看| 亚洲人成网站在线播| 欧美变态另类bdsm刘玥| 在线a可以看的网站| 久久久午夜欧美精品| 欧美日韩视频精品一区| 久久久久久久久大av| 爱豆传媒免费全集在线观看| 亚洲av男天堂| 国产精品女同一区二区软件| 丝袜脚勾引网站| 国产 精品1| 一级黄片播放器| 晚上一个人看的免费电影| 尤物成人国产欧美一区二区三区| 亚洲人成网站在线观看播放| 成人亚洲精品一区在线观看 | 成人午夜精彩视频在线观看| kizo精华| 国产高清不卡午夜福利| 天天躁夜夜躁狠狠久久av| 麻豆国产97在线/欧美| 免费观看的影片在线观看| 成人亚洲精品av一区二区| 看黄色毛片网站| 国产免费福利视频在线观看| 日本与韩国留学比较| 99热国产这里只有精品6| 一级片'在线观看视频| 久久久精品欧美日韩精品| 国产男女内射视频| 69人妻影院| 男人爽女人下面视频在线观看| 国产精品一区www在线观看| 精品久久久久久电影网| 91aial.com中文字幕在线观看| 久久99热这里只有精品18| 久久ye,这里只有精品| 性插视频无遮挡在线免费观看| 在线免费观看不下载黄p国产| 国产精品国产三级国产专区5o| 乱码一卡2卡4卡精品| 国产亚洲av片在线观看秒播厂| 99久久精品一区二区三区| 久久久久国产网址| av在线亚洲专区| 久久97久久精品| 91久久精品国产一区二区三区| 一本久久精品| av线在线观看网站| 精品久久久久久久人妻蜜臀av| 国产有黄有色有爽视频| 欧美日韩精品成人综合77777| 成人漫画全彩无遮挡| 一二三四中文在线观看免费高清| 欧美xxxx黑人xx丫x性爽| 成年av动漫网址| 亚洲欧美成人精品一区二区| 日本黄大片高清| 草草在线视频免费看| 啦啦啦在线观看免费高清www| 最近中文字幕高清免费大全6| 国产视频内射| av专区在线播放| av在线蜜桃| 一本色道久久久久久精品综合| av免费在线看不卡| 国产男人的电影天堂91| 久久久国产一区二区| 色播亚洲综合网| 成年免费大片在线观看| 高清在线视频一区二区三区| 欧美高清成人免费视频www| 观看免费一级毛片| 国产成人免费无遮挡视频| 亚洲欧美日韩卡通动漫| 午夜激情福利司机影院| 日韩视频在线欧美| 成人免费观看视频高清| 街头女战士在线观看网站| 国产成年人精品一区二区| 97在线视频观看| 97热精品久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 天天躁日日操中文字幕| 免费看日本二区| 十八禁网站网址无遮挡 | 国产精品久久久久久久久免| 免费看不卡的av| 成人毛片a级毛片在线播放| 少妇丰满av| 欧美一区二区亚洲| 最近2019中文字幕mv第一页| 欧美潮喷喷水| 男的添女的下面高潮视频| 2021天堂中文幕一二区在线观| av又黄又爽大尺度在线免费看| 深爱激情五月婷婷| av女优亚洲男人天堂| 一级av片app| 日韩,欧美,国产一区二区三区| 欧美日韩视频精品一区| 一级二级三级毛片免费看| 国产免费一区二区三区四区乱码| 日韩亚洲欧美综合| 丝瓜视频免费看黄片| 成人免费观看视频高清| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利视频精品| av线在线观看网站| 国产成人午夜福利电影在线观看| 人妻夜夜爽99麻豆av| 亚洲av成人精品一二三区| 国产免费视频播放在线视频| 日韩亚洲欧美综合| 日韩欧美一区视频在线观看 | 麻豆乱淫一区二区| 又黄又爽又刺激的免费视频.| h日本视频在线播放| 国产精品秋霞免费鲁丝片| 少妇裸体淫交视频免费看高清| 色视频www国产| 成人午夜精彩视频在线观看| 亚洲av欧美aⅴ国产| 日韩精品有码人妻一区| 爱豆传媒免费全集在线观看| 视频中文字幕在线观看| av女优亚洲男人天堂| 国产精品麻豆人妻色哟哟久久| 97超碰精品成人国产| 国产av码专区亚洲av| 国产免费福利视频在线观看| 高清在线视频一区二区三区| 大香蕉久久网| 久久99精品国语久久久| 综合色丁香网| 亚洲av电影在线观看一区二区三区 | 亚洲国产av新网站| 国产男女内射视频| 91久久精品国产一区二区成人| 亚洲国产最新在线播放| 在线免费观看不下载黄p国产| av专区在线播放| 亚洲av欧美aⅴ国产| 高清av免费在线| 亚洲av免费高清在线观看| 老女人水多毛片| 国产熟女欧美一区二区| 国产成人免费观看mmmm| av卡一久久| 99热这里只有是精品在线观看| 久久久a久久爽久久v久久| 一区二区三区四区激情视频| 亚洲欧美清纯卡通| 亚洲成人一二三区av| 亚洲国产日韩一区二区| 亚洲精品,欧美精品| 嫩草影院精品99| 国产69精品久久久久777片| 久久亚洲国产成人精品v| 亚洲欧美精品专区久久| 欧美性感艳星| 亚洲欧美一区二区三区国产| 国产精品久久久久久久久免| 一级爰片在线观看| 成人亚洲精品av一区二区| 老司机影院成人| 女人被狂操c到高潮| 精品一区在线观看国产| 性插视频无遮挡在线免费观看| 久久99精品国语久久久| 3wmmmm亚洲av在线观看| 欧美日韩视频高清一区二区三区二| 三级国产精品片| 欧美老熟妇乱子伦牲交| 国产 一区精品| 免费观看无遮挡的男女| 如何舔出高潮| 少妇高潮的动态图| 亚洲精品日韩在线中文字幕| 国产精品一区二区在线观看99| 少妇人妻久久综合中文| 18禁裸乳无遮挡免费网站照片| 国产综合懂色| 不卡视频在线观看欧美| 九九久久精品国产亚洲av麻豆| 免费观看的影片在线观看| 韩国高清视频一区二区三区| 国产午夜精品一二区理论片| 国产伦理片在线播放av一区| 只有这里有精品99| 偷拍熟女少妇极品色| 熟妇人妻不卡中文字幕| 久久这里有精品视频免费| freevideosex欧美| 久久精品久久精品一区二区三区| 中文字幕免费在线视频6| 十八禁网站网址无遮挡 | 狂野欧美白嫩少妇大欣赏| 色5月婷婷丁香| 国产乱人视频| 美女xxoo啪啪120秒动态图| 韩国高清视频一区二区三区| 国产成人精品福利久久| 免费电影在线观看免费观看| 少妇 在线观看| 国产精品.久久久| av免费在线看不卡| 狂野欧美激情性bbbbbb| 熟女av电影| 免费观看a级毛片全部| 亚洲av免费高清在线观看| 国产午夜精品一二区理论片| 国产一区二区在线观看日韩| 国产亚洲精品久久久com| 国产又色又爽无遮挡免| 久久精品国产自在天天线| 久久久久九九精品影院| 波多野结衣巨乳人妻| 免费看a级黄色片| 亚洲av免费在线观看| 真实男女啪啪啪动态图| 久久久久久久久久人人人人人人| 亚洲精品乱码久久久久久按摩| 亚洲精品色激情综合| 最近的中文字幕免费完整| 中文字幕人妻熟人妻熟丝袜美| av福利片在线观看| 大片电影免费在线观看免费| 性色av一级| 国产一区二区三区综合在线观看 | 最后的刺客免费高清国语| 国产探花在线观看一区二区| 日本午夜av视频| 一级毛片我不卡| 99久久精品一区二区三区| 黄片无遮挡物在线观看| 午夜福利视频1000在线观看| 日韩在线高清观看一区二区三区| 日韩伦理黄色片| 男人和女人高潮做爰伦理| 国产毛片在线视频| 七月丁香在线播放| 麻豆乱淫一区二区| 国产男女超爽视频在线观看| 国产精品人妻久久久影院| 国产亚洲一区二区精品| 国产男女超爽视频在线观看| 国国产精品蜜臀av免费| 免费看av在线观看网站| 国产毛片a区久久久久| 日韩大片免费观看网站| 久久久久国产精品人妻一区二区| 欧美变态另类bdsm刘玥| 自拍偷自拍亚洲精品老妇| 晚上一个人看的免费电影| 国产av码专区亚洲av| 一级a做视频免费观看| 超碰97精品在线观看| 在线天堂最新版资源| 狂野欧美激情性xxxx在线观看| 如何舔出高潮| 亚洲国产高清在线一区二区三| 国产高清国产精品国产三级 | 亚洲精品国产av蜜桃| 国产精品一区二区性色av| 偷拍熟女少妇极品色| 在线观看一区二区三区激情| 自拍偷自拍亚洲精品老妇| 性色avwww在线观看| 成人欧美大片| 亚洲av男天堂| 韩国av在线不卡| www.av在线官网国产| av在线观看视频网站免费| 赤兔流量卡办理| 日韩av不卡免费在线播放| 国产男女内射视频| 亚洲成人一二三区av| 黄色日韩在线| 国产国拍精品亚洲av在线观看| 狠狠精品人妻久久久久久综合| 中文字幕av成人在线电影| 亚洲精品影视一区二区三区av| 99久久精品一区二区三区| 少妇人妻久久综合中文| 成年免费大片在线观看| 日本-黄色视频高清免费观看| 综合色丁香网| 联通29元200g的流量卡| 精品久久久久久久久亚洲| 久久久久精品性色| 国产黄片美女视频| 国产亚洲最大av| 亚洲天堂国产精品一区在线| 亚洲成人精品中文字幕电影| 亚洲最大成人手机在线| 久久精品国产亚洲av涩爱| 又大又黄又爽视频免费| 下体分泌物呈黄色| 久久久久久久久久久免费av| 国产成年人精品一区二区| 亚洲综合精品二区| 嫩草影院入口| 中文字幕久久专区| 国产熟女欧美一区二区| 噜噜噜噜噜久久久久久91| 亚洲图色成人| 亚洲av国产av综合av卡| 插阴视频在线观看视频| 国产伦在线观看视频一区| 18禁裸乳无遮挡动漫免费视频 | 国产高清不卡午夜福利| 嫩草影院精品99| 亚洲天堂国产精品一区在线| 欧美bdsm另类| 久久精品夜色国产| 亚洲电影在线观看av| 国精品久久久久久国模美| 国产精品人妻久久久久久| 最近最新中文字幕免费大全7| 女的被弄到高潮叫床怎么办| 1000部很黄的大片| 国精品久久久久久国模美| 久久这里有精品视频免费| 最近最新中文字幕免费大全7| 嘟嘟电影网在线观看| 三级国产精品欧美在线观看| 欧美成人a在线观看| 久久久久久久久久成人| 97在线视频观看| 在线观看人妻少妇| 国产黄频视频在线观看| 亚洲国产色片| 在线天堂最新版资源| 国产精品女同一区二区软件| 久久精品熟女亚洲av麻豆精品| 亚洲av成人精品一二三区| 91精品国产九色| 男人舔奶头视频| 禁无遮挡网站| 女人久久www免费人成看片| 久久人人爽av亚洲精品天堂 | 美女视频免费永久观看网站| 欧美精品人与动牲交sv欧美| 欧美成人精品欧美一级黄| 大话2 男鬼变身卡| 精品国产乱码久久久久久小说| 午夜激情福利司机影院| 欧美精品人与动牲交sv欧美| 日本一二三区视频观看| 国产精品一区二区三区四区免费观看| 激情 狠狠 欧美| 欧美潮喷喷水| 大码成人一级视频| 97在线人人人人妻| 久久精品久久久久久噜噜老黄| 麻豆精品久久久久久蜜桃| 三级国产精品欧美在线观看| 亚洲国产精品成人综合色| 午夜精品一区二区三区免费看| 99热国产这里只有精品6| 在线观看国产h片| 国产乱人视频| 国产精品偷伦视频观看了| 插阴视频在线观看视频| 欧美激情久久久久久爽电影| 亚洲最大成人av| 国产成人精品一,二区| 少妇被粗大猛烈的视频| 国产精品国产三级国产专区5o| 插逼视频在线观看| 成人漫画全彩无遮挡| 成人综合一区亚洲| 日韩不卡一区二区三区视频在线| 少妇人妻精品综合一区二区| av线在线观看网站| 国产午夜精品久久久久久一区二区三区| 国产成人aa在线观看| 久久精品久久久久久噜噜老黄| 国产精品嫩草影院av在线观看| 日本熟妇午夜| 亚洲欧洲日产国产| 久久精品国产亚洲av天美| av在线观看视频网站免费| 婷婷色综合www| 老司机影院毛片| 久久韩国三级中文字幕| 在线精品无人区一区二区三 | 亚洲综合色惰| 久久精品国产a三级三级三级| 亚洲天堂av无毛| 美女高潮的动态| 午夜福利在线在线| 99热6这里只有精品| 欧美精品一区二区大全| 久久韩国三级中文字幕| 大又大粗又爽又黄少妇毛片口| 日本色播在线视频| 美女高潮的动态| 免费观看在线日韩| 亚洲欧洲日产国产| 国产色爽女视频免费观看| 26uuu在线亚洲综合色| 美女高潮的动态| 男女边摸边吃奶| 国产精品嫩草影院av在线观看| .国产精品久久| 校园人妻丝袜中文字幕| 伊人久久精品亚洲午夜| 青青草视频在线视频观看| 国产精品人妻久久久久久| 精品久久久久久久久av| av在线老鸭窝| www.色视频.com| 亚洲av在线观看美女高潮| 亚洲精品亚洲一区二区| 一本一本综合久久| 人体艺术视频欧美日本| 卡戴珊不雅视频在线播放| 久久鲁丝午夜福利片| 视频中文字幕在线观看| 看黄色毛片网站| 久久久精品94久久精品| 精品久久久久久久人妻蜜臀av| 国产男女内射视频| 欧美潮喷喷水| 亚洲最大成人av| 99久久精品一区二区三区| 久久久国产一区二区| 亚洲三级黄色毛片| av免费在线看不卡| av线在线观看网站| 99久久精品热视频| 国产在线一区二区三区精| 亚洲怡红院男人天堂| 久久精品国产亚洲av天美| 国产精品秋霞免费鲁丝片| 国产久久久一区二区三区| 国产午夜精品久久久久久一区二区三区| 亚洲欧美日韩另类电影网站 | 日韩在线高清观看一区二区三区| 久久影院123| 内射极品少妇av片p| 18禁裸乳无遮挡免费网站照片| 亚洲精品视频女| 欧美高清性xxxxhd video| 一边亲一边摸免费视频| 人妻制服诱惑在线中文字幕| 亚洲欧美清纯卡通| 汤姆久久久久久久影院中文字幕| 精品亚洲乱码少妇综合久久| 国国产精品蜜臀av免费| 国产毛片a区久久久久| 好男人在线观看高清免费视频| 国产精品无大码| 丝瓜视频免费看黄片| 五月玫瑰六月丁香| 一级毛片aaaaaa免费看小| 一级片'在线观看视频| 亚洲丝袜综合中文字幕| 日韩强制内射视频| a级一级毛片免费在线观看| 有码 亚洲区| 成人欧美大片| 久久久久久久午夜电影| 国产精品爽爽va在线观看网站| 联通29元200g的流量卡| 免费电影在线观看免费观看| 亚洲av在线观看美女高潮| 亚洲欧美成人综合另类久久久| 成人鲁丝片一二三区免费| 自拍偷自拍亚洲精品老妇| 国产精品一区www在线观看| 交换朋友夫妻互换小说| 99久国产av精品国产电影| .国产精品久久| 国产免费一区二区三区四区乱码| 国产精品久久久久久久电影| 午夜福利视频精品| 成年女人在线观看亚洲视频 | 精品人妻熟女av久视频| 制服丝袜香蕉在线| 麻豆乱淫一区二区| 深夜a级毛片| 男人狂女人下面高潮的视频| 亚洲成人中文字幕在线播放| 久久久久性生活片| 亚洲精品日韩av片在线观看| 嘟嘟电影网在线观看| 精品国产乱码久久久久久小说| 中文字幕制服av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲在线观看片| av一本久久久久| 高清视频免费观看一区二区| 久久6这里有精品| 在线a可以看的网站| 免费观看的影片在线观看| 日韩一本色道免费dvd| 久久人人爽人人片av| 日韩av不卡免费在线播放| 欧美成人一区二区免费高清观看| 99re6热这里在线精品视频| av在线天堂中文字幕| 大香蕉久久网| 性色avwww在线观看| 边亲边吃奶的免费视频| 男人和女人高潮做爰伦理| 久久女婷五月综合色啪小说 | 成年人午夜在线观看视频| 一个人看的www免费观看视频| 狂野欧美激情性xxxx在线观看| 免费看不卡的av| 久久综合国产亚洲精品| 人人妻人人澡人人爽人人夜夜| 好男人视频免费观看在线| 全区人妻精品视频| 国语对白做爰xxxⅹ性视频网站| 老司机影院毛片| 久久久久九九精品影院| 亚洲电影在线观看av| 国产成人aa在线观看| 91aial.com中文字幕在线观看| 国产一级毛片在线| 七月丁香在线播放| 高清在线视频一区二区三区| 精品午夜福利在线看| 国产探花在线观看一区二区| 听说在线观看完整版免费高清| 欧美激情久久久久久爽电影| 精品久久久精品久久久| 1000部很黄的大片| 黄色视频在线播放观看不卡| 亚洲av中文av极速乱| 国产精品一二三区在线看| 男女啪啪激烈高潮av片| 菩萨蛮人人尽说江南好唐韦庄| 99久久人妻综合| 精品久久久久久电影网| 国产综合懂色| 国产av不卡久久| 国产成人一区二区在线|