• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Variable-Parameter-Model-Based Feedforward Compensation Method for Tracking Control

    2020-05-21 05:43:32DailinZhangZiningWangandMasayoshiTomizuka
    IEEE/CAA Journal of Automatica Sinica 2020年3期
    關(guān)鍵詞:教學管理幼兒教師多元化

    Dailin Zhang, Zining Wang, and Masayoshi Tomizuka,

    Abstract—Base on the accurate inverse of a system, the feedforward compensation method can compensate the tracking error of a linear system dramatically. However, many control systems have complex dynamics and their accurate inverses are difficult to obtain. In the paper, a variable parameter model is proposed to describe a system and a multi-step adaptive seeking approach is used to obtain its parameters in real time. Based on the proposed model, a variable-parameter-model-based feedforward compensation method is proposed, and a disturbance observer is used to overcome the influence of the model uncertainty. Theoretical analysis and simulation results show that the variable-parametermodel-based feedforward compensation method can obtain better performance than the traditional feedforward compensation.

    I. Introduction

    GENERALLY, feedforward compensation is used to reduce the tracking error of a control system, and then the control accuracy can be improved [1]–[4]. The inverse of a system is commonly obtained from the system model, and the compensation values of the feedforward compensator are calculated according to the inverse and the planned trajectory.

    Many methods were proposed to identify system models and achieve their inverses. A simple method is to use the parameter identification to obtain a system model, and then its inverse can be obtained by inversing the system model. Least squares (LS) and recursive least squares (RLS) [5], [6] are effective to identify the transfer function of a linear system. In[1], the system model of a permanent magnet linear motor(PMLM) was obtained by the RLS identification method and an adaptive feedforward component based on the inverse dominant linear model was used to reduce the tracking error.In [7], an inverse Preisach model was used for feedforward compensation of hysteresis compliance and the model was identified from drive experiments. In [8], measured data in every task was used for system identification and the feedforward controller could be updated after each task. In[9], a multi-model adaptive preview control using a set of augmented systems was proposed to enhance the feedforward performance.

    The accurate model is difficult to obtain in a real control system with complex dynamics, so the effectiveness of feedforward compensation may be limited. Some methods are able to avoid the difficulties to build accurate models. For example, ILC (iterative learning control) adjusts its control signal to a control system in every iteration by using feedback information from previous iterations, which can improve the control accuracy without knowing the accurate system model[10]–[13]. In effect, ILC can find the perfect inverse of a system for a repetitive trajectory, which makes ILC be able to compensate for the disturbances optimally [14]–[16]. ILC,however, performs badly in the systems with uncertain factors. For example, the change of reference trajectory will result in varying disturbances, and changing the moment of inertia will result in the change of system model. Both uncertainties above will result in performance deterioration.

    The paper proposes to use a variable parameter model to describe a system with uncertain factors and achieve the inverse of the system in real time. The basic idea is to calculate the parameters of the variable parameter model by solving the strict equality between variable parameter model output and actual output.

    The contribution of the paper includes: Firstly, a variable parameter model with constraints is proposed and a multi-step adaptive seeking approach is used to obtain the parameters of the proposed model in real time. The multi-step adaptive seeking approach can obtain the optimal parameter in every control period by adaptive control approaches [17], [18].Secondly, a variable-parameter-model-based feedforward compensation method is proposed. The proposed variableparameter-model-based feedforward compensation method can reduce the tracking error effectively. Thirdly, a disturbance observer is used to compensate for the model uncertainty, which helps to reduce the influence of disturbances.

    The remaining of the paper is organized as follows. Section II gives the problem formulation, Sections III and IV propose the variable parameter model and variable-parameter-modelbased feedforward compensation method, respectively.Section V presents the experimental results. Section VI gives the conclusion and future works.

    II. Problem Formulation

    A single input single output system is depicted in Fig. 1.The plant is described as a fixed transfer functionP(z), and the disturbances at timekared(k). The control configuration consists of a feedback controllerC(z) and a feedforward controllerF(z). With the inputr(k), the output isy(k), and then the tracking errore(k) can be calculated. The closed-loop system output can be calculated by

    whereuf f(k) is the feedforward compensation value at timek.

    Fig. 1. A system with a fixed transfer function is changed to a variable parameter system.

    The feedforward controller can be described by

    Substituting (2) into (1), we have

    According to Stearnset al. [11], the ideal feedforward controller is

    If the disturbance is zero and will be considered in the following uncertainty portion, the obtained inverse of the system has three possible solutions.

    Solution 1:Substituting (4) into (3), we have

    From (5), it can be concluded that the tracking errore(k)=r(k)?y(k)will be reduced to zero with the feedforward controller.

    Solution 2:If the ideal feedforward controller is not available because the number of zeros is bigger than that of poles, the feedforward controller can be described by

    The feedforward controller becomes

    And the reference inputr(k) becomesr(k+d) by previewingr(k)dtime steps. Obviously,F(z) is realizable and the feedforward compensation effect remains unchanged.

    Solution 3:IfP(z) has an unstable zero, zero phase error tracking control (ZPETC) can be used to reduce the tracking error [19]. In this method, the feedforward tracking control is designed as

    whereGZPETC(z) is the zero phase error tracking controller,is the denominator ofandare two parts of the numerator, which contain cancelable and uncancelable zeros, respectively.is a scale.

    Equation (8) does not produce the perfect inverse, but can help reduce the tracking error effectively. Because the variable parameter model is the main point, the paper simply focuses on (5) and (7).

    When the plant has realtime changing parameters and the system becomes a variable parameter one,F(z) should follow the corresponding changes in order to ensure the last term in(3) be equal to one.

    The variable parameter system is shown in Fig.1. The variable parameter plant isP1(z,θ) instead ofP(z) and the corresponding feedforward controller isF(z,θ) , where θ is a variable parameter. For every value of θ, the ideal feedforward controller can be obtained according to (4), (7),and (8)

    At every control period, the parameter θ should be identified and the corresponding variable parameter function is obtained.the identified function ofP1(z,θ) is supposed to bePv(z,θ),which is a variable parameter model shown in Fig. 2. The variable parameter model means the identified transfer functionPv(z,θ) will be changing with the parameter θ.GZPETC(z,θ)is the zero phase error tracking controller with variable parameter θ. And the uncertainty in the identification process will be resolved by the model uncertainty compensation based on disturbance observer in Section IV.For example, the disturbanced(k) will be considered as an uncertainty portion in the paper.

    Fig. 2. variable parameter model.

    Remark 1:If a variable parameter modelPv(z,θ), where θ=[θ1,θ2,...,θn]is a variable parameter and its the initial value is θ(0)=[11...1], has the same input and output asP1(z,θ) at every discrete timek,Pv(z,θ) is the perfect description ofP1(z,θ).

    Therefore, if we can find a variable parameter modelPv(z,θ)meeting the requirements in Remark 1 in every sampling instant, the feedforward controllerF(z,θ) will result in a very perfect tracking performance according to (4)–(9). In the next section, the variable parameter model will be proposed.

    III. The Variable Parameter Model With Constraints

    A variable parameter modelPv(z,θ) can have the same output asP1(z,θ) by tuning the variable parameter θ, but realtime performance to obtain the optimal parameters ofPv(z,θ) is very difficult to be guaranteed becausePv(z,θ) is a complex variable parameter system. This paper proposes a variable parameter model with constraints and a multi-step adaptive seeking approach to obtain the optimal parameters ofPv(z,θ)in real time.

    The constraints of the variable parameter model are set to limit the variation range of parameters, which ensure the optimal parameters be achieved within a limited seeking range[20].

    In this section, a structure combining a variable gain and an identified transfer function is used to simplify the variable parameter model. And the multi-step adaptive seeking approach computes the optimal parameters within the constrained range in real time.

    A. Variable Parameter Model With Constraints

    As shown in Fig. 2, the object under study isP1(z,θ). No disturbance is applied and the influence of disturbance will be discussed in the next section. Given a reference trajectory, we can get the outputy. At the same time, a parallel identification systemQSis set up with the variable parameter modelPv(z,θ) . ExceptPv(z,θ), the identification systemQShas the same structure as the given system and the output is assumed to beya(k). Then the identification error is

    At every period, the parameters ofPv(z,θ) need to be sought becausePv(z,θ) is a variable parameter model.

    The proposed multi-step adaptive seeking approach can iteratively runQSand tune its model parameters. The goal of the multi-step adaptive seeking approach is to obtain the optimal parameters ofPv(z,θ) to letyabe equal toy, that is, to let every ε(k) be equal to zero. Constraints of a variable parameter model will be used to accelerate the seeking process by restricting the seeking range of parameters.

    Assumption 1:It is assumed that every variable parameter of the variable parameter model has an upper and lower bound,which is to reduce the seeking range and guarantee the system stability. In other words, it can be described by

    wherei= 1 ,2,...,n, andandare upper and lower bounds of theith parameter θi, respectively.

    It is supposed that there are multiple steps of seeking process to achieve the optimal valueθ. The optimal value ofθat every timekcan be obtained by the seeking approach

    where θ?(k) is the optimal value at timek. At thejth step of seeking process, θx,j(k)=[θ1,j(k)θ2,j(k)...θn,j(k)], where θn,j(k) is the value of thenth parameter θn, is the value of the parameterθat timek.J(θx,j(k)) is the cost function of θx,j(k)

    where εj(k) is the identification error at thejth step of seeking process, respectively.

    Considering the real-time performance and complexity, too many variable parameters are not practical. In the proposed variable parameter model, the identified transfer functionP(z)is used as a fixed plant and a variable gain is used to tune the output, so only one variable parameter is used in the variable parameter model.

    The variable parameter model is described as

    wheref(θ) is a variable proportional gain, and θ includes only one variable parameter θ1, that is,f(θ)=θ1.

    B. Multi-step Variable Parameter Seeking Approach

    A multi-step variable parameter seeking approach is proposed to seek the optimal parameterf(θ) in (13). The goal is to adjust the variable proportional gainf(θ) by a multi-step adaptive seeking approach to lety(k) equalya(k) at every momentk. Here “multi-step” means the optimal parameter θ(k)is achieved through multiple calculations within one control period.

    From Fig. 2, it can be seen that the given system and the parallel identification systemQShave the same controllerC(k). With the same reference input, there exists

    濮陽市職業(yè)中等專業(yè)學校盧巧真在《中職學前教育專業(yè)多元化人才培養(yǎng)模式探索》中提出:“要根據(jù)學生發(fā)展的可能性及學生的自身需求來設(shè)立有短期就業(yè)需要、有專業(yè)發(fā)展需要、有學歷教育需要等多元化培養(yǎng)方案來滿足他們對就業(yè)的多元化需求?!倍嘣膶W前教育人才主要包括應(yīng)用型幼兒教師、兒童讀物研 發(fā)及其他兒童文化工作者等復(fù)合型學前教育專業(yè)人才,要培養(yǎng)這樣的人才,首先,政府要高調(diào)介入,制定政策及制度來保障高校教學管理的順利進行。其次,高校要保障課程與教學運行機制的暢通。最后,形成以政府、高校、教師、學生、用人單位為主體的學前教育本科專業(yè)多元化人才培養(yǎng)機制。

    The outputs of the two systems are

    Substituting (14) into (16), it can be concluded thatPv(z,θ)will be equal toP1(z) only ify(k) equalsya(k) at every timek.

    f(θ) can be described by

    At timek, the actual output isy(k), and the seeking approach is to run the variable parameter systemQSin parallel to adaptively find the optimal value of θ(k). At thejth step, θ(k) is supposed to be equal to θ1,j(k),ya(k) can be obtained at the step, then εj(k) is obtained. The optimal value of θ (k) can be obtained by

    where θ?(k) is the optimal value, εj(k) is thejth identification error.

    Algorithm 1 Multi-step variable parameter seeking approach

    Thejth parameter update law is

    θ1,j(k) and εj(k) are recorded at every step and θ?(k) is obtained by selecting θ1,j(k) when εj(k) is smaller enough.

    In order to reduce the number of steps for obtaining the optimal value θ?(k) , the last parameter value θ(k?1) can be used as the present initial value, because the system does not change dramatically during a very small period.mvalues withinare tested to seek an optimal value θ(k?1)+θopt(k). Then the initial value can be set as θ(k?1)+θopt(k) and the parameter θ (k) can be obtained by

    In order to avoid local minima, θopt(k) can be replaced by random values everyhsteps in Algorithm 1 under the conditions that (18) is met and θ(k?1)+θopt(k) is within

    It can be seen that the variable parameter model in (13) and its parameter seeking approach are simple and practical.

    IV. Variable-Parameter-Model-Based Feedforward Compensation Method

    With the built variable parameter model, the feedforward compensation in Fig. 1 becomes variable-parameter-modelbased feedforward compensation.

    A. Variable-Parameter-Model-Based Feedforward Compensation Method

    The proposed variable-parameter-model-based feedforward compensation method is shown in Fig. 3. Compared with Fig. 1,P(z)andF(z) are replaced byPv(z,θ) andF(z,θ).

    Fig. 3. The variable-parameter-model-based feedforward compensation.

    With the variable parameter model in (13), the feedforward controller can be obtained by

    The basic variable-parameter-model-based feedforward compensation method usesF(z,θ) in (21) to compensate the tracking error.

    Becausef(θ) consists of only one parameter θ1wherethe corresponding feedforward compensation value can be obtained easily by the inverse of the parameter.To avoid the influence of high-frequency disturbances, a lowpass filterQ(z) is used in (13) and (21), thenf(θ) can be rewritten as

    With the proposed variable parameter system shown in Fig. 1,the fixed plantP(z) becomesP1(z,θ). Under the conditions in Remark 1,P1(z,θ) can be identified asPv(z,θ) by the method in Section III. If the disturbanced(k) is zero and will be considered in the next section, (1) becomes

    From Fig. 1, we haveuf f(k)=r(k)·F(z,θ). Then substituting it into (23), we have

    IfF(z) has Solution 1,F(z)P(z) will be one andy(k) is equal tor(k).

    IfF(z) has Solution 2, substituting (6) into (23) and letwe have the same result.

    IfF(z) has Solution 3,will be equal to one andy(k) is equal tor(k).

    Therefore, the tracking error is theoretically equal to zero.

    However, the variable parameter model has difficulties in obtaining the accurate model under the following conditions:1) large disturbances cause too big parameter deviation; 2)parameter value exceeds the upper or lower bounds.

    B. Model Uncertainty Compensation Based on Disturbance Observer

    To filter disturbances and improve the control accuracy, a disturbance observer [21], [22] can be applied. Based on the variable parameter model, the designed disturbance observer is shown in Fig. 3. It can be seen that the variable parameter modelPv(z,θ) has replacedP1(z,θ) in the disturbance observer. Ifd(k) in (1) is not zero,d(k) is supposed to becomedu(k) withP1(z,θ) replaced byPv(z,θ).du(k) will be compensated by the disturbance observer.

    In Fig. 3,Qd(z) is a low-pass filter. Before running the disturbance observer, the variable parameter modelPv(z,θ)should be sought and the feedforward controllerF(z) can be obtained by (21).

    It is supposed that the model uncertainty isΔP, which is calculated by

    From Fig.3, the output of the disturbance observer can be obtained by

    whereu?(k) is the sum of the outputs of the feedback controllerC(z) and feedforward controllerF(z).

    From the schematic diagram of the variable-parametermodel-based feedforward compensation shown in Fig. 3,u?(k)can be calculated by

    Remark 2:With a disturbance observer helping to observe the model uncertainty,e(k) is close toea(k) if the disturbance is fully compensated, then the variable parameter model is able to acquire the optimal estimation of the systemP1(z,θ).

    Proof:Suppose the transfer function from the disturbancedu(k) to the tracking error isin the proposed variableparameter-model-based feedforward compensation in Fig. 3. It is noticed that the transfer function isHDE(z) in the traditional feedforward compensation method. According to Yu and Tomizuka [21], the following relationship exists if the feedforward controller replaces the ILC in the paper

    BecauseQd(z) is a low-pass filter,Qd(z) is equal to one andcan be considered as zero when the frequency is low.According to (26) the model uncertainty at low frequency can be estimated by the disturbance observer and then compensated. So the tracking error can be further reduced compared with the traditional feedforward compensation method.

    From Fig. 2, it can be concluded thate(k) is close toea(k) if the disturbance observer is applied, so it existsu(k)≈ua(k)andy(k)≈ya(k), which implies that the variable parameter model is able to acquire the optimal estimation ofP1(z,θ). For a traditional disturbance observer used in the paper, a more accurate model will help achieve more accurate estimation of uncertainty. So the variable parameter model works better with the realtime update of the model parameter.

    In summary, there are two cases for the variable parameter model. On the one hand, the variable parameter model is theoretically equal toP1(z,θ) under the conditions that the disturbance is small and θ can be sought within its bounds. On the other hand, if the above conditions cannot be met, the model uncertainty resulted from the variable parameter model can be obtained by the disturbance observer. Therefore, the feedforward controller can reduce the tracking error to the greatest degree in the two cases.

    C. Advantage Analysis Compared With the Fixed Parameters Feedforward Compensation Method

    Considering the model uncertaintyΔP,P1(z,θ) in every control period can be estimated as

    In Fig. 3, it is supposed thatΔPis caused bydu(k). The output can be obtained by

    With the variable parameter model, ifF(z,θ) has Solution 1 or Solution 2, then (30) becomes

    The tracking error can be calculated by

    IfF(z,θ) has Solution 3,f?1(θ)inF(z,θ) andf(θ) inPv(z,θ)can be canceled, so the feedforward controller can be considered as a single ZPETC and the tracking error can be reduced. According to the theory of ZPETC, the tracking error can also be estimated by (32) if the frequency ofr(k) meets the requirement of ZPETC.

    From (32), it can be concluded that the tracking error is determined bydu(k).

    With the variable-parameter-model-based feedforward compensation, the model uncertainty can be reduced to be a very low level by using the variable parameter model, which implies

    When the parameters is over the setting constraints, the disturbance-observer-based compensation will help achieve the optimal estimation ofP1(z,θ) according to Remark 2 and model uncertainty is compensated byud(k) obtained by disturbance observer. According to (29),e(k) can be controlled to be a very small value

    With the fixed parameters model, the model uncertainty is big if disturbances exist or a model has variable parameters. In this case, the tracking error is determined bydu(k) and can be estimated by (29).

    In summary, the above theoretical analysis shows that the variable-parameter-model-based feedforward compensation is able to achieve a smaller tracking error than the fixed parameters model.

    V. Illustrative Examples

    Servo systems are often used in robots or numerical control machine tools. Two categories of application examples in servo systems are investigated: the one is thatP(z) has a varying proportional gain; the other is that a servo system is influenced by complex disturbances.

    Generally, a servo system can be described by [23]

    IfP(z) is a fixed transfer function,aiandbjare constants wherei=0,1,...,nandj=0,1,...,m.

    If the servo system has variable parameters,aiandbjare varying coefficients and the transfer function will bePv(z,θ),where θ is a vector composed ofaiandbj. But it is timeconsuming to identify the parameters and very difficult to achieve the accurate values of the vector θ. According to Section III, the variable model in (13) can be used if the conditions in Remark 1 are met. As a result, the variable parameter model is described by the product ofP(z) andf(θ),and the model uncertainty is considered asdu(k) which can be compensated by the disturbance observer in Fig. 3.

    The plant of a servo systemP(z) is set for a fixed transfer function

    The feedback controller is a proportional-derivative (PD)controller, whose transfer function is

    whereTsis the sampling period and set for 0.004 s.

    The reference input is a sine curve

    This section verifies the effectiveness of the variableparameter-model-based feedforward compensation method by analyzing the performance of the variable parameter model and comparing with ILC and a traditional feedforward compensation method. And the advantages of the variableparameter-model-based feedforward compensation are also illustrated by examples with model uncertainty.

    A. Performance Analysis of the Variable Parameter Model

    To analyze the performance of the variable parameter model the identification system in Fig. 2 is used to estimate the variable parameterf(θ). Becausef(θ) in (13) has only one parameter θ1, the variable parameter model becomes

    where θ1is a variable scalar coefficient and

    In order to evaluate the performance of the proposed variable parameter model, the variable parameter θ1is set with different changing rules and the torque disturbancedis set as a complex function. The changing rules of the variable parameter θ1are given as follows:

    1) a line

    2) a sine

    3) a sine over the set seeking range

    4) the sine in (41) with the following disturbance added

    Within the set seeking range θ1∈[0.8,1.4], the variable parameter θ1can be obtained in every timekby the seeking method in Section III. By using (40)–(43), the variable parameters are obtained and the results are shown in Figs. 4(a)–(d), respectively. In the figure, “identified” and “actual”represent the identified and actual parameters, respectively.

    From the results, it can be seen that the proposed seeking method can obtain the values of the variable parameter accurately. But there is model uncertainty when the parameter θ1is out of the set seeking range. For example, in Fig. 4(c)θ1can be obtained when its value is within the seeking range, but not when its value is over the seeking range, which implies that the model uncertainty exists. In this case, the parameter over the seeking range is set as the boundary value. The disturbance in (43) is complex because it changes with the change of the outputy(k?1). And its result in Fig. 4(d) shows that the identified variable parameter is not fully in accordance with (41), especially at 6.2 s, 18.8 s and 31.4 s.The disturbance causes the inconsistency of the parameters,but when the identified variable parameter is used in Fig. 5(d)the excellent compensation effectiveness verifies that the identified variable parameter matches the real system model.So it can be concluded that the variable parameter is able to be identified when the disturbance is compensated by a disturbance observer.

    Fig. 4. Identification of θ1 in the variable parameter model. Within the seeking range, the parameters under different changing rules including (a) a line,(b) a sine curve, (c) a sine curve over the set seeking range, and (d) a sine curve with the disturbance can be obtained.

    B. Comparison With a Traditional Feedforward Compensation Method

    By using the variable parameters sought in Section V-A, the variable-parameter-model-based feedforward compensation method is used to compensate the tracking error. A traditional feedforward controller shown in Fig. 1 is used to compare the compensation performance. In Fig. 3,Qd(z) andQ(z) are designed as the same second ordered Butterworth low-pass filter whose transfer function is shown as follows:

    Fig. 5. The tracking errors. Different conditions, that is, (a) a line, (b) a sine curve, (c) constant 1 with the disturbance and (d) a sine over the set seeking range, (e) with a varying transfer function, are considered.

    The compensation results are shown in Figs. 5(a)–(d),respectively. “proposed method”, “traditional method” and“without compensation” represent the tracking errors obtained by the proposed variable-parameter-model-based feedforward compensation method, traditional feedforward method and without compensation, respectively.

    From the results, it can be concluded that the variableparameter-model-based feedforward compensation method is much better than the traditional feedforward compensation. Just like the theoretical analysis, the traditional feedforward compensation can compensate the tracking error, but the inaccurate plant model limits its effectiveness. Fig. 5 shows that the proposed variable-parameter-model-based feedforward compensation method has much lower tracking errors than the traditional feedforward compensation. Fig. 5(c) and Fig. 5(d)show that the tracking error can be compensated by the variableparameter-model-based feedforward compensation with disturbance observer, even if the model uncertainty exists, i.e.,the variable parameter is over the set seeking range in Fig. 5(c),and there are the disturbance inputs in Fig. 5(d). Fig. 5(d) uses the obtained parameters in Fig. 4(d), and the result shows the tracking error can be compensated to a very small level, which implies that the disturbance can be overcome by the proposed variable-parameter-model-based feedforward compensation method.

    In addition to the variable parameter θ1, a more complex condition is considered in the paper. Under the condition that the variable parameter θ1is set with the rule in (41), at the 6th second, the plant of the servo systemP(z) in (36) is changed as follows:

    In this case, numerator polynomial coefficients in (35) are changed except for the varying parameter θ1.

    ButP(z) in the variable parameter model (39) remains unchanged. Fig. 5(e) shows that the tracking error by the traditional method becomes bigger after 6 s, but that by the proposed variable-parameter-model-based feedforward compensation method remains a small value. This result further verifies that the proposed method is effective to reduce the tracking error when the parameters of a system are varying.

    VI. Conclusion and Future Works

    In the paper, a variable-parameter-model-based feedforward compensation method is proposed to reduce the tracking error.Based on the built variable parameter model, the nonlinear plant is constructed as a variable parameter model with constraints. A multi-step adaptive seeking approach is used to obtain the parameter of the variable parameter model, and then the inverse of the system can be calculated by the variable parameter model. Finally, the proposed variableparameter-model-based feedforward compensation method can compensate the tracking error to the greatest degree.

    By an example of a servo system, the effectiveness of the variable-parameter-model-based feedforward compensation method is verified.

    1) The proposed multi-step adaptive seeking method can obtain the variable parameter accurately;

    2) The variable-parameter-model-based feedforward compensation method can achieve smaller tracking errors than a traditional feedforward compensation method, and the disturbance observer can help achieve good effectiveness even when the model uncertainty exists.

    In the future, more real systems are expected to use the variable-parameter-model-based feedforward compensation method to reduce the tracking error.

    猜你喜歡
    教學管理幼兒教師多元化
    德國:加快推進能源多元化
    教學管理信息化問題研究
    大學(2021年2期)2021-06-11 01:13:24
    新時期高中教學管理改革與實踐
    甘肅教育(2020年17期)2020-10-28 09:01:24
    談教學管理的藝術(shù)
    甘肅教育(2020年4期)2020-09-11 07:41:24
    幼兒教師能力提升策略
    甘肅教育(2020年4期)2020-09-11 07:41:20
    幼兒教師專業(yè)成長的三個維度
    滿足多元化、高品質(zhì)出行
    中國公路(2017年8期)2017-07-21 14:26:20
    柔性制造系統(tǒng)多元化實踐教學
    性人權(quán)與性多元化
    小學體育教學管理七要點
    體育師友(2011年2期)2011-03-20 15:29:29
    免费少妇av软件| 久久久久久久久久久免费av| 最近中文字幕高清免费大全6| 日本-黄色视频高清免费观看| 91成人精品电影| 国产精品熟女久久久久浪| 欧美少妇被猛烈插入视频| 国产伦理片在线播放av一区| 美女视频免费永久观看网站| 一本大道久久a久久精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品 国内视频| 国产精品久久久久久精品电影小说| 黑人高潮一二区| 高清欧美精品videossex| 中文字幕久久专区| 欧美xxⅹ黑人| 成人无遮挡网站| 在线观看免费日韩欧美大片 | 天天影视国产精品| 男女高潮啪啪啪动态图| 国产白丝娇喘喷水9色精品| 青春草国产在线视频| 亚洲精品久久午夜乱码| 爱豆传媒免费全集在线观看| 国产精品国产三级专区第一集| 看免费成人av毛片| 成人综合一区亚洲| 下体分泌物呈黄色| 高清不卡的av网站| 欧美精品国产亚洲| 成人无遮挡网站| 国产淫语在线视频| 一级片'在线观看视频| 亚洲经典国产精华液单| 国产亚洲午夜精品一区二区久久| 亚洲性久久影院| 日韩欧美精品免费久久| 日本黄大片高清| 久久精品国产亚洲av天美| 男女边吃奶边做爰视频| 高清在线视频一区二区三区| 国产亚洲最大av| 大香蕉久久网| av福利片在线| 久久久精品免费免费高清| 日本黄色片子视频| 能在线免费看毛片的网站| 九色成人免费人妻av| 五月伊人婷婷丁香| 你懂的网址亚洲精品在线观看| 久久久久久久大尺度免费视频| 国产一区亚洲一区在线观看| a 毛片基地| 99视频精品全部免费 在线| 人人妻人人添人人爽欧美一区卜| 日本黄色日本黄色录像| 日韩av免费高清视频| 亚洲精品一区蜜桃| 一级毛片 在线播放| 麻豆成人av视频| 国产成人免费无遮挡视频| 性高湖久久久久久久久免费观看| 亚洲精品av麻豆狂野| 超色免费av| 一个人免费看片子| 色视频在线一区二区三区| freevideosex欧美| 18在线观看网站| 亚洲精品aⅴ在线观看| 曰老女人黄片| 母亲3免费完整高清在线观看 | 一个人看视频在线观看www免费| 日日爽夜夜爽网站| 一区二区av电影网| 午夜福利视频在线观看免费| 亚洲av免费高清在线观看| 91在线精品国自产拍蜜月| 亚洲欧洲国产日韩| 99精国产麻豆久久婷婷| 午夜福利视频在线观看免费| 国产精品嫩草影院av在线观看| 国产成人av激情在线播放 | 亚洲国产精品999| 最近中文字幕高清免费大全6| 一区在线观看完整版| 日韩欧美一区视频在线观看| 秋霞在线观看毛片| 黄色毛片三级朝国网站| 大片电影免费在线观看免费| 久久久久精品久久久久真实原创| 插逼视频在线观看| 国产男女超爽视频在线观看| av专区在线播放| 99热这里只有精品一区| 国产精品久久久久成人av| 中文字幕最新亚洲高清| 精品久久久久久久久亚洲| 在线精品无人区一区二区三| 国产乱人偷精品视频| 男男h啪啪无遮挡| 97超视频在线观看视频| 在线观看免费日韩欧美大片 | 久久精品国产鲁丝片午夜精品| 欧美 亚洲 国产 日韩一| 成人毛片a级毛片在线播放| 自线自在国产av| 3wmmmm亚洲av在线观看| 亚洲精品乱码久久久v下载方式| 亚洲色图 男人天堂 中文字幕 | 亚洲精品国产av蜜桃| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美色中文字幕在线| 黑人猛操日本美女一级片| 亚洲人成77777在线视频| 亚洲成人一二三区av| 精品久久久久久久久av| 九九在线视频观看精品| 亚洲国产成人一精品久久久| 啦啦啦中文免费视频观看日本| 日韩强制内射视频| 中文精品一卡2卡3卡4更新| 97超视频在线观看视频| 精品久久久久久久久亚洲| 久久女婷五月综合色啪小说| 国产乱人偷精品视频| 超碰97精品在线观看| 久久韩国三级中文字幕| 少妇被粗大猛烈的视频| 视频在线观看一区二区三区| 午夜免费男女啪啪视频观看| 久久国产精品男人的天堂亚洲 | 久久人人爽人人片av| 999精品在线视频| 精品99又大又爽又粗少妇毛片| 97在线人人人人妻| 久久久久久久亚洲中文字幕| 美女中出高潮动态图| 熟女av电影| 少妇高潮的动态图| 五月开心婷婷网| 国产白丝娇喘喷水9色精品| 国产伦理片在线播放av一区| 久久久欧美国产精品| 欧美一级a爱片免费观看看| 亚洲精品乱码久久久v下载方式| 久热久热在线精品观看| 久热久热在线精品观看| 日韩一区二区三区影片| 久久久久网色| 99九九在线精品视频| 一二三四中文在线观看免费高清| 国产综合精华液| 日韩强制内射视频| 多毛熟女@视频| 亚洲内射少妇av| 黑人高潮一二区| 99热国产这里只有精品6| 国产欧美日韩综合在线一区二区| 欧美日韩视频精品一区| 汤姆久久久久久久影院中文字幕| 亚洲欧美精品自产自拍| 天天操日日干夜夜撸| av播播在线观看一区| 69精品国产乱码久久久| 成人国产av品久久久| 久久久国产精品麻豆| 久久狼人影院| 久热这里只有精品99| 亚洲在久久综合| 欧美最新免费一区二区三区| 美女大奶头黄色视频| 欧美亚洲 丝袜 人妻 在线| 少妇人妻 视频| 日日撸夜夜添| 色吧在线观看| 又粗又硬又长又爽又黄的视频| 国产亚洲午夜精品一区二区久久| 国产精品一区二区在线不卡| 亚洲成人手机| 一本大道久久a久久精品| 人妻少妇偷人精品九色| 中文乱码字字幕精品一区二区三区| 国产亚洲精品久久久com| 国产精品熟女久久久久浪| 插阴视频在线观看视频| 免费黄色在线免费观看| 麻豆精品久久久久久蜜桃| 热re99久久国产66热| 国语对白做爰xxxⅹ性视频网站| 亚洲美女视频黄频| 日韩熟女老妇一区二区性免费视频| 国产高清三级在线| 精品一区二区三区视频在线| 国产国拍精品亚洲av在线观看| 在线观看免费日韩欧美大片 | 久久99热这里只频精品6学生| 中文字幕av电影在线播放| 最后的刺客免费高清国语| 韩国av在线不卡| 亚洲国产毛片av蜜桃av| 国产成人午夜福利电影在线观看| 亚洲成人av在线免费| 欧美亚洲 丝袜 人妻 在线| 桃花免费在线播放| 免费av中文字幕在线| 日日摸夜夜添夜夜爱| 最近2019中文字幕mv第一页| 中文字幕制服av| 涩涩av久久男人的天堂| 国产成人精品一,二区| 亚洲国产毛片av蜜桃av| 97在线人人人人妻| 大又大粗又爽又黄少妇毛片口| 午夜影院在线不卡| 精品亚洲乱码少妇综合久久| 亚洲国产精品国产精品| 免费黄频网站在线观看国产| 婷婷成人精品国产| 狠狠精品人妻久久久久久综合| 老熟女久久久| 久久久a久久爽久久v久久| 成年女人在线观看亚洲视频| 97超碰精品成人国产| 日韩成人伦理影院| 考比视频在线观看| 亚洲中文av在线| 中文字幕人妻丝袜制服| 国产熟女欧美一区二区| 99精国产麻豆久久婷婷| 亚洲成人av在线免费| 欧美xxⅹ黑人| 国产伦精品一区二区三区视频9| 国产精品欧美亚洲77777| 一区二区三区乱码不卡18| 另类精品久久| av专区在线播放| 国产av精品麻豆| 哪个播放器可以免费观看大片| 亚洲综合色网址| 99九九线精品视频在线观看视频| 黄色毛片三级朝国网站| 精品少妇内射三级| 国产精品99久久99久久久不卡 | 一区二区三区四区激情视频| 中文字幕精品免费在线观看视频 | 亚洲精品成人av观看孕妇| 涩涩av久久男人的天堂| 日本黄色日本黄色录像| 久久国产精品大桥未久av| 91国产中文字幕| 国产国语露脸激情在线看| 爱豆传媒免费全集在线观看| 成人漫画全彩无遮挡| 免费日韩欧美在线观看| 晚上一个人看的免费电影| 国产日韩欧美亚洲二区| 免费大片黄手机在线观看| 视频在线观看一区二区三区| 在线观看三级黄色| 国产欧美日韩综合在线一区二区| av又黄又爽大尺度在线免费看| 看非洲黑人一级黄片| av免费观看日本| 亚洲色图 男人天堂 中文字幕 | 简卡轻食公司| 久久午夜福利片| 女性被躁到高潮视频| 少妇人妻精品综合一区二区| 亚洲国产欧美日韩在线播放| 在线观看一区二区三区激情| 国产伦理片在线播放av一区| 秋霞伦理黄片| 亚洲精品一二三| 久久女婷五月综合色啪小说| 欧美精品一区二区大全| 亚洲天堂av无毛| 成人影院久久| 卡戴珊不雅视频在线播放| 插阴视频在线观看视频| av不卡在线播放| 有码 亚洲区| 又粗又硬又长又爽又黄的视频| 五月玫瑰六月丁香| 日日撸夜夜添| 最新中文字幕久久久久| 一边亲一边摸免费视频| 亚洲激情五月婷婷啪啪| 国产国语露脸激情在线看| 国产精品免费大片| 亚洲欧美日韩卡通动漫| 亚洲国产精品成人久久小说| 欧美成人精品欧美一级黄| 国产爽快片一区二区三区| 午夜视频国产福利| 欧美最新免费一区二区三区| 最近中文字幕2019免费版| 国产黄色免费在线视频| 少妇丰满av| 精品久久久久久久久av| 亚洲综合精品二区| 久久99热6这里只有精品| 久久久a久久爽久久v久久| 人人妻人人爽人人添夜夜欢视频| 最近中文字幕2019免费版| 中文欧美无线码| 亚州av有码| 毛片一级片免费看久久久久| 一二三四中文在线观看免费高清| av卡一久久| 最后的刺客免费高清国语| 如何舔出高潮| 免费看光身美女| 中文字幕人妻丝袜制服| 精品一区二区三区视频在线| av在线app专区| 国产精品一区二区在线观看99| 国产国语露脸激情在线看| 在线观看免费高清a一片| 18禁动态无遮挡网站| 大香蕉久久网| 草草在线视频免费看| 多毛熟女@视频| 青春草亚洲视频在线观看| xxxhd国产人妻xxx| 91精品伊人久久大香线蕉| 美女cb高潮喷水在线观看| 在线观看www视频免费| 久久久久久久大尺度免费视频| 亚洲人成网站在线观看播放| 在线播放无遮挡| 午夜福利在线观看免费完整高清在| 看非洲黑人一级黄片| 国产精品女同一区二区软件| 久久99热6这里只有精品| 国产精品99久久久久久久久| 欧美精品一区二区免费开放| 国精品久久久久久国模美| 亚洲av不卡在线观看| 女性生殖器流出的白浆| 国产一区二区在线观看日韩| 免费观看无遮挡的男女| 精品99又大又爽又粗少妇毛片| 岛国毛片在线播放| 国产欧美日韩综合在线一区二区| 高清不卡的av网站| 高清毛片免费看| 久久久久国产网址| 夜夜爽夜夜爽视频| 中国美白少妇内射xxxbb| 边亲边吃奶的免费视频| 精品久久久久久久久亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 黄色毛片三级朝国网站| 国产精品一区www在线观看| 九九爱精品视频在线观看| 黄色欧美视频在线观看| 久久av网站| 亚洲av中文av极速乱| 国产伦精品一区二区三区视频9| 大片电影免费在线观看免费| 观看美女的网站| 久久午夜福利片| 人妻系列 视频| 欧美成人精品欧美一级黄| 新久久久久国产一级毛片| 中文字幕久久专区| 国产精品99久久久久久久久| 亚洲国产精品一区二区三区在线| 女人精品久久久久毛片| 高清不卡的av网站| 美女视频免费永久观看网站| 国产成人精品福利久久| 久久精品国产自在天天线| 少妇猛男粗大的猛烈进出视频| 啦啦啦啦在线视频资源| 精品国产露脸久久av麻豆| 汤姆久久久久久久影院中文字幕| 免费久久久久久久精品成人欧美视频 | 黄片无遮挡物在线观看| 国精品久久久久久国模美| 在线亚洲精品国产二区图片欧美 | av在线播放精品| 黄色欧美视频在线观看| 欧美日韩成人在线一区二区| 男女国产视频网站| 少妇猛男粗大的猛烈进出视频| 丝袜在线中文字幕| 国产精品国产av在线观看| 成人毛片a级毛片在线播放| 一本色道久久久久久精品综合| 久久97久久精品| 亚洲,一卡二卡三卡| 久久久精品区二区三区| 亚洲欧美色中文字幕在线| 一区二区日韩欧美中文字幕 | 婷婷色综合大香蕉| a级毛片免费高清观看在线播放| 午夜激情av网站| 日韩电影二区| 亚洲经典国产精华液单| 婷婷色综合大香蕉| 校园人妻丝袜中文字幕| 五月天丁香电影| 国产视频内射| 高清在线视频一区二区三区| 黄色怎么调成土黄色| 亚洲精品,欧美精品| 国产综合精华液| 免费观看无遮挡的男女| 精品久久久精品久久久| 狂野欧美激情性bbbbbb| 欧美成人午夜免费资源| av视频免费观看在线观看| 国产一区二区三区综合在线观看 | 久久久久国产网址| 国产黄频视频在线观看| 黑人高潮一二区| 女性被躁到高潮视频| 中文字幕制服av| a级片在线免费高清观看视频| 欧美日韩一区二区视频在线观看视频在线| 日韩精品有码人妻一区| 亚洲精品久久午夜乱码| 国产精品国产三级国产专区5o| 久久精品国产亚洲av涩爱| 久久99精品国语久久久| 人人妻人人澡人人看| 黄色毛片三级朝国网站| 99热这里只有精品一区| 免费观看在线日韩| 一级毛片 在线播放| 日日爽夜夜爽网站| 黄色视频在线播放观看不卡| 色5月婷婷丁香| 你懂的网址亚洲精品在线观看| 久久免费观看电影| 各种免费的搞黄视频| 99久久精品国产国产毛片| 午夜视频国产福利| 一级,二级,三级黄色视频| 黄色毛片三级朝国网站| 亚洲av不卡在线观看| 中文字幕久久专区| 欧美xxⅹ黑人| 97在线视频观看| 一级黄片播放器| 国产成人精品在线电影| 在线观看美女被高潮喷水网站| 十八禁高潮呻吟视频| 日韩av不卡免费在线播放| 午夜老司机福利剧场| 少妇被粗大的猛进出69影院 | 日日啪夜夜爽| 99精国产麻豆久久婷婷| 久久 成人 亚洲| 久久99热这里只频精品6学生| 日日啪夜夜爽| 国产高清不卡午夜福利| 在线观看国产h片| 秋霞在线观看毛片| 欧美+日韩+精品| 一级毛片 在线播放| 大香蕉97超碰在线| 美女中出高潮动态图| 午夜福利网站1000一区二区三区| 美女国产视频在线观看| videossex国产| 国产乱人偷精品视频| 免费av不卡在线播放| 极品人妻少妇av视频| 最近的中文字幕免费完整| 色网站视频免费| 亚洲内射少妇av| 久久久久国产精品人妻一区二区| 精品视频人人做人人爽| 高清黄色对白视频在线免费看| 日产精品乱码卡一卡2卡三| 日韩大片免费观看网站| 美女内射精品一级片tv| 成人二区视频| 国产精品99久久久久久久久| 国产精品偷伦视频观看了| 美女xxoo啪啪120秒动态图| 国产精品久久久久成人av| 久久精品人人爽人人爽视色| 成人黄色视频免费在线看| 国产高清有码在线观看视频| 三上悠亚av全集在线观看| 久久久久久久久久久免费av| 一级片'在线观看视频| 亚洲精品成人av观看孕妇| 午夜免费男女啪啪视频观看| 精品国产乱码久久久久久小说| 啦啦啦啦在线视频资源| 熟女电影av网| 欧美精品国产亚洲| av黄色大香蕉| 精品熟女少妇av免费看| 国产精品人妻久久久影院| 亚洲精品第二区| 黄色一级大片看看| 久久精品国产自在天天线| 一二三四中文在线观看免费高清| 久久久久久久国产电影| 免费观看av网站的网址| 成人18禁高潮啪啪吃奶动态图 | 亚洲成人av在线免费| 久久久久久伊人网av| 亚洲精品456在线播放app| 人体艺术视频欧美日本| 国产男女内射视频| 啦啦啦啦在线视频资源| 最近中文字幕2019免费版| 青春草亚洲视频在线观看| 久热久热在线精品观看| 在线天堂最新版资源| 搡老乐熟女国产| 亚洲人成网站在线播| 黄色配什么色好看| 免费播放大片免费观看视频在线观看| 国产黄片视频在线免费观看| 妹子高潮喷水视频| 色网站视频免费| 一边亲一边摸免费视频| 蜜桃国产av成人99| 大陆偷拍与自拍| 大片电影免费在线观看免费| a级毛色黄片| 高清视频免费观看一区二区| 国产欧美日韩综合在线一区二区| 下体分泌物呈黄色| 日本免费在线观看一区| 亚洲欧洲精品一区二区精品久久久 | 日本猛色少妇xxxxx猛交久久| 最近中文字幕高清免费大全6| 一个人免费看片子| 黄片无遮挡物在线观看| 性色avwww在线观看| 亚洲精品久久成人aⅴ小说 | 成人国产av品久久久| 国产精品久久久久久久电影| 日本wwww免费看| 国语对白做爰xxxⅹ性视频网站| av视频免费观看在线观看| 亚州av有码| 91成人精品电影| 亚洲精品乱久久久久久| 亚洲精品一区蜜桃| 汤姆久久久久久久影院中文字幕| 下体分泌物呈黄色| 久久久国产精品麻豆| a级毛片免费高清观看在线播放| 亚洲少妇的诱惑av| 日韩精品有码人妻一区| 亚洲精品中文字幕在线视频| 久久久久久久久久久久大奶| 免费日韩欧美在线观看| 国产男女超爽视频在线观看| 久久 成人 亚洲| 少妇高潮的动态图| 高清不卡的av网站| 国产欧美亚洲国产| 91精品国产国语对白视频| 人妻一区二区av| 99九九线精品视频在线观看视频| 熟女av电影| 国产日韩一区二区三区精品不卡 | 老司机影院毛片| 一二三四中文在线观看免费高清| 一个人看视频在线观看www免费| 一级二级三级毛片免费看| 熟女av电影| 久久影院123| 精品人妻在线不人妻| 国产国语露脸激情在线看| 国产爽快片一区二区三区| 国产有黄有色有爽视频| 一级毛片我不卡| 伊人久久精品亚洲午夜| 9色porny在线观看| 中文字幕人妻熟人妻熟丝袜美| av播播在线观看一区| 最近的中文字幕免费完整| 国产高清不卡午夜福利| 青青草视频在线视频观看| 免费看不卡的av| 午夜日本视频在线| 久久久久精品性色| 人妻制服诱惑在线中文字幕| 看非洲黑人一级黄片| 九色亚洲精品在线播放| 成人毛片60女人毛片免费| 久久 成人 亚洲| 久久久欧美国产精品| 黑人猛操日本美女一级片| 97在线人人人人妻| 国产精品一国产av| 三级国产精品片| 亚洲欧美精品自产自拍| 一二三四中文在线观看免费高清| 欧美日本中文国产一区发布| 一级片'在线观看视频| 亚洲av在线观看美女高潮| a级毛片在线看网站| 青春草亚洲视频在线观看| 91成人精品电影| 制服诱惑二区| 91久久精品国产一区二区成人| 久久av网站| 国产精品女同一区二区软件| 色5月婷婷丁香| 人人妻人人添人人爽欧美一区卜| 午夜福利,免费看| 在线观看国产h片|