• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Removal of Volatile Organic Compounds Driven by Platinum Supported on Amorphous Phosphated Titanium Oxide

    2020-05-13 00:43:52HUANGXieyiWANGPengYINGuohengZHANGShaoningZHAOWeiWANGDongBIQingyuanHUANGFuqiang
    無機(jī)材料學(xué)報(bào) 2020年4期
    關(guān)鍵詞:氧化鈦非晶介孔

    HUANG Xieyi, WANG Peng, YIN Guoheng, ZHANG Shaoning, ZHAO Wei,WANG Dong, BI Qingyuan, HUANG Fuqiang,3,4

    Removal of Volatile Organic Compounds Driven by Platinum Supported on Amorphous Phosphated Titanium Oxide

    HUANG Xieyi1,2, WANG Peng2,3, YIN Guoheng1, ZHANG Shaoning1, ZHAO Wei1,WANG Dong1, BI Qingyuan1, HUANG Fuqiang1,3,4

    (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China; 4. State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China)

    Development of high efficiency catalyst is the key factor to catalytic combustion of volatile organic com-pounds (VOCs). Herein, amorphous mesoporous phosphated TiO2(ATO-P) with high specific surface area supported platinum catalyst was successfully fabricated. P-dopant can increase the surface area (up to 278.9 m2?g?1) of ATO-P, which is 21 times higher than that of pristine TiO2, and make the amorphous titanium oxide structure. The supported Pt catalyst with amorphous mesoporous feature shows impressive performance and excellent thermostability for VOCs oxidation. The Pt/ATO-P catalyst exhibits outstanding catalytic efficiency, the50and90(temperatures required for achieving conversions of 50% and 90%) are respectively 130 ℃and 140 ℃, for toluene oxidation under high gas hourly space velocity (GHSV) of 36000 mL·h?1·g?1and toluene concentration of 10000 mL·m?3. The performance is superior to the reference Pt/TiO2and comparable with the state-of-the-art catalysts. These findings can make a significant contribution on the new applications of amorphous mesoporous phosphated materials in VOCs removal.

    amorphous mesoporous structure; phosphated TiO2; Pt nanoparticle; toluene oxidation; VOCs removal

    Volatile organic compounds (VOCs), like toluene, benzene, esters and hydrocarbons, are emitted from vari-ous industrial sources which can cause serious envi-ronmental pollution and health problems[1?2]. Toluene, one kind of toxic and strong carcinogenic chemical, is frequently used in making paints, adhesives, rubbers, and leather tanning processes because of its excellent ability to dissolve organic substances[3-4]. However, toluene is difficult to degrade due to its stable structure[5]. Several techniques, such as physical and chemical adsorption, photocatalytic and catalytic oxidation methods, are widely used for the combustion of VOCs[6-7]. Among them, catalytic oxidation is regarded as a promising approach owing to its high efficiency and convenient operating conditions[8].

    Researches on catalysts for toluene oxidation have been conducted, including noble metal and metal oxides catalysts[9-10]. Due to the significant reduction on acti-vation energy during the catalytic oxidation process, noble metal based catalysts, such as Pt, Pd, Au, Rh, and Ir have shown impressive performance in toluene remo-val[11-13]. It was found that supported Pt catalysts showed the best catalytic performance compared with other noble metals[14-15]. It should be pointed out that the supports play an important role in the catalytic reaction pro-cesses[16-18]. Many works have focused on the metal- support interac-tion by studying the catalytic properties of TiO2, Al2O3, ZrO2, and ZnO supported Au nanopar-ticles[19], and the shape effect of Pt/CeO2catalysts[10]. Nevertheless, most supports suffer from low specific surface area and few active sites, which are crucial for the overall catalytic activity.

    Due to high specific surface area and variable valence, amorphous materials have attracted increasing interests in VOCs oxidation. And the numerous defects in amo-rphous structures can offer large quantities of oxygen vacancies, which are beneficial for the adsorption of oxygen and organic molecules. Lee,[20]reported that carbon black supported amorphous MnOis highly efficient for oxygen involved reaction. Wang,[21]found that amorphous MnOmodified Co3O4can en-hance the catalytic activity for the VOCs oxidation. It was demonstrated that the amorphous structure of bimetallic Pd-Pt/CeO2-Al2O3-TiO2could provide more vacancies and active sites for catalytic combustion[22]. Therefore, the amorphous catalysts show a tremendous potential in practical catalytic reactions. However, it is still a challenge to develop highly active and robust catalysts based on the amorphous materials for the oxidation of VOCs.

    Herein, we demonstrate an efficient Pt/ATO-P catalyst for the catalytic removal of VOCs under high gas hourly space velocity (GHSV)and high substrate concentration. It should be pointed out that incorporating phosphorus into the framework of TiO2is a widely applied strategy for obtaining amorphous mesoporous feature[23-24]. And the P element can stabilize the TiO2framework and significantly increase the specific surface area[24].

    1 Experimental

    1.1 Preparation of sample

    1.1.1 Preparation of support

    All reagents were of analytical grade and were used without any purification. 3 mL of tetrabutyl titanate was dissolved in 30 mL of ethanol at room temperature, which was marked as solution A. Then 0.125 mL of phosphoric acid (H3PO4) was subsequently dropwisely added into solution A with stirring to form a homogenous mixture, and kept stirring for 24 h. The obtained white solid products were separated by centrifuge, and washed by deionized water and ethanol several times, followed by freeze drying overnight. The as-prepared products were calcined at 400 ℃in air for 4 h at a heating rate of 5 ℃?min?1.

    1.1.2 Preparation of catalyst

    The ATO-P supported platinum (Pt/ATO-P) sample was preparedimpregnation method. A desired amount of ATO-P was transferred into aqueous solution containing appropriate amount of chloroplatinic acid (H2PtCl4). Subsequently, the samples were impregnated at room temperature for 12 h. After drying out the H2O at 80 ℃, the samples were treated at 350 ℃ for 2 h with a H2/Ar mixture (5/95,/).

    1.2 Characterization

    XRD characterization of the samples was carried out on a German Bruker D8 Advance X-ray diffractometer (XRD) using the Ni-filtered Cu Kα radiation at 40 kV and 40 mA. Nitrogen adsorption-desorption isotherms were measured at –196 ℃ on a Micromeritics ASAP 2460 analyzer. Samples were degassed at 120 ℃ for 24 h prior to the measurement. The specific surface area of the samples was calculated using the Brunauer–Emmett– Teller (BET) method with the adsorption data at the relative pressure (/0) range of 0.05–0.2. The total pore volumes were estimated at/0=0.99. The pore size distribution (PSD) curves were calculated from the adsorption branch using Barrett-Joyner-Halenda (BJH) model. The prepared materials were pressed into tablets with KBr powder and then detected by FT-IR (Perkin Elmer, USA) in the scanning range from 400 to 4000 cm–1. SEM images were obtained by Hitachi-S4800. A JEOL 2011 microscope operating at 200 kV equipped with an EDX unit (Si(Li) detector) was used for the transmission electron microscope (TEM) and high resolution trans-mission electron microscope (HRTEM) investigations. The samples for TEM testing were prepared by dis-persing the powder in ethanol and applying a drop of highly dilute suspension on carbon-coated grids. XPS data were recorded with a Perkin Elmer PHI 5000 C system equipped with a hemispherical electron energy analyzer. The spectrometer was operated at 15 kV and 20 mA, and a magnesium anode (Mg Kα,=1253.6 eV) was used. The C1s line (284.6 eV) was used as the reference to calibrate the binding energies (BE). TG measurements were conducted on a Netzsch STA 449C TG-DSC thermoanalyzer. The flow rate of the carrier gas (air) was 30 mL?min–1. The temperature was raised from room temperature to 800 ℃ at a ramp rate of 10 ℃?min–1. Prior to H2-TPR test, the sample (100 mg) was pretreated at 200 ℃ for 2 h and cooled to 50 ℃ in the flowing He. TPR experiment was carried out in 5vol% H2/He flowing at 30 mL?min–1, with a ramping rate of 5 ℃?min–1to a final temperature of800 ℃. The signal was monitored using a TCD detector.

    1.3 Catalytic activity test

    The catalytic activity of samples was evaluated in a continued-flow fixed-bed quartz reactor with 50 mg catalyst. Toluene was introduced into the reactor with bubbling toluene solution in ice bath with pure air. The concentration of toluene was about 104mL?m?3, and the flow rate was kept at 30 mL?min–1by a mass controller, equivalent to a gas hour space velocity (GHSV) of 36000 mL?h–1?g–1. After steady operation for 100 min, the activity of the catalyst was tested. Toluene con-cen-tration was detected by a gas chromatograph equi-pped with a flame ionization detector. The toluene conversion (toluene) was calculated according to the equation:

    toluene(inout)/in·100% (1)

    whereinandoutare the inlet and outlet toluene concentrations, respectively.

    2 Results and discussion

    2.1 Physicochemical properties of ATO-P support

    Fig. 1 displays the schematic diagram of amorphous ATO-P preparedfacile co-precipitation. XRD patterns of ATO-P and TiO2are shown in Fig. 2. All diffraction peaks of basic TiO2sample are indexed to anatase phase (JCPDS 21-1276). Interestingly, there is no TiO2crystal phase observed for ATO-P sample (Fig. 2), suggesting that ATO-P sample is typically amorphous and phosphorus dopant can markedly restrain the crystallization of anatase[25?26].

    According to the TGA-DSC thermograms (Fig. 3), a thermal decomposition of ATO-P took place in the temperature range of 20?900 ℃. The first DSC peak at 30?80 ℃ is due to the release of physical adsorbed water. When all the water is released, Ti?OH and HPO42?groups start to condense[27]. These processes occur simultaneously in the temperature range of 100?220 ℃ (1.927% of weight loss) and 220?516 ℃ (0.7% of weight loss), resulting in an overlap of the TG data. There is no further weight loss up to 516 ℃. The DSC curve shows two exothermic peaks at 704and 781 ℃, corresponding to a two-step exothermic transformation of ATO-P into a crystalline phase.

    Fig. 1 Structure of amorphous ATO-P prepared via facile co-precipitation

    Fig. 2 XRD patterns of TiO2 and ATO-P samples

    Fig. 3 TG (solid line) and DSC (dashed line) curves for ATO-P

    Fig. 4(a,b) show the SEM images of ATO-P. The ATO-P nanoparticles are homogeneously dispersed with the particle size of ~20 nm, and the sizes are similar to that of TiO2(Fig. S1(a)). HRTEM was employed to characterize the nanostructure of samples. No porous structure is observed in the HRTEM image of TiO2(Fig. S1(b)), while various porous structure is shown in ATO-P (Fig. 4(c)). Moreover, the pores of ATO-P are uniform, and the average diameter is around 10 nm. EDS elemental mappings indicate that the P element homo-geneously distributes in ATO-P (Fig. 4(d)). It is found that H3PO4owns unique effects for synthesizing amorphous mesoporous phosphated TiO2[28-29].

    Fig. 4 SEM (a, b) and HRTEM (c) images, and EDS elemental mapping (d) of ATO-P

    As shown in Fig. 5, the obtained ATO-P sample shows a characteristic type-IV isotherm with clear hysteresis loop locates at the/0range of 0.45?1.0, showing the existence of a large amount of mesopore. Notably, the specific surface area of 278.9 m2·g?1for ATO-P is 21 times higher than that of pristine TiO2. The pore diameters of ATO-P center around 10 nm (Fig. 5 and Table 1), which is consistent with HRTEM result (Fig. 4(c)).

    The results of EDX are listed in Table 1. The actual P concentration is much less than the initial addition amount of H3PO4, suggesting that partial H3PO4is leached during the preparation process.

    FT-IR spectra of TiO2and ATO-P samples are depicted in Fig. 6. The wide absorption bands around 3440 and 1620 cm?1are attributed to the surface adsorbed water and/or hydroxyl groups[30-31]. The bands at 1100 cm?1are ascribed to the stretching vibration of Ti?O?P species, which are absent in TiO2. The weak bands at 610 cm?1are due to the vibration of Ti?O?Ti bond[22]. Compared with TiO2, a weak peak appears in series ATO-P, which may result from the incorporating effect of phosphorus dopant. There is no distinct peak over the range of 700?800 cm?1(Fig. 6), indicating the absence of P?O?P groups in the amorphous mesoporous phosphated TiO2. Therefore, the P element is incorporated into the frameworks of ATO-P by forming Ti?O?P bonds[24].

    Fig. 5 N2 adsorption-desorption isotherms (a) and pore size distributions (b) of ATO-P and TiO2

    Table 1 Textural properties and elemental compositions ofTiO2 and ATO-P samples

    [a] Weight fraction (wt%) are determined by EDX analysis

    Fig. 6 FT-IR spectra of TiO2 and ATO-P

    As shown in Fig. 7(a), the full XPS spectra indicate the existence of P in ATO-P. High-resolution XPS spectra of P 2p, Ti 2p and O 1s are depicted in Fig. 7(b?d). The peak of P 2p of ATO-P is at 134.0 eV, suggesting that phosphorus in ATO-P gives a pentavalent oxidation state of P5+. No peak observed at 128.6 eV, which is the characteristic binding energy of P2p in TiP, indicating the absence of Ti?P bonds in ATO-P samples. As depicted in Fig. 7(c), the peaks of Ti2p3/2and Ti2p1/2in ATO-P show remarkable blue-shift owing to the incorporation effect of phosphorus element. Fig. 7(d) shows the XPS spectra of O1s signals of TiO2and ATO-P. The single peak at 529.5 eV is corresponded to the oxygen in Ti?O bond of TiO2. However, the O1s spectrum of ATO-P contains two peaks at 531.4 and 532.9 eV, which are contributed to Ti?O?P and O?H bond, respectively[32-33].

    2.2 Physicochemical properties of Pt/ATO-P catalysts

    Fig. 8(a) shows that the Pt nanoparticles are well dis-persed over the ATO-P support, and the size is relatively uniform with the average parameter of (1.8±0.3) nm (insert in Fig. 8(a)). Fig. 8(b) and S2 demonstrate a-spacing of 0.23 nm, attributed to the (111) plane of the highly crystalline Pt nanostructure. Furthermore, the actual Pt content was also confirmed by inductively coulped plasma atomic emission spectra (ICP-AES). The mass loadings of Pt in Pt/TiO2and Pt/ATO-P catalysts are 0.90 and 0.92, respectively, which are close to the nominal composition of 1wt%.

    Fig. 8(c) shows the XRD patterns of Pt/ATO-P and Pt/TiO2catalysts. The amorphous structure is still remained for Pt/ATO-P sample. However, no diffraction pattern of Pt nanoparticles is observed, indicating that the Pt nanoparticles are quite small and/or the Pt species are highly dispersed on the ATO-P surface. These results are well consistent with the HRTEM data above mentioned in Fig. 8(a, b).

    Fig. 7 Full XPS spectra (a) of TiO2 and ATO-P; High-resolution XPS P2p (b), Ti2p (c), and O1s (d) of TiO2 and ATO-P

    Fig. 8 TEM (a) and HRTEM (b) images of Pt/ATO-P with insert in (a) indicating the particle size distribution of Pt nanoparticles, XRD patterns (c) and XPS Pt4f (d) of Pt/ATO-P

    The results of XPS analysis of Pt/ATO-P and Pt/TiO2samples are depicted in Fig. 8(d). It is known that the positions of Pt4f7/2binding energy at 71.1, 72.4, and 74.2 eV are attributedto Pt0, Pt2+, and Pt4+species, respec-tively[34]. Similiar XPS profiles arerendered as the indication of a mixture of various valence states for Pt species overthe small Pt nanoparticles. The exisence of Pt+species reflects the strong metal-support interaction (Pt?ATO-P), especially the prominent electronic intera-ction between active Pt and underlying phosphated TiO2support[35]. This is probably due to the changes of the metal- support interaction by doping phosphorus atoms which can make an obvious effect onTi?O?P frameworks.

    The H2-TPR profiles depicted in Fig. S3 show that there are two H2-consumption peaks at low and high temperature attributed to weak and strong interaction of Pt and supports, respectively[36]. Notably, two reduction peaks of Pt/ATO-P catalyst at 78 and 601 ℃ show stro-nger intensity than that of Pt/TiO2at 72 and 433 ℃, indicating strongPt-support interaction for Pt/ATO-P. These results are consistent with the XPS data.

    2.3 Removal of VOCs by Pt/ATO-P catalysts

    The catalytic efficiencies are depicted in Fig. 9. It is clearly observed that reaction temperature can enhance the performance of Pt/ATO-P catalyst. The50and90are widely used to evaluate the catalytic performance[37]. As shown in Fig. 9(a), Pt/ATO-P shows the excellent catalytic activity.50and90values for toluene com-bustion are 130 and 140 ℃, which are much lower than those of Pt/TiO2with50and90of 160 and 190 ℃, res-pectively. Combined with the above XPS data (Fig. 8(d)), it can be concluded that the existance of phosphorus component plays an important role in electronic structure of the active Pt species underlying amorphous meso-porous ATO-P support and thus the catalytic oxidation removal of toluene over Pt/ATO-P catalyst.

    Fig. 9 Toluene conversion (a) of 1wt% Pt/ATO-P with respect to reaction temperature, and thermal stability (b) of Pt/ATO-P at 180 ℃

    It is well known that noble metal loading significantly affects the catalytic behavior for many reactions. Pt/ATO-P catalysts with different Pt loadings were examined, and the results are depicted in Fig. 10. Compared with 0.5wt% and 2wt%, the Pt loading of 1wt% shows better performance (lower50and90) for toluene oxidation. The low catalytic activity of 0.5 wt% Pt/ATO-P results from low density of active platinum nanoparticles anchoring on the surface of ATO-P support. For the Pt/ATO-P catalyst with Pt loading up to 2wt%, larger size of Pt nanopartices (~5 nm) can be obtained (Fig. S4). Larger Pt particles can not only decrease the dispersion of Pt species[38], but also lead to a weaker metal-support (Pt/ATO-P) interactions, thus resulting in the poor activity.

    Stability is critical for the catalysts on the practical application. 1wt% Pt/ATO-P exhibits excellent thermal stability for toluene oxidation over a 50-h period on stream at 180 ℃ without visible loss of activity, as shown in Fig. 9(b). The toluene conversion remains a high level of 95.4% at the end of reaction process and maintains near full selectivity to final products of CO2and H2O. The excellent stability of Pt/ATO-P catalyst is attributed to the unique geometric structure of crystalline Pt nanoparticles and amorphous mesoporous phosphated TiO2with prominent electronic interaction. For the used 1wt% Pt/ATO-P, TEM measurement and XPS analysis (Fig. S5 and Fig. S6) demonstrate no significant change on the morphology, average size of Pt nanoparticles, and the chemical oxidation state of active Pt species. These results suggest the robustness of Pt/ATO-P catalyst for toluene oxidation removal under a relatively mild the-rmal process.

    Given the superb thermocatalytic performance for 1wt% Pt/ATO-P catalyst toward toluene oxidation, we were curious to examine whether the engineered material would also catalyze the removal of a class of VOCs, especially the complete oxidation of benzene,-hexane, ethyl acetate, and mesitylene. As depicted in Fig. 11, the90values for the catalytic oxidation of benzene, ethyl acetate,-hexane, and mesitylene are 216, 331, 271, and 200 ℃, respectively. Notably, high tem-perature is requ-ired for ethyl acetate conversion at 90% due to its strong structural stability[39-40]. These results show a broad scope toward catalytic combustion invo-lving trouble-some organic compounds over Pt/ATO-P and indicate that the Pt/ATO-P catalysts can provide a new insight for the oxidation of VOCs.

    Fig. 10 Toluene conversion over Pt/ATO-P catalysts with different Pt loadings

    Fig. 11 Catalytic activity of Pt/ATO-P for the conversion of benzene (a), ethyl acetate (b), n-hexane (c), and mesitylene (d) with respect to reaction temperature

    3 Conclusions

    In summary, we successfully fabricated the amorphous mesoporous phosphated TiO2supported platinum catalysts for efficient removal of volatile organic compounds. The electronic modifications of supported Pt nanoparticles for the underlying amorphous ATO-P material and Pt loading for the whole catalyst were systematically investigated. The phosphorus dopant played an important role for stabilizing the inflated Ti?O?P frameworks as well as the electronic structure of Pt species. Compared with pristine TiO2, ATO-P with high specific surface area showed signi-ficant enhancement for Pt/ATO-P samples for catalytic overall oxidation of toluene under practical conditions. The performance of the engineered Pt/ATO-P for toluene combustion was superior to the reference Pt/TiO2and comparable with the state-of-the-art catalysts. Additionally, Pt/ATO-P catalyst exhibited excellent stability for toluene oxidation removal under a relatively mild thermal process and could be potentially applied in a broad scope of VOCs. The present work is expected to make a significant contribution on the new application of amorphous mesoporous phosphated material in VOCs removal.

    Supporting Materials

    Supporting Materials related to this article can be found at https://doi.org/10.15541/jim20190154.

    [1] XIE S H, LIU Y X, DENG J G,. Insights into the active sites of ordered mesoporous cobalt oxide catalysts for the total oxidation of-xylene.,2017, 352: 282–292.

    [2] GENUINO H C, DHARMARATHNA S, NJAGI E C,. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts., 2012, 116(22): 12066–12078.

    [3] SIHAIB Z, PULEO F, GARCIA-VARGAS J M,.Manganese oxide-based catalysts for toluene oxidation.,2017, 209(15): 689–700.

    [4] ROKICI?SKA A, DROZDEK M, DUDEK B,. Cobalt- containing BEA zeolite for catalytic combustion of toluene.,2017, 212: 59–67.

    [5] SANTOS V P, PEREIRA M F R, óRF?O J J M,. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds.,2010, 99(1/2): 353–363.

    [6] ?ULIGOJ A, ?TANGAR U L, RISTI? A,. TiO2-SiO2films from organic-free colloidal TiO2anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air.,2016, 184: 119–131.

    [7] QIAN X F, YUE D T, TIAN Z Y,. Carbon quantum dots decorated Bi2WO6nanocomposite with enhanced photocatalytic oxidation activity for VOCs.,2016, 193: 16–21.

    [8] CHEN J, CHEN X, XU W J,. Homogeneous introduction of CeOinto MnO-based catalyst for oxidation of aromatic VOCs.,2018, 224: 825–835.

    [9] YANG H G, DENG J G, LIU Y X,. Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2-Al2O3for toluene oxidation.,2016, 414: 9–18.

    [10] PENG R S, SUN X B, LI S J,. Shape effect of Pt/CeO2catalysts on the catalytic oxidation of toluene.,2016, 306: 1234–1246.

    [11] ALGHAMDI A O, JEDIDI A, AZIZ S G,. Theoretical insights into dehydrogenative chemisorption of alkylaromatics on Pt(100) and Ni(100)., 2018, 363: 197–203.

    [12] ZHANG Z X, JIANG Z, SHANGGUAN W F. Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review.,2016, 264: 270–278.

    [13] XIE S H, LIU Y X, DENG J G,. Effect of transition metal doping on the catalytic performance of Au-Pd/3DOM Mn2O3for the oxidation of methane and-xylene.,2017, 206: 221–232.

    [14] SANTOS V P, CARABINEIRO S A C, TAVARES P B,. Oxidation of CO, ethanol and toluene over TiO2supported noble metal catalysts.,2010, 99(1/2): 198–205.

    [15] FU X R, LIU Y, YAO W Y,. One-step synthesis of bimetallic Pt-Pd/MCM-41 mesoporous materials with superior catalytic performance for toluene oxidation.,2016, 83: 22–26.

    [16] YIN G H, HUANG X Y, CHEN T Y,. Hydrogenated blue titania for efficient solar to chemical conversions: preparation, characterization, and reaction mechanism of CO2reduction.,2018, 8(2): 1009–1017.

    [17] WU D W, ZHANG Q L, LIN T,. Effect of Fe on the selective catalytic reduction of NO by NH3at low temperature over Mn/CeO2-TiO2catalyst.,2012, 27(5): 495–500.

    [18] YU W W, ZHANG Q H, SHI G Y,. Preparation of Pt-loaded TiO2nanotubes/nanocrystals composite photocatalysts and their photocatalytic properties.,2011, 26(7): 747–752.

    [19] COMOTTI M, LI W C, SPLIETHOFF B,. Support effect in high activity gold catalysts for CO oxidation.,2006, 128(3): 917–924.

    [20] LEE J S, PARK G S, LEE H I,. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions.,2011, 11(12): 5362–5366.

    [21] ZHENG Y L, WANG W Z, JIANG D,. Amorphous MnOmodified Co3O4for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity.,2016, 284: 21–27.

    [22] GUO Y Y, ZHANG S, MU W T,. Methanol total oxidation as model reaction for the effects of different Pd content on Pd-Pt/CeO2-Al2O3-TiO2catalysts.,2017, 429: 18–26.

    [23] CLEARFIELD A, THAKUR D S. Zirconium and titanium phosphates as catalysts: a review.,1986, 26: 1–26.

    [24] YU J C, ZHANG L Z, ZHENG Z,. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity.,2003, 15(11): 2280–2286.

    [25] K?R?SI L, OSZKó A, GALBáCS G,. Structural properties and photocatalytic behaviour of phosphate-modified nanocrystalline titania films.,2007, 77(1/2): 175–183.

    [26] K?R?SI L, PAPP S, BERTóTI I,. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2.,2007, 19(19): 4811–4819.

    [27] MASLOVA M V, RUSANOVA D, NAYDENOV V,. Synthesis, characterization, and sorption properties of amorphous titanium phosphate and silica-modified titanium phosphates.,2008, 47(23): 11351–11360.

    [28] ZHU Y L, ZHOU W, SUNARSO J,. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution.,2016, 26(32): 5862–5872.

    [29] HEO Y W, PARK S J, IP K,. Transport properties of phosphorus-doped ZnO thin films.,2003, 83(6): 1128–1130.

    [30] YIN G H, BI Q Y, ZHAO W,. Efficient conversion of CO2to methane photocatalyzed by conductive black titania.,2017, 9(23): 4389–4396.

    [31] PLUMEJEAU S, RIVALLIN M, BROSILLON S,. The reductive dehydration of cellulose by solid/gas reaction with TiCl4at low temperature: a cheap, simple, and green process for preparing anatase nanoplates and TiO2/C composites.,2016, 22(48): 17262–17268.

    [32] REN T Z, YUAN Z Y, AZIOUNE A,. Tailoring the porous hierarchy of titanium phosphates.,2006, 22(8): 3886–3894.

    [33] YOSHIDA H, YAZAWA Y, HATTORI T. Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion.,2003, 87(1-4): 19–28.

    [34] TIERNAN M J, FINLAYSON O E. Effects of ceria on the combustion activity and surface properties of Pt/Al2O3catalysts.,1998, 19(1): 23–25.

    [35] LYKHACH Y, FAISAL F, SKáLA T,. Interplay between the metal-support interaction and stability in Pt/Co3O4(111) model catalysts.,2018, 6: 23078–23086.

    [36] ZHANG C B, HE H, TANAKA KI. Catalytic performance and mechanism of a Pt/TiO2catalyst for the oxidation of formaldehyde at room temperature.,2006, 65: 37–43.

    [37] RAHMANI F, HAGHIGHI M, ESTIFAEE P. Synthesis and characterization of Pt/Al2O3-CeO2nanocatalyst used for toluene abatement from waste gas streams at low temperature: conventionalplasma-ultrasound hybrid synthesis methods.,2014, 185(1): 213–223.

    [38] CHEN C Y, CHEN F, ZHANG L,. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts.,2015, 51: 5936–5938.

    [39] LI S M, HAO Q L, ZHAO R Z,. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts.,2016, 285: 536–543.

    [40] CARABINEIRO S A C, CHEN X, MARTYNYUK O,. Gold supported on metal oxides for volatile organic compounds total oxidation.,2015, 244: 103–114.

    摻磷非晶氧化鈦負(fù)載鉑用于高效催化氧化揮發(fā)性有機(jī)化合物

    黃謝意1,2, 王鵬2,3, 尹國恒1, 張紹寧1, 趙偉1, 王東1, 畢慶員1, 黃富強(qiáng)1,3,4

    (1. 中國科學(xué)院 上海硅酸鹽研究所, 高性能陶瓷和超微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室, 上海 200050; 2. 中國科學(xué)院大學(xué), 北京 100049; 3. 上??萍即髮W(xué) 物理科學(xué)與技術(shù)學(xué)院, 上海 200050; 4. 北京大學(xué) 化學(xué)與分子工程學(xué)院, 稀土材料化學(xué)及應(yīng)用國家重點(diǎn)實(shí)驗(yàn)室, 北京 100871)

    高活性催化劑是揮發(fā)性有機(jī)化合物(VOCs)催化氧化消除的關(guān)鍵因素。本研究通過簡單的共沉淀法成功制備了具有高比表面積的非晶介孔磷摻雜氧化鈦負(fù)載鉑催化劑(Pt/ATO-P)。通過P摻雜, 既可獲得非晶介孔結(jié)構(gòu), 又可獲得高ATO-P比表面積(可達(dá)278.9 m2?g?1)。非晶介孔Pt/ATO-P催化劑顯示出優(yōu)異的VOCs催化氧化性能和良好的熱穩(wěn)定性。Pt/ATO-P樣品在空速為36000 mL?h?1?g?1、甲苯濃度為10000 mL?m?3的反應(yīng)條件下, 對甲苯催化氧化的50和90(實(shí)現(xiàn)50%和90%轉(zhuǎn)化率所需的溫度)分別為130 ℃和140 ℃, 明顯優(yōu)于無磷催化劑Pt/TiO2。這些發(fā)現(xiàn)可以為拓展非晶介孔磷化材料在環(huán)境凈化和能源轉(zhuǎn)化等領(lǐng)域的應(yīng)用提供重要參考。

    非晶介孔材料; 磷摻雜非晶氧化鈦; 鉑納米顆粒; 甲苯催化氧化; VOCs消除

    O782

    A

    2019-04-12;

    2019-05-24

    National Key Research and Development Program of China (2016YFB0901600); National Natural Science Foundation of China (21872166); Science & Technology Commission of Shanghai (16ZR1440400, 16JC1401700); The Key Research Program of Chinese Academy of Sciences (QYZDJ-SSW-JSC013 and KGZD-EW-T06)

    Huang Xieyi (1994–), male, Master candidate. E-mail: huangxieyi@student.sic.ac.cn

    黃謝意(1994–), 男, 碩士研究生. E-mail: huangxieyi@student.sic.ac.cn

    BI Qingyuan, associate professor. E-mail: biqingyuan@mail.sic.ac.cn;

    HUANG Fuqiang, professor. E-mail: huangfq@mail.sic.ac.cn

    畢慶元, 副研究員. E-mail: huangfq@mail.sic.ac.cn; 黃富強(qiáng), 研究員. E-mail: huangfq@mail.sic.ac.cn

    1000-324X(2020)04-0482-09

    10.15541/jim20190154

    猜你喜歡
    氧化鈦非晶介孔
    基于JAK/STAT信號通路研究納米氧化鈦致卵巢損傷的分子機(jī)制*
    保健文匯(2022年4期)2022-06-01 10:06:50
    功能介孔碳納米球的合成與應(yīng)用研究進(jìn)展
    氧化鈦對陶瓷結(jié)合劑金剛石磨具性能及結(jié)構(gòu)的影響
    新型介孔碳對DMF吸脫附性能的研究
    非晶Ni-P合金鍍層的制備及應(yīng)力腐蝕研究
    有序介孔材料HMS的合成改性及應(yīng)用新發(fā)展
    非晶硼磷玻璃包覆Li[Li0.2Co0.13Ni0.13Mn0.54]O2正極材料的研究
    介孔二氧化硅制備自修復(fù)的疏水棉織物
    塊體非晶合金及其應(yīng)用
    Fe73.5Cu1Nb3Si13.5B9非晶合金粉體的SPS燒結(jié)特性研究
    人人妻,人人澡人人爽秒播| 色在线成人网| 变态另类丝袜制服| av视频在线观看入口| 很黄的视频免费| 又黄又爽又刺激的免费视频.| 国产白丝娇喘喷水9色精品| 亚洲美女黄片视频| 天美传媒精品一区二区| bbb黄色大片| 国内精品久久久久精免费| av福利片在线观看| www.色视频.com| 久久亚洲真实| 国产av一区在线观看免费| 熟妇人妻久久中文字幕3abv| 97人妻精品一区二区三区麻豆| 亚洲av成人av| 最近在线观看免费完整版| 国产综合懂色| 午夜福利在线观看免费完整高清在 | 91久久精品国产一区二区成人| 日本黄色片子视频| 欧美人与善性xxx| 国产男靠女视频免费网站| 丰满乱子伦码专区| 在线看三级毛片| 少妇的逼水好多| 国产爱豆传媒在线观看| 亚洲最大成人av| 国产麻豆成人av免费视频| 中文字幕久久专区| 亚洲 国产 在线| 色哟哟·www| 好男人在线观看高清免费视频| 国产综合懂色| 国产女主播在线喷水免费视频网站 | 99热只有精品国产| 一边摸一边抽搐一进一小说| 十八禁国产超污无遮挡网站| 两个人的视频大全免费| 欧美日韩中文字幕国产精品一区二区三区| 1024手机看黄色片| 啦啦啦韩国在线观看视频| 成年女人看的毛片在线观看| АⅤ资源中文在线天堂| 在线免费十八禁| 搡女人真爽免费视频火全软件 | 久久久久九九精品影院| 天堂网av新在线| 久久精品91蜜桃| 亚洲av.av天堂| videossex国产| 成人亚洲精品av一区二区| 真人做人爱边吃奶动态| 国产免费一级a男人的天堂| 欧美日本亚洲视频在线播放| 变态另类丝袜制服| 麻豆精品久久久久久蜜桃| 在线国产一区二区在线| 亚洲精品在线观看二区| 一夜夜www| 性欧美人与动物交配| 搡老熟女国产l中国老女人| 中文字幕av成人在线电影| 国产一区二区激情短视频| 在线免费十八禁| 可以在线观看毛片的网站| 12—13女人毛片做爰片一| 床上黄色一级片| 国产真实乱freesex| 99热精品在线国产| av天堂在线播放| 黄色视频,在线免费观看| 麻豆精品久久久久久蜜桃| 日日摸夜夜添夜夜添av毛片 | 直男gayav资源| 国产高清不卡午夜福利| 亚洲自偷自拍三级| 美女 人体艺术 gogo| 国产亚洲精品综合一区在线观看| 久久国产乱子免费精品| 国产精品久久视频播放| 窝窝影院91人妻| 日韩人妻高清精品专区| 精品免费久久久久久久清纯| 日韩欧美国产在线观看| 男女啪啪激烈高潮av片| 嫩草影院新地址| 亚洲av电影不卡..在线观看| 亚洲中文字幕日韩| 久久精品综合一区二区三区| 99久国产av精品| 亚洲av五月六月丁香网| 美女黄网站色视频| 美女 人体艺术 gogo| 在线播放无遮挡| 国产av在哪里看| 精品免费久久久久久久清纯| 国产aⅴ精品一区二区三区波| 亚洲中文字幕一区二区三区有码在线看| 久久精品影院6| 乱系列少妇在线播放| 久久久久久久久中文| 国产三级在线视频| 最近中文字幕高清免费大全6 | 免费看a级黄色片| 欧美一区二区亚洲| 99久久成人亚洲精品观看| 麻豆成人av在线观看| 亚洲av.av天堂| 成年人黄色毛片网站| 99精品在免费线老司机午夜| 最好的美女福利视频网| 观看美女的网站| 午夜激情欧美在线| 精品午夜福利视频在线观看一区| 欧美性感艳星| 日本一二三区视频观看| 久久久久性生活片| 久久久精品大字幕| a级一级毛片免费在线观看| 欧美人与善性xxx| 12—13女人毛片做爰片一| 美女大奶头视频| 99热网站在线观看| 有码 亚洲区| 国产精品自产拍在线观看55亚洲| 中国美女看黄片| 99久久精品国产国产毛片| 桃色一区二区三区在线观看| 日韩欧美国产在线观看| 国产 一区 欧美 日韩| 黄色配什么色好看| 免费看a级黄色片| 免费搜索国产男女视频| 日日夜夜操网爽| av天堂在线播放| 女人十人毛片免费观看3o分钟| 亚洲不卡免费看| 欧美日韩黄片免| 欧美性猛交黑人性爽| 免费看av在线观看网站| 夜夜看夜夜爽夜夜摸| 精品久久国产蜜桃| 午夜福利成人在线免费观看| 精品一区二区三区视频在线观看免费| 18禁在线播放成人免费| 又黄又爽又刺激的免费视频.| 嫩草影视91久久| 男女之事视频高清在线观看| 黄色欧美视频在线观看| 12—13女人毛片做爰片一| 美女高潮喷水抽搐中文字幕| 淫秽高清视频在线观看| 国产av在哪里看| 久久久成人免费电影| 嫩草影院入口| 又爽又黄a免费视频| 国产亚洲精品久久久久久毛片| 少妇丰满av| 欧美在线一区亚洲| 久久精品国产99精品国产亚洲性色| 中国美白少妇内射xxxbb| 亚洲自拍偷在线| 女人十人毛片免费观看3o分钟| 在线播放国产精品三级| 国产亚洲精品久久久久久毛片| 美女黄网站色视频| av女优亚洲男人天堂| 可以在线观看毛片的网站| 国产爱豆传媒在线观看| 久久99热这里只有精品18| www.www免费av| 久久久久久久久久久丰满 | 国产免费一级a男人的天堂| 久久久久久久久久久丰满 | 久久国产乱子免费精品| 丝袜美腿在线中文| 久久精品国产鲁丝片午夜精品 | 欧美在线一区亚洲| 国产av一区在线观看免费| 国产午夜福利久久久久久| 久久精品影院6| 在线免费十八禁| 亚洲成av人片在线播放无| 2021天堂中文幕一二区在线观| 国产高清有码在线观看视频| 一级av片app| 两性午夜刺激爽爽歪歪视频在线观看| 国产男靠女视频免费网站| av在线天堂中文字幕| 欧美中文日本在线观看视频| 国产探花极品一区二区| 午夜a级毛片| 色精品久久人妻99蜜桃| 中文在线观看免费www的网站| 亚洲最大成人中文| 日本与韩国留学比较| 乱人视频在线观看| 亚洲精品456在线播放app | 天堂√8在线中文| 人妻少妇偷人精品九色| 99久久精品一区二区三区| 亚洲精品亚洲一区二区| 国产黄a三级三级三级人| 午夜爱爱视频在线播放| 国产av麻豆久久久久久久| 此物有八面人人有两片| 乱人视频在线观看| 麻豆精品久久久久久蜜桃| 国产午夜精品论理片| 嫩草影视91久久| 美女xxoo啪啪120秒动态图| 免费在线观看成人毛片| 免费一级毛片在线播放高清视频| 午夜福利在线观看免费完整高清在 | 亚洲四区av| 可以在线观看的亚洲视频| 99热这里只有精品一区| 人人妻人人看人人澡| 国产乱人视频| 色吧在线观看| 真人一进一出gif抽搐免费| 日本三级黄在线观看| 国产极品精品免费视频能看的| 亚洲av成人av| 午夜激情欧美在线| 老司机深夜福利视频在线观看| 国产老妇女一区| 九九在线视频观看精品| 美女高潮喷水抽搐中文字幕| av女优亚洲男人天堂| 亚洲在线观看片| 日本-黄色视频高清免费观看| 少妇丰满av| 观看美女的网站| 久久草成人影院| 久久精品国产亚洲av涩爱 | 美女cb高潮喷水在线观看| 别揉我奶头 嗯啊视频| 婷婷亚洲欧美| 精品久久久久久久久亚洲 | 亚洲午夜理论影院| 不卡一级毛片| 哪里可以看免费的av片| 国产亚洲精品久久久com| 久久久精品大字幕| ponron亚洲| 九九热线精品视视频播放| 久久久久性生活片| 国产精品99久久久久久久久| 精品人妻视频免费看| 69人妻影院| 内地一区二区视频在线| 一个人看的www免费观看视频| 亚洲av.av天堂| 欧美成人一区二区免费高清观看| 久久精品国产鲁丝片午夜精品 | 一本久久中文字幕| 日本三级黄在线观看| 国语自产精品视频在线第100页| 久久婷婷人人爽人人干人人爱| 免费搜索国产男女视频| 亚洲不卡免费看| av天堂中文字幕网| 国产成人福利小说| 成年免费大片在线观看| 国产精品不卡视频一区二区| 欧美又色又爽又黄视频| a级毛片a级免费在线| 无人区码免费观看不卡| 亚洲中文日韩欧美视频| 深夜a级毛片| 国产高清有码在线观看视频| 精品99又大又爽又粗少妇毛片 | 欧美激情在线99| 亚洲av电影不卡..在线观看| 波野结衣二区三区在线| 美女大奶头视频| 午夜亚洲福利在线播放| xxxwww97欧美| 中文资源天堂在线| 国产午夜精品久久久久久一区二区三区 | 乱码一卡2卡4卡精品| 国产黄片美女视频| 亚洲综合色惰| 免费人成视频x8x8入口观看| 精品日产1卡2卡| av福利片在线观看| 波多野结衣高清作品| 国产精品一区www在线观看 | 亚洲欧美精品综合久久99| 国产亚洲精品综合一区在线观看| 日韩欧美国产一区二区入口| 久久久久久久午夜电影| av女优亚洲男人天堂| 国产成人a区在线观看| 亚洲性久久影院| 村上凉子中文字幕在线| 亚洲aⅴ乱码一区二区在线播放| 校园春色视频在线观看| 亚洲国产日韩欧美精品在线观看| 亚洲精品在线观看二区| 俄罗斯特黄特色一大片| x7x7x7水蜜桃| 亚洲三级黄色毛片| 日韩精品青青久久久久久| 国产精品三级大全| 欧美色欧美亚洲另类二区| 亚洲,欧美,日韩| 日韩精品青青久久久久久| 黄色视频,在线免费观看| 精品久久久久久成人av| 国语自产精品视频在线第100页| www.色视频.com| 国产真实乱freesex| 赤兔流量卡办理| 国产三级中文精品| 国产伦人伦偷精品视频| 特大巨黑吊av在线直播| 伦理电影大哥的女人| 午夜a级毛片| 69av精品久久久久久| 日韩欧美在线二视频| 国产视频一区二区在线看| 欧美精品国产亚洲| bbb黄色大片| 亚洲成av人片在线播放无| 大型黄色视频在线免费观看| 男女之事视频高清在线观看| 欧美成人免费av一区二区三区| 黄色一级大片看看| 日韩精品有码人妻一区| 久久久精品欧美日韩精品| 久久久久久久久久久丰满 | 一夜夜www| 成人综合一区亚洲| 亚洲自拍偷在线| 国内精品宾馆在线| 国产精品人妻久久久久久| 久久久久久伊人网av| 麻豆av噜噜一区二区三区| av在线蜜桃| 国模一区二区三区四区视频| 内射极品少妇av片p| 欧美日韩中文字幕国产精品一区二区三区| 久久精品国产鲁丝片午夜精品 | 欧美另类亚洲清纯唯美| 国产av在哪里看| 国内精品宾馆在线| av天堂中文字幕网| 搡老妇女老女人老熟妇| 小蜜桃在线观看免费完整版高清| 88av欧美| 欧美高清性xxxxhd video| 国产男靠女视频免费网站| 成人性生交大片免费视频hd| 小说图片视频综合网站| 观看美女的网站| 亚洲av中文字字幕乱码综合| 最新中文字幕久久久久| 在线免费十八禁| 日韩精品中文字幕看吧| 露出奶头的视频| 中文字幕久久专区| 99久久精品热视频| 特大巨黑吊av在线直播| 成人av一区二区三区在线看| 中国美女看黄片| 不卡视频在线观看欧美| 亚洲狠狠婷婷综合久久图片| 99热这里只有是精品50| 99久久精品热视频| 国产单亲对白刺激| 精品人妻1区二区| 可以在线观看的亚洲视频| 国产极品精品免费视频能看的| 亚洲国产精品成人综合色| 欧美日韩国产亚洲二区| 国产精品日韩av在线免费观看| 国产大屁股一区二区在线视频| 亚洲精品成人久久久久久| 亚洲人与动物交配视频| 精品一区二区三区人妻视频| 在线观看午夜福利视频| 欧美激情久久久久久爽电影| 听说在线观看完整版免费高清| 国产av麻豆久久久久久久| 国产成年人精品一区二区| 在线播放国产精品三级| 国产不卡一卡二| 很黄的视频免费| 人妻夜夜爽99麻豆av| www.www免费av| 亚洲va日本ⅴa欧美va伊人久久| 色综合站精品国产| 亚洲三级黄色毛片| 99热只有精品国产| 亚洲精品乱码久久久v下载方式| 精华霜和精华液先用哪个| 亚洲欧美激情综合另类| 22中文网久久字幕| 久久国内精品自在自线图片| 麻豆成人av在线观看| 嫩草影院入口| 99久久九九国产精品国产免费| av在线天堂中文字幕| 看片在线看免费视频| АⅤ资源中文在线天堂| 国产精品一区二区免费欧美| 99热网站在线观看| 欧美另类亚洲清纯唯美| 精华霜和精华液先用哪个| 性欧美人与动物交配| 成人国产一区最新在线观看| 国产亚洲精品久久久com| 欧美区成人在线视频| 色精品久久人妻99蜜桃| 看十八女毛片水多多多| 午夜亚洲福利在线播放| 亚洲性久久影院| 极品教师在线免费播放| 国产在线男女| 女生性感内裤真人,穿戴方法视频| 老女人水多毛片| 久久精品国产自在天天线| 国产v大片淫在线免费观看| 国产午夜精品久久久久久一区二区三区 | 97人妻精品一区二区三区麻豆| 桃色一区二区三区在线观看| 又粗又爽又猛毛片免费看| 乱系列少妇在线播放| 久久热精品热| 欧美xxxx性猛交bbbb| 午夜福利高清视频| 麻豆成人午夜福利视频| 悠悠久久av| 亚洲av免费高清在线观看| 午夜福利在线观看免费完整高清在 | 免费av不卡在线播放| 男女视频在线观看网站免费| 免费无遮挡裸体视频| 91久久精品国产一区二区成人| 国产精品国产高清国产av| 亚洲aⅴ乱码一区二区在线播放| 少妇高潮的动态图| 免费搜索国产男女视频| 精品福利观看| 夜夜爽天天搞| 免费无遮挡裸体视频| 在线观看av片永久免费下载| a在线观看视频网站| 成人特级黄色片久久久久久久| 性色avwww在线观看| 国产熟女欧美一区二区| 性插视频无遮挡在线免费观看| 国产精品野战在线观看| 色综合亚洲欧美另类图片| 精品人妻一区二区三区麻豆 | 亚洲av二区三区四区| 91久久精品国产一区二区成人| 伊人久久精品亚洲午夜| 欧美日韩乱码在线| 久久久久久久久久成人| 亚洲18禁久久av| 精品日产1卡2卡| 12—13女人毛片做爰片一| 亚洲国产精品成人综合色| 在线国产一区二区在线| 国产精品国产三级国产av玫瑰| 一级av片app| 一区二区三区高清视频在线| 久久久久久久久大av| 日本爱情动作片www.在线观看 | 99热这里只有精品一区| 日本免费一区二区三区高清不卡| 俄罗斯特黄特色一大片| 十八禁国产超污无遮挡网站| 免费看a级黄色片| 国产成人影院久久av| 在线观看舔阴道视频| 婷婷六月久久综合丁香| 欧美xxxx性猛交bbbb| 又紧又爽又黄一区二区| 国产精品女同一区二区软件 | 久久精品国产清高在天天线| 在线看三级毛片| 精品一区二区三区视频在线观看免费| 少妇裸体淫交视频免费看高清| 亚洲人成网站高清观看| 一区福利在线观看| 女人被狂操c到高潮| 麻豆久久精品国产亚洲av| 99久久无色码亚洲精品果冻| 中文字幕高清在线视频| 免费不卡的大黄色大毛片视频在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 色哟哟·www| 观看免费一级毛片| 成人国产麻豆网| 夜夜夜夜夜久久久久| 国内精品美女久久久久久| a在线观看视频网站| 三级男女做爰猛烈吃奶摸视频| 岛国在线免费视频观看| 伊人久久精品亚洲午夜| 久久久久久大精品| 日本一本二区三区精品| 国产精品av视频在线免费观看| 成人二区视频| 日韩欧美国产一区二区入口| 国产精品嫩草影院av在线观看 | 亚洲乱码一区二区免费版| 麻豆成人午夜福利视频| 国产老妇女一区| 免费搜索国产男女视频| 久久精品国产亚洲av涩爱 | 亚洲国产精品合色在线| 亚洲狠狠婷婷综合久久图片| 啦啦啦观看免费观看视频高清| 久久精品夜夜夜夜夜久久蜜豆| 夜夜夜夜夜久久久久| 12—13女人毛片做爰片一| 免费观看的影片在线观看| 欧美最新免费一区二区三区| 精品免费久久久久久久清纯| 国产精品不卡视频一区二区| 九色成人免费人妻av| 亚洲avbb在线观看| 成人三级黄色视频| 麻豆av噜噜一区二区三区| 日韩精品青青久久久久久| 好男人在线观看高清免费视频| 国产老妇女一区| 嫩草影院入口| 成年版毛片免费区| 嫩草影院新地址| 久久久久久久久久成人| 久久久精品欧美日韩精品| 国产在线精品亚洲第一网站| 亚洲av.av天堂| 黄色丝袜av网址大全| 国产主播在线观看一区二区| 老司机午夜福利在线观看视频| 国产三级中文精品| 乱系列少妇在线播放| 99久久久亚洲精品蜜臀av| 男人和女人高潮做爰伦理| 999久久久精品免费观看国产| 男插女下体视频免费在线播放| 波野结衣二区三区在线| 99久久无色码亚洲精品果冻| 老熟妇乱子伦视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲va日本ⅴa欧美va伊人久久| 极品教师在线免费播放| 人人妻人人看人人澡| 欧美一区二区国产精品久久精品| 十八禁国产超污无遮挡网站| 我的女老师完整版在线观看| 亚洲精品乱码久久久v下载方式| 日韩精品有码人妻一区| 成人二区视频| 成人三级黄色视频| 中出人妻视频一区二区| 色在线成人网| 欧美3d第一页| 亚洲国产精品sss在线观看| 久久久国产成人精品二区| 深夜a级毛片| 女人被狂操c到高潮| 色在线成人网| 国产v大片淫在线免费观看| 国产 一区精品| 极品教师在线视频| 五月伊人婷婷丁香| 中文字幕免费在线视频6| 久久亚洲精品不卡| 别揉我奶头 嗯啊视频| 免费av毛片视频| 老女人水多毛片| 精品午夜福利在线看| 观看免费一级毛片| 国产精品一区二区三区四区久久| 亚洲欧美日韩高清在线视频| 亚洲熟妇中文字幕五十中出| 联通29元200g的流量卡| 麻豆国产97在线/欧美| 美女被艹到高潮喷水动态| 亚洲内射少妇av| 看黄色毛片网站| 国产一区二区三区在线臀色熟女| 亚洲av中文字字幕乱码综合| 有码 亚洲区| 天堂av国产一区二区熟女人妻| 综合色av麻豆| 亚洲国产日韩欧美精品在线观看| 久久精品综合一区二区三区| 亚洲精品久久国产高清桃花| 国产熟女欧美一区二区| 国产精品嫩草影院av在线观看 | 国产精品av视频在线免费观看| 九九爱精品视频在线观看| 丰满的人妻完整版| 天堂影院成人在线观看| 精品午夜福利在线看| 日韩大尺度精品在线看网址| 亚洲av免费在线观看| 成年女人毛片免费观看观看9| 一区二区三区高清视频在线| 国产精品一区www在线观看 | 国产精品爽爽va在线观看网站| 免费人成在线观看视频色| 91久久精品国产一区二区三区|