• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Removal of Volatile Organic Compounds Driven by Platinum Supported on Amorphous Phosphated Titanium Oxide

    2020-05-13 00:43:52HUANGXieyiWANGPengYINGuohengZHANGShaoningZHAOWeiWANGDongBIQingyuanHUANGFuqiang
    無機(jī)材料學(xué)報(bào) 2020年4期
    關(guān)鍵詞:氧化鈦非晶介孔

    HUANG Xieyi, WANG Peng, YIN Guoheng, ZHANG Shaoning, ZHAO Wei,WANG Dong, BI Qingyuan, HUANG Fuqiang,3,4

    Removal of Volatile Organic Compounds Driven by Platinum Supported on Amorphous Phosphated Titanium Oxide

    HUANG Xieyi1,2, WANG Peng2,3, YIN Guoheng1, ZHANG Shaoning1, ZHAO Wei1,WANG Dong1, BI Qingyuan1, HUANG Fuqiang1,3,4

    (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China; 4. State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China)

    Development of high efficiency catalyst is the key factor to catalytic combustion of volatile organic com-pounds (VOCs). Herein, amorphous mesoporous phosphated TiO2(ATO-P) with high specific surface area supported platinum catalyst was successfully fabricated. P-dopant can increase the surface area (up to 278.9 m2?g?1) of ATO-P, which is 21 times higher than that of pristine TiO2, and make the amorphous titanium oxide structure. The supported Pt catalyst with amorphous mesoporous feature shows impressive performance and excellent thermostability for VOCs oxidation. The Pt/ATO-P catalyst exhibits outstanding catalytic efficiency, the50and90(temperatures required for achieving conversions of 50% and 90%) are respectively 130 ℃and 140 ℃, for toluene oxidation under high gas hourly space velocity (GHSV) of 36000 mL·h?1·g?1and toluene concentration of 10000 mL·m?3. The performance is superior to the reference Pt/TiO2and comparable with the state-of-the-art catalysts. These findings can make a significant contribution on the new applications of amorphous mesoporous phosphated materials in VOCs removal.

    amorphous mesoporous structure; phosphated TiO2; Pt nanoparticle; toluene oxidation; VOCs removal

    Volatile organic compounds (VOCs), like toluene, benzene, esters and hydrocarbons, are emitted from vari-ous industrial sources which can cause serious envi-ronmental pollution and health problems[1?2]. Toluene, one kind of toxic and strong carcinogenic chemical, is frequently used in making paints, adhesives, rubbers, and leather tanning processes because of its excellent ability to dissolve organic substances[3-4]. However, toluene is difficult to degrade due to its stable structure[5]. Several techniques, such as physical and chemical adsorption, photocatalytic and catalytic oxidation methods, are widely used for the combustion of VOCs[6-7]. Among them, catalytic oxidation is regarded as a promising approach owing to its high efficiency and convenient operating conditions[8].

    Researches on catalysts for toluene oxidation have been conducted, including noble metal and metal oxides catalysts[9-10]. Due to the significant reduction on acti-vation energy during the catalytic oxidation process, noble metal based catalysts, such as Pt, Pd, Au, Rh, and Ir have shown impressive performance in toluene remo-val[11-13]. It was found that supported Pt catalysts showed the best catalytic performance compared with other noble metals[14-15]. It should be pointed out that the supports play an important role in the catalytic reaction pro-cesses[16-18]. Many works have focused on the metal- support interac-tion by studying the catalytic properties of TiO2, Al2O3, ZrO2, and ZnO supported Au nanopar-ticles[19], and the shape effect of Pt/CeO2catalysts[10]. Nevertheless, most supports suffer from low specific surface area and few active sites, which are crucial for the overall catalytic activity.

    Due to high specific surface area and variable valence, amorphous materials have attracted increasing interests in VOCs oxidation. And the numerous defects in amo-rphous structures can offer large quantities of oxygen vacancies, which are beneficial for the adsorption of oxygen and organic molecules. Lee,[20]reported that carbon black supported amorphous MnOis highly efficient for oxygen involved reaction. Wang,[21]found that amorphous MnOmodified Co3O4can en-hance the catalytic activity for the VOCs oxidation. It was demonstrated that the amorphous structure of bimetallic Pd-Pt/CeO2-Al2O3-TiO2could provide more vacancies and active sites for catalytic combustion[22]. Therefore, the amorphous catalysts show a tremendous potential in practical catalytic reactions. However, it is still a challenge to develop highly active and robust catalysts based on the amorphous materials for the oxidation of VOCs.

    Herein, we demonstrate an efficient Pt/ATO-P catalyst for the catalytic removal of VOCs under high gas hourly space velocity (GHSV)and high substrate concentration. It should be pointed out that incorporating phosphorus into the framework of TiO2is a widely applied strategy for obtaining amorphous mesoporous feature[23-24]. And the P element can stabilize the TiO2framework and significantly increase the specific surface area[24].

    1 Experimental

    1.1 Preparation of sample

    1.1.1 Preparation of support

    All reagents were of analytical grade and were used without any purification. 3 mL of tetrabutyl titanate was dissolved in 30 mL of ethanol at room temperature, which was marked as solution A. Then 0.125 mL of phosphoric acid (H3PO4) was subsequently dropwisely added into solution A with stirring to form a homogenous mixture, and kept stirring for 24 h. The obtained white solid products were separated by centrifuge, and washed by deionized water and ethanol several times, followed by freeze drying overnight. The as-prepared products were calcined at 400 ℃in air for 4 h at a heating rate of 5 ℃?min?1.

    1.1.2 Preparation of catalyst

    The ATO-P supported platinum (Pt/ATO-P) sample was preparedimpregnation method. A desired amount of ATO-P was transferred into aqueous solution containing appropriate amount of chloroplatinic acid (H2PtCl4). Subsequently, the samples were impregnated at room temperature for 12 h. After drying out the H2O at 80 ℃, the samples were treated at 350 ℃ for 2 h with a H2/Ar mixture (5/95,/).

    1.2 Characterization

    XRD characterization of the samples was carried out on a German Bruker D8 Advance X-ray diffractometer (XRD) using the Ni-filtered Cu Kα radiation at 40 kV and 40 mA. Nitrogen adsorption-desorption isotherms were measured at –196 ℃ on a Micromeritics ASAP 2460 analyzer. Samples were degassed at 120 ℃ for 24 h prior to the measurement. The specific surface area of the samples was calculated using the Brunauer–Emmett– Teller (BET) method with the adsorption data at the relative pressure (/0) range of 0.05–0.2. The total pore volumes were estimated at/0=0.99. The pore size distribution (PSD) curves were calculated from the adsorption branch using Barrett-Joyner-Halenda (BJH) model. The prepared materials were pressed into tablets with KBr powder and then detected by FT-IR (Perkin Elmer, USA) in the scanning range from 400 to 4000 cm–1. SEM images were obtained by Hitachi-S4800. A JEOL 2011 microscope operating at 200 kV equipped with an EDX unit (Si(Li) detector) was used for the transmission electron microscope (TEM) and high resolution trans-mission electron microscope (HRTEM) investigations. The samples for TEM testing were prepared by dis-persing the powder in ethanol and applying a drop of highly dilute suspension on carbon-coated grids. XPS data were recorded with a Perkin Elmer PHI 5000 C system equipped with a hemispherical electron energy analyzer. The spectrometer was operated at 15 kV and 20 mA, and a magnesium anode (Mg Kα,=1253.6 eV) was used. The C1s line (284.6 eV) was used as the reference to calibrate the binding energies (BE). TG measurements were conducted on a Netzsch STA 449C TG-DSC thermoanalyzer. The flow rate of the carrier gas (air) was 30 mL?min–1. The temperature was raised from room temperature to 800 ℃ at a ramp rate of 10 ℃?min–1. Prior to H2-TPR test, the sample (100 mg) was pretreated at 200 ℃ for 2 h and cooled to 50 ℃ in the flowing He. TPR experiment was carried out in 5vol% H2/He flowing at 30 mL?min–1, with a ramping rate of 5 ℃?min–1to a final temperature of800 ℃. The signal was monitored using a TCD detector.

    1.3 Catalytic activity test

    The catalytic activity of samples was evaluated in a continued-flow fixed-bed quartz reactor with 50 mg catalyst. Toluene was introduced into the reactor with bubbling toluene solution in ice bath with pure air. The concentration of toluene was about 104mL?m?3, and the flow rate was kept at 30 mL?min–1by a mass controller, equivalent to a gas hour space velocity (GHSV) of 36000 mL?h–1?g–1. After steady operation for 100 min, the activity of the catalyst was tested. Toluene con-cen-tration was detected by a gas chromatograph equi-pped with a flame ionization detector. The toluene conversion (toluene) was calculated according to the equation:

    toluene(inout)/in·100% (1)

    whereinandoutare the inlet and outlet toluene concentrations, respectively.

    2 Results and discussion

    2.1 Physicochemical properties of ATO-P support

    Fig. 1 displays the schematic diagram of amorphous ATO-P preparedfacile co-precipitation. XRD patterns of ATO-P and TiO2are shown in Fig. 2. All diffraction peaks of basic TiO2sample are indexed to anatase phase (JCPDS 21-1276). Interestingly, there is no TiO2crystal phase observed for ATO-P sample (Fig. 2), suggesting that ATO-P sample is typically amorphous and phosphorus dopant can markedly restrain the crystallization of anatase[25?26].

    According to the TGA-DSC thermograms (Fig. 3), a thermal decomposition of ATO-P took place in the temperature range of 20?900 ℃. The first DSC peak at 30?80 ℃ is due to the release of physical adsorbed water. When all the water is released, Ti?OH and HPO42?groups start to condense[27]. These processes occur simultaneously in the temperature range of 100?220 ℃ (1.927% of weight loss) and 220?516 ℃ (0.7% of weight loss), resulting in an overlap of the TG data. There is no further weight loss up to 516 ℃. The DSC curve shows two exothermic peaks at 704and 781 ℃, corresponding to a two-step exothermic transformation of ATO-P into a crystalline phase.

    Fig. 1 Structure of amorphous ATO-P prepared via facile co-precipitation

    Fig. 2 XRD patterns of TiO2 and ATO-P samples

    Fig. 3 TG (solid line) and DSC (dashed line) curves for ATO-P

    Fig. 4(a,b) show the SEM images of ATO-P. The ATO-P nanoparticles are homogeneously dispersed with the particle size of ~20 nm, and the sizes are similar to that of TiO2(Fig. S1(a)). HRTEM was employed to characterize the nanostructure of samples. No porous structure is observed in the HRTEM image of TiO2(Fig. S1(b)), while various porous structure is shown in ATO-P (Fig. 4(c)). Moreover, the pores of ATO-P are uniform, and the average diameter is around 10 nm. EDS elemental mappings indicate that the P element homo-geneously distributes in ATO-P (Fig. 4(d)). It is found that H3PO4owns unique effects for synthesizing amorphous mesoporous phosphated TiO2[28-29].

    Fig. 4 SEM (a, b) and HRTEM (c) images, and EDS elemental mapping (d) of ATO-P

    As shown in Fig. 5, the obtained ATO-P sample shows a characteristic type-IV isotherm with clear hysteresis loop locates at the/0range of 0.45?1.0, showing the existence of a large amount of mesopore. Notably, the specific surface area of 278.9 m2·g?1for ATO-P is 21 times higher than that of pristine TiO2. The pore diameters of ATO-P center around 10 nm (Fig. 5 and Table 1), which is consistent with HRTEM result (Fig. 4(c)).

    The results of EDX are listed in Table 1. The actual P concentration is much less than the initial addition amount of H3PO4, suggesting that partial H3PO4is leached during the preparation process.

    FT-IR spectra of TiO2and ATO-P samples are depicted in Fig. 6. The wide absorption bands around 3440 and 1620 cm?1are attributed to the surface adsorbed water and/or hydroxyl groups[30-31]. The bands at 1100 cm?1are ascribed to the stretching vibration of Ti?O?P species, which are absent in TiO2. The weak bands at 610 cm?1are due to the vibration of Ti?O?Ti bond[22]. Compared with TiO2, a weak peak appears in series ATO-P, which may result from the incorporating effect of phosphorus dopant. There is no distinct peak over the range of 700?800 cm?1(Fig. 6), indicating the absence of P?O?P groups in the amorphous mesoporous phosphated TiO2. Therefore, the P element is incorporated into the frameworks of ATO-P by forming Ti?O?P bonds[24].

    Fig. 5 N2 adsorption-desorption isotherms (a) and pore size distributions (b) of ATO-P and TiO2

    Table 1 Textural properties and elemental compositions ofTiO2 and ATO-P samples

    [a] Weight fraction (wt%) are determined by EDX analysis

    Fig. 6 FT-IR spectra of TiO2 and ATO-P

    As shown in Fig. 7(a), the full XPS spectra indicate the existence of P in ATO-P. High-resolution XPS spectra of P 2p, Ti 2p and O 1s are depicted in Fig. 7(b?d). The peak of P 2p of ATO-P is at 134.0 eV, suggesting that phosphorus in ATO-P gives a pentavalent oxidation state of P5+. No peak observed at 128.6 eV, which is the characteristic binding energy of P2p in TiP, indicating the absence of Ti?P bonds in ATO-P samples. As depicted in Fig. 7(c), the peaks of Ti2p3/2and Ti2p1/2in ATO-P show remarkable blue-shift owing to the incorporation effect of phosphorus element. Fig. 7(d) shows the XPS spectra of O1s signals of TiO2and ATO-P. The single peak at 529.5 eV is corresponded to the oxygen in Ti?O bond of TiO2. However, the O1s spectrum of ATO-P contains two peaks at 531.4 and 532.9 eV, which are contributed to Ti?O?P and O?H bond, respectively[32-33].

    2.2 Physicochemical properties of Pt/ATO-P catalysts

    Fig. 8(a) shows that the Pt nanoparticles are well dis-persed over the ATO-P support, and the size is relatively uniform with the average parameter of (1.8±0.3) nm (insert in Fig. 8(a)). Fig. 8(b) and S2 demonstrate a-spacing of 0.23 nm, attributed to the (111) plane of the highly crystalline Pt nanostructure. Furthermore, the actual Pt content was also confirmed by inductively coulped plasma atomic emission spectra (ICP-AES). The mass loadings of Pt in Pt/TiO2and Pt/ATO-P catalysts are 0.90 and 0.92, respectively, which are close to the nominal composition of 1wt%.

    Fig. 8(c) shows the XRD patterns of Pt/ATO-P and Pt/TiO2catalysts. The amorphous structure is still remained for Pt/ATO-P sample. However, no diffraction pattern of Pt nanoparticles is observed, indicating that the Pt nanoparticles are quite small and/or the Pt species are highly dispersed on the ATO-P surface. These results are well consistent with the HRTEM data above mentioned in Fig. 8(a, b).

    Fig. 7 Full XPS spectra (a) of TiO2 and ATO-P; High-resolution XPS P2p (b), Ti2p (c), and O1s (d) of TiO2 and ATO-P

    Fig. 8 TEM (a) and HRTEM (b) images of Pt/ATO-P with insert in (a) indicating the particle size distribution of Pt nanoparticles, XRD patterns (c) and XPS Pt4f (d) of Pt/ATO-P

    The results of XPS analysis of Pt/ATO-P and Pt/TiO2samples are depicted in Fig. 8(d). It is known that the positions of Pt4f7/2binding energy at 71.1, 72.4, and 74.2 eV are attributedto Pt0, Pt2+, and Pt4+species, respec-tively[34]. Similiar XPS profiles arerendered as the indication of a mixture of various valence states for Pt species overthe small Pt nanoparticles. The exisence of Pt+species reflects the strong metal-support interaction (Pt?ATO-P), especially the prominent electronic intera-ction between active Pt and underlying phosphated TiO2support[35]. This is probably due to the changes of the metal- support interaction by doping phosphorus atoms which can make an obvious effect onTi?O?P frameworks.

    The H2-TPR profiles depicted in Fig. S3 show that there are two H2-consumption peaks at low and high temperature attributed to weak and strong interaction of Pt and supports, respectively[36]. Notably, two reduction peaks of Pt/ATO-P catalyst at 78 and 601 ℃ show stro-nger intensity than that of Pt/TiO2at 72 and 433 ℃, indicating strongPt-support interaction for Pt/ATO-P. These results are consistent with the XPS data.

    2.3 Removal of VOCs by Pt/ATO-P catalysts

    The catalytic efficiencies are depicted in Fig. 9. It is clearly observed that reaction temperature can enhance the performance of Pt/ATO-P catalyst. The50and90are widely used to evaluate the catalytic performance[37]. As shown in Fig. 9(a), Pt/ATO-P shows the excellent catalytic activity.50and90values for toluene com-bustion are 130 and 140 ℃, which are much lower than those of Pt/TiO2with50and90of 160 and 190 ℃, res-pectively. Combined with the above XPS data (Fig. 8(d)), it can be concluded that the existance of phosphorus component plays an important role in electronic structure of the active Pt species underlying amorphous meso-porous ATO-P support and thus the catalytic oxidation removal of toluene over Pt/ATO-P catalyst.

    Fig. 9 Toluene conversion (a) of 1wt% Pt/ATO-P with respect to reaction temperature, and thermal stability (b) of Pt/ATO-P at 180 ℃

    It is well known that noble metal loading significantly affects the catalytic behavior for many reactions. Pt/ATO-P catalysts with different Pt loadings were examined, and the results are depicted in Fig. 10. Compared with 0.5wt% and 2wt%, the Pt loading of 1wt% shows better performance (lower50and90) for toluene oxidation. The low catalytic activity of 0.5 wt% Pt/ATO-P results from low density of active platinum nanoparticles anchoring on the surface of ATO-P support. For the Pt/ATO-P catalyst with Pt loading up to 2wt%, larger size of Pt nanopartices (~5 nm) can be obtained (Fig. S4). Larger Pt particles can not only decrease the dispersion of Pt species[38], but also lead to a weaker metal-support (Pt/ATO-P) interactions, thus resulting in the poor activity.

    Stability is critical for the catalysts on the practical application. 1wt% Pt/ATO-P exhibits excellent thermal stability for toluene oxidation over a 50-h period on stream at 180 ℃ without visible loss of activity, as shown in Fig. 9(b). The toluene conversion remains a high level of 95.4% at the end of reaction process and maintains near full selectivity to final products of CO2and H2O. The excellent stability of Pt/ATO-P catalyst is attributed to the unique geometric structure of crystalline Pt nanoparticles and amorphous mesoporous phosphated TiO2with prominent electronic interaction. For the used 1wt% Pt/ATO-P, TEM measurement and XPS analysis (Fig. S5 and Fig. S6) demonstrate no significant change on the morphology, average size of Pt nanoparticles, and the chemical oxidation state of active Pt species. These results suggest the robustness of Pt/ATO-P catalyst for toluene oxidation removal under a relatively mild the-rmal process.

    Given the superb thermocatalytic performance for 1wt% Pt/ATO-P catalyst toward toluene oxidation, we were curious to examine whether the engineered material would also catalyze the removal of a class of VOCs, especially the complete oxidation of benzene,-hexane, ethyl acetate, and mesitylene. As depicted in Fig. 11, the90values for the catalytic oxidation of benzene, ethyl acetate,-hexane, and mesitylene are 216, 331, 271, and 200 ℃, respectively. Notably, high tem-perature is requ-ired for ethyl acetate conversion at 90% due to its strong structural stability[39-40]. These results show a broad scope toward catalytic combustion invo-lving trouble-some organic compounds over Pt/ATO-P and indicate that the Pt/ATO-P catalysts can provide a new insight for the oxidation of VOCs.

    Fig. 10 Toluene conversion over Pt/ATO-P catalysts with different Pt loadings

    Fig. 11 Catalytic activity of Pt/ATO-P for the conversion of benzene (a), ethyl acetate (b), n-hexane (c), and mesitylene (d) with respect to reaction temperature

    3 Conclusions

    In summary, we successfully fabricated the amorphous mesoporous phosphated TiO2supported platinum catalysts for efficient removal of volatile organic compounds. The electronic modifications of supported Pt nanoparticles for the underlying amorphous ATO-P material and Pt loading for the whole catalyst were systematically investigated. The phosphorus dopant played an important role for stabilizing the inflated Ti?O?P frameworks as well as the electronic structure of Pt species. Compared with pristine TiO2, ATO-P with high specific surface area showed signi-ficant enhancement for Pt/ATO-P samples for catalytic overall oxidation of toluene under practical conditions. The performance of the engineered Pt/ATO-P for toluene combustion was superior to the reference Pt/TiO2and comparable with the state-of-the-art catalysts. Additionally, Pt/ATO-P catalyst exhibited excellent stability for toluene oxidation removal under a relatively mild thermal process and could be potentially applied in a broad scope of VOCs. The present work is expected to make a significant contribution on the new application of amorphous mesoporous phosphated material in VOCs removal.

    Supporting Materials

    Supporting Materials related to this article can be found at https://doi.org/10.15541/jim20190154.

    [1] XIE S H, LIU Y X, DENG J G,. Insights into the active sites of ordered mesoporous cobalt oxide catalysts for the total oxidation of-xylene.,2017, 352: 282–292.

    [2] GENUINO H C, DHARMARATHNA S, NJAGI E C,. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts., 2012, 116(22): 12066–12078.

    [3] SIHAIB Z, PULEO F, GARCIA-VARGAS J M,.Manganese oxide-based catalysts for toluene oxidation.,2017, 209(15): 689–700.

    [4] ROKICI?SKA A, DROZDEK M, DUDEK B,. Cobalt- containing BEA zeolite for catalytic combustion of toluene.,2017, 212: 59–67.

    [5] SANTOS V P, PEREIRA M F R, óRF?O J J M,. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds.,2010, 99(1/2): 353–363.

    [6] ?ULIGOJ A, ?TANGAR U L, RISTI? A,. TiO2-SiO2films from organic-free colloidal TiO2anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air.,2016, 184: 119–131.

    [7] QIAN X F, YUE D T, TIAN Z Y,. Carbon quantum dots decorated Bi2WO6nanocomposite with enhanced photocatalytic oxidation activity for VOCs.,2016, 193: 16–21.

    [8] CHEN J, CHEN X, XU W J,. Homogeneous introduction of CeOinto MnO-based catalyst for oxidation of aromatic VOCs.,2018, 224: 825–835.

    [9] YANG H G, DENG J G, LIU Y X,. Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2-Al2O3for toluene oxidation.,2016, 414: 9–18.

    [10] PENG R S, SUN X B, LI S J,. Shape effect of Pt/CeO2catalysts on the catalytic oxidation of toluene.,2016, 306: 1234–1246.

    [11] ALGHAMDI A O, JEDIDI A, AZIZ S G,. Theoretical insights into dehydrogenative chemisorption of alkylaromatics on Pt(100) and Ni(100)., 2018, 363: 197–203.

    [12] ZHANG Z X, JIANG Z, SHANGGUAN W F. Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review.,2016, 264: 270–278.

    [13] XIE S H, LIU Y X, DENG J G,. Effect of transition metal doping on the catalytic performance of Au-Pd/3DOM Mn2O3for the oxidation of methane and-xylene.,2017, 206: 221–232.

    [14] SANTOS V P, CARABINEIRO S A C, TAVARES P B,. Oxidation of CO, ethanol and toluene over TiO2supported noble metal catalysts.,2010, 99(1/2): 198–205.

    [15] FU X R, LIU Y, YAO W Y,. One-step synthesis of bimetallic Pt-Pd/MCM-41 mesoporous materials with superior catalytic performance for toluene oxidation.,2016, 83: 22–26.

    [16] YIN G H, HUANG X Y, CHEN T Y,. Hydrogenated blue titania for efficient solar to chemical conversions: preparation, characterization, and reaction mechanism of CO2reduction.,2018, 8(2): 1009–1017.

    [17] WU D W, ZHANG Q L, LIN T,. Effect of Fe on the selective catalytic reduction of NO by NH3at low temperature over Mn/CeO2-TiO2catalyst.,2012, 27(5): 495–500.

    [18] YU W W, ZHANG Q H, SHI G Y,. Preparation of Pt-loaded TiO2nanotubes/nanocrystals composite photocatalysts and their photocatalytic properties.,2011, 26(7): 747–752.

    [19] COMOTTI M, LI W C, SPLIETHOFF B,. Support effect in high activity gold catalysts for CO oxidation.,2006, 128(3): 917–924.

    [20] LEE J S, PARK G S, LEE H I,. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions.,2011, 11(12): 5362–5366.

    [21] ZHENG Y L, WANG W Z, JIANG D,. Amorphous MnOmodified Co3O4for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity.,2016, 284: 21–27.

    [22] GUO Y Y, ZHANG S, MU W T,. Methanol total oxidation as model reaction for the effects of different Pd content on Pd-Pt/CeO2-Al2O3-TiO2catalysts.,2017, 429: 18–26.

    [23] CLEARFIELD A, THAKUR D S. Zirconium and titanium phosphates as catalysts: a review.,1986, 26: 1–26.

    [24] YU J C, ZHANG L Z, ZHENG Z,. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity.,2003, 15(11): 2280–2286.

    [25] K?R?SI L, OSZKó A, GALBáCS G,. Structural properties and photocatalytic behaviour of phosphate-modified nanocrystalline titania films.,2007, 77(1/2): 175–183.

    [26] K?R?SI L, PAPP S, BERTóTI I,. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2.,2007, 19(19): 4811–4819.

    [27] MASLOVA M V, RUSANOVA D, NAYDENOV V,. Synthesis, characterization, and sorption properties of amorphous titanium phosphate and silica-modified titanium phosphates.,2008, 47(23): 11351–11360.

    [28] ZHU Y L, ZHOU W, SUNARSO J,. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution.,2016, 26(32): 5862–5872.

    [29] HEO Y W, PARK S J, IP K,. Transport properties of phosphorus-doped ZnO thin films.,2003, 83(6): 1128–1130.

    [30] YIN G H, BI Q Y, ZHAO W,. Efficient conversion of CO2to methane photocatalyzed by conductive black titania.,2017, 9(23): 4389–4396.

    [31] PLUMEJEAU S, RIVALLIN M, BROSILLON S,. The reductive dehydration of cellulose by solid/gas reaction with TiCl4at low temperature: a cheap, simple, and green process for preparing anatase nanoplates and TiO2/C composites.,2016, 22(48): 17262–17268.

    [32] REN T Z, YUAN Z Y, AZIOUNE A,. Tailoring the porous hierarchy of titanium phosphates.,2006, 22(8): 3886–3894.

    [33] YOSHIDA H, YAZAWA Y, HATTORI T. Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion.,2003, 87(1-4): 19–28.

    [34] TIERNAN M J, FINLAYSON O E. Effects of ceria on the combustion activity and surface properties of Pt/Al2O3catalysts.,1998, 19(1): 23–25.

    [35] LYKHACH Y, FAISAL F, SKáLA T,. Interplay between the metal-support interaction and stability in Pt/Co3O4(111) model catalysts.,2018, 6: 23078–23086.

    [36] ZHANG C B, HE H, TANAKA KI. Catalytic performance and mechanism of a Pt/TiO2catalyst for the oxidation of formaldehyde at room temperature.,2006, 65: 37–43.

    [37] RAHMANI F, HAGHIGHI M, ESTIFAEE P. Synthesis and characterization of Pt/Al2O3-CeO2nanocatalyst used for toluene abatement from waste gas streams at low temperature: conventionalplasma-ultrasound hybrid synthesis methods.,2014, 185(1): 213–223.

    [38] CHEN C Y, CHEN F, ZHANG L,. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts.,2015, 51: 5936–5938.

    [39] LI S M, HAO Q L, ZHAO R Z,. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts.,2016, 285: 536–543.

    [40] CARABINEIRO S A C, CHEN X, MARTYNYUK O,. Gold supported on metal oxides for volatile organic compounds total oxidation.,2015, 244: 103–114.

    摻磷非晶氧化鈦負(fù)載鉑用于高效催化氧化揮發(fā)性有機(jī)化合物

    黃謝意1,2, 王鵬2,3, 尹國恒1, 張紹寧1, 趙偉1, 王東1, 畢慶員1, 黃富強(qiáng)1,3,4

    (1. 中國科學(xué)院 上海硅酸鹽研究所, 高性能陶瓷和超微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室, 上海 200050; 2. 中國科學(xué)院大學(xué), 北京 100049; 3. 上??萍即髮W(xué) 物理科學(xué)與技術(shù)學(xué)院, 上海 200050; 4. 北京大學(xué) 化學(xué)與分子工程學(xué)院, 稀土材料化學(xué)及應(yīng)用國家重點(diǎn)實(shí)驗(yàn)室, 北京 100871)

    高活性催化劑是揮發(fā)性有機(jī)化合物(VOCs)催化氧化消除的關(guān)鍵因素。本研究通過簡單的共沉淀法成功制備了具有高比表面積的非晶介孔磷摻雜氧化鈦負(fù)載鉑催化劑(Pt/ATO-P)。通過P摻雜, 既可獲得非晶介孔結(jié)構(gòu), 又可獲得高ATO-P比表面積(可達(dá)278.9 m2?g?1)。非晶介孔Pt/ATO-P催化劑顯示出優(yōu)異的VOCs催化氧化性能和良好的熱穩(wěn)定性。Pt/ATO-P樣品在空速為36000 mL?h?1?g?1、甲苯濃度為10000 mL?m?3的反應(yīng)條件下, 對甲苯催化氧化的50和90(實(shí)現(xiàn)50%和90%轉(zhuǎn)化率所需的溫度)分別為130 ℃和140 ℃, 明顯優(yōu)于無磷催化劑Pt/TiO2。這些發(fā)現(xiàn)可以為拓展非晶介孔磷化材料在環(huán)境凈化和能源轉(zhuǎn)化等領(lǐng)域的應(yīng)用提供重要參考。

    非晶介孔材料; 磷摻雜非晶氧化鈦; 鉑納米顆粒; 甲苯催化氧化; VOCs消除

    O782

    A

    2019-04-12;

    2019-05-24

    National Key Research and Development Program of China (2016YFB0901600); National Natural Science Foundation of China (21872166); Science & Technology Commission of Shanghai (16ZR1440400, 16JC1401700); The Key Research Program of Chinese Academy of Sciences (QYZDJ-SSW-JSC013 and KGZD-EW-T06)

    Huang Xieyi (1994–), male, Master candidate. E-mail: huangxieyi@student.sic.ac.cn

    黃謝意(1994–), 男, 碩士研究生. E-mail: huangxieyi@student.sic.ac.cn

    BI Qingyuan, associate professor. E-mail: biqingyuan@mail.sic.ac.cn;

    HUANG Fuqiang, professor. E-mail: huangfq@mail.sic.ac.cn

    畢慶元, 副研究員. E-mail: huangfq@mail.sic.ac.cn; 黃富強(qiáng), 研究員. E-mail: huangfq@mail.sic.ac.cn

    1000-324X(2020)04-0482-09

    10.15541/jim20190154

    猜你喜歡
    氧化鈦非晶介孔
    基于JAK/STAT信號通路研究納米氧化鈦致卵巢損傷的分子機(jī)制*
    保健文匯(2022年4期)2022-06-01 10:06:50
    功能介孔碳納米球的合成與應(yīng)用研究進(jìn)展
    氧化鈦對陶瓷結(jié)合劑金剛石磨具性能及結(jié)構(gòu)的影響
    新型介孔碳對DMF吸脫附性能的研究
    非晶Ni-P合金鍍層的制備及應(yīng)力腐蝕研究
    有序介孔材料HMS的合成改性及應(yīng)用新發(fā)展
    非晶硼磷玻璃包覆Li[Li0.2Co0.13Ni0.13Mn0.54]O2正極材料的研究
    介孔二氧化硅制備自修復(fù)的疏水棉織物
    塊體非晶合金及其應(yīng)用
    Fe73.5Cu1Nb3Si13.5B9非晶合金粉體的SPS燒結(jié)特性研究
    久久这里只有精品中国| 亚洲va在线va天堂va国产| 26uuu在线亚洲综合色| 国产免费视频播放在线视频 | 亚洲精品久久午夜乱码| 亚洲精华国产精华液的使用体验| 午夜爱爱视频在线播放| 看黄色毛片网站| 激情 狠狠 欧美| 亚洲精华国产精华液的使用体验| 美女高潮的动态| 国产av国产精品国产| 日韩欧美精品v在线| 国产一区二区三区综合在线观看 | 亚洲成人精品中文字幕电影| 久久99精品国语久久久| av在线老鸭窝| 狠狠精品人妻久久久久久综合| 日韩 亚洲 欧美在线| 日韩成人av中文字幕在线观看| 日韩制服骚丝袜av| 男人舔奶头视频| 久久鲁丝午夜福利片| 人妻系列 视频| 日韩一区二区视频免费看| 欧美日韩视频高清一区二区三区二| 亚洲欧洲国产日韩| 亚洲精品aⅴ在线观看| 美女被艹到高潮喷水动态| 国产精品久久久久久av不卡| 一级毛片黄色毛片免费观看视频| 国产高清有码在线观看视频| 精品久久久久久久久亚洲| 人妻制服诱惑在线中文字幕| 真实男女啪啪啪动态图| 天堂网av新在线| 最近2019中文字幕mv第一页| 在线免费十八禁| 国产精品熟女久久久久浪| 午夜免费激情av| 如何舔出高潮| 免费在线观看成人毛片| 99热这里只有是精品在线观看| 性插视频无遮挡在线免费观看| 丰满乱子伦码专区| 2022亚洲国产成人精品| 精品国内亚洲2022精品成人| 干丝袜人妻中文字幕| 国内精品宾馆在线| 久久午夜福利片| 两个人视频免费观看高清| 成人特级av手机在线观看| 亚洲乱码一区二区免费版| 免费大片黄手机在线观看| 日本三级黄在线观看| 韩国av在线不卡| 三级国产精品片| 午夜福利视频1000在线观看| 免费观看无遮挡的男女| 日韩制服骚丝袜av| 日韩伦理黄色片| 2022亚洲国产成人精品| 麻豆久久精品国产亚洲av| 三级经典国产精品| 国产精品麻豆人妻色哟哟久久 | 国产精品.久久久| 成年女人在线观看亚洲视频 | 九九爱精品视频在线观看| 久久国内精品自在自线图片| 女人十人毛片免费观看3o分钟| 国产综合精华液| 久久国产乱子免费精品| 国产有黄有色有爽视频| 精品亚洲乱码少妇综合久久| 国产视频内射| 欧美xxxx性猛交bbbb| 男女边吃奶边做爰视频| 精品久久久久久久久亚洲| 日韩欧美 国产精品| 一区二区三区高清视频在线| 国产亚洲精品av在线| 最近最新中文字幕大全电影3| 亚洲av日韩在线播放| 国产精品熟女久久久久浪| 22中文网久久字幕| 中文字幕av成人在线电影| 中文欧美无线码| 99视频精品全部免费 在线| 国产乱来视频区| 六月丁香七月| 91久久精品电影网| 夫妻性生交免费视频一级片| 女人久久www免费人成看片| 日韩成人伦理影院| 赤兔流量卡办理| 少妇丰满av| 国产午夜精品久久久久久一区二区三区| 神马国产精品三级电影在线观看| 亚洲av国产av综合av卡| 人妻夜夜爽99麻豆av| 少妇熟女aⅴ在线视频| 国产毛片a区久久久久| 亚洲第一区二区三区不卡| 亚洲国产日韩欧美精品在线观看| 乱码一卡2卡4卡精品| 麻豆精品久久久久久蜜桃| av卡一久久| 色综合亚洲欧美另类图片| 国产精品一区二区性色av| 亚洲精品aⅴ在线观看| 精品人妻偷拍中文字幕| 精品一区二区三区人妻视频| 久久久精品免费免费高清| 最近2019中文字幕mv第一页| 2021少妇久久久久久久久久久| 亚洲国产精品成人久久小说| 嫩草影院入口| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费高清在线观看视频在线观看| 亚洲av成人精品一区久久| 2018国产大陆天天弄谢| 日韩欧美 国产精品| 97在线视频观看| 欧美人与善性xxx| 99热这里只有是精品在线观看| 国产黄色小视频在线观看| 在线a可以看的网站| 亚洲人成网站在线播| 日韩成人av中文字幕在线观看| 亚洲欧洲国产日韩| 久久精品国产亚洲av涩爱| 51国产日韩欧美| 国产视频首页在线观看| 亚洲欧美精品自产自拍| 九九爱精品视频在线观看| 日韩av免费高清视频| 只有这里有精品99| 欧美不卡视频在线免费观看| 亚洲不卡免费看| 亚洲av成人av| 黄色一级大片看看| 18禁动态无遮挡网站| 嫩草影院入口| 国产白丝娇喘喷水9色精品| 视频中文字幕在线观看| 欧美日韩精品成人综合77777| 插逼视频在线观看| 亚洲人成网站高清观看| 最近手机中文字幕大全| 丝袜美腿在线中文| 有码 亚洲区| 国产不卡一卡二| 亚洲精品视频女| 大又大粗又爽又黄少妇毛片口| 中文乱码字字幕精品一区二区三区 | 久久久精品94久久精品| 高清日韩中文字幕在线| 高清视频免费观看一区二区 | 非洲黑人性xxxx精品又粗又长| 久99久视频精品免费| 亚洲国产色片| 我要看日韩黄色一级片| 五月伊人婷婷丁香| 国产成人一区二区在线| 成人综合一区亚洲| 又爽又黄a免费视频| 国产精品蜜桃在线观看| 国产精品日韩av在线免费观看| 亚洲第一区二区三区不卡| 亚洲经典国产精华液单| 日韩,欧美,国产一区二区三区| 精品久久久噜噜| 亚洲人成网站在线播| 国产91av在线免费观看| 国产精品久久久久久精品电影小说 | 一级毛片电影观看| 日本wwww免费看| 欧美区成人在线视频| 免费看光身美女| 久久久欧美国产精品| 日本熟妇午夜| 国产成人a区在线观看| 亚洲人成网站高清观看| 夜夜爽夜夜爽视频| 国产精品久久久久久久久免| 欧美xxxx黑人xx丫x性爽| 欧美性猛交╳xxx乱大交人| 777米奇影视久久| 男女啪啪激烈高潮av片| 人妻制服诱惑在线中文字幕| 日韩视频在线欧美| 国产精品伦人一区二区| 麻豆国产97在线/欧美| 成年人午夜在线观看视频 | 精品一区二区三区视频在线| 久久韩国三级中文字幕| 欧美激情在线99| 91在线精品国自产拍蜜月| 国产一区二区在线观看日韩| 亚洲真实伦在线观看| 久久99精品国语久久久| 亚洲精品,欧美精品| 亚洲欧美日韩无卡精品| 亚洲精品视频女| 亚洲激情五月婷婷啪啪| 久久精品熟女亚洲av麻豆精品 | 国产一区二区三区综合在线观看 | 久久久久网色| 狂野欧美白嫩少妇大欣赏| 色综合站精品国产| 精品国产三级普通话版| 激情五月婷婷亚洲| 久久精品久久精品一区二区三区| 最近手机中文字幕大全| 18禁在线无遮挡免费观看视频| 国产男人的电影天堂91| 国产欧美另类精品又又久久亚洲欧美| av免费在线看不卡| 亚洲精品色激情综合| 一边亲一边摸免费视频| 国产视频首页在线观看| 成人特级av手机在线观看| 国产亚洲最大av| 日本猛色少妇xxxxx猛交久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美日韩一区二区视频在线观看视频在线 | 禁无遮挡网站| 毛片一级片免费看久久久久| 日韩伦理黄色片| 亚洲最大成人av| 精品一区在线观看国产| 日韩av免费高清视频| 99热网站在线观看| 97超视频在线观看视频| 精品久久久久久电影网| 3wmmmm亚洲av在线观看| 午夜日本视频在线| 男人舔奶头视频| 亚洲经典国产精华液单| 99re6热这里在线精品视频| 亚洲无线观看免费| 男女那种视频在线观看| 建设人人有责人人尽责人人享有的 | 综合色av麻豆| 舔av片在线| 国产精品一区二区三区四区免费观看| 亚洲一区高清亚洲精品| 欧美另类一区| 国产永久视频网站| eeuss影院久久| 国产有黄有色有爽视频| 国产91av在线免费观看| 男人狂女人下面高潮的视频| 18禁动态无遮挡网站| 国产黄a三级三级三级人| 一区二区三区高清视频在线| 亚洲性久久影院| av天堂中文字幕网| 欧美人与善性xxx| 国产黄片美女视频| 午夜视频国产福利| 国产成人a∨麻豆精品| 只有这里有精品99| 国产黄频视频在线观看| 国产精品一区二区在线观看99 | 老司机影院成人| 少妇的逼好多水| 日韩av不卡免费在线播放| 少妇丰满av| 亚洲国产精品专区欧美| 床上黄色一级片| 菩萨蛮人人尽说江南好唐韦庄| 99久久中文字幕三级久久日本| 国产黄色小视频在线观看| 麻豆精品久久久久久蜜桃| 特大巨黑吊av在线直播| 国产v大片淫在线免费观看| 精品久久久久久久久久久久久| 免费黄网站久久成人精品| 三级毛片av免费| 久久99热6这里只有精品| 国产在线一区二区三区精| 精品少妇黑人巨大在线播放| 久久久久免费精品人妻一区二区| 伊人久久国产一区二区| 成人av在线播放网站| 成人av在线播放网站| 精品人妻熟女av久视频| 国产精品美女特级片免费视频播放器| 成年av动漫网址| 欧美日韩亚洲高清精品| 毛片一级片免费看久久久久| 国模一区二区三区四区视频| 亚洲国产成人一精品久久久| 免费看av在线观看网站| 午夜免费激情av| 黄片wwwwww| 久久久欧美国产精品| 岛国毛片在线播放| 在线a可以看的网站| 两个人的视频大全免费| 亚洲精品日韩在线中文字幕| 国产精品人妻久久久影院| 青春草亚洲视频在线观看| 春色校园在线视频观看| 99久久精品国产国产毛片| 亚洲婷婷狠狠爱综合网| 午夜爱爱视频在线播放| 麻豆乱淫一区二区| 亚洲国产成人一精品久久久| av黄色大香蕉| 免费av观看视频| 网址你懂的国产日韩在线| 中文在线观看免费www的网站| 国产精品人妻久久久久久| 午夜视频国产福利| kizo精华| 欧美区成人在线视频| av在线观看视频网站免费| 黄色配什么色好看| 大又大粗又爽又黄少妇毛片口| 日本一本二区三区精品| 一级av片app| 午夜久久久久精精品| 97超碰精品成人国产| 人妻一区二区av| 成年版毛片免费区| 中国美白少妇内射xxxbb| 如何舔出高潮| 亚洲精品一区蜜桃| 啦啦啦韩国在线观看视频| 亚洲在久久综合| 成人高潮视频无遮挡免费网站| 亚洲无线观看免费| 亚洲经典国产精华液单| 日日啪夜夜撸| 国内揄拍国产精品人妻在线| 欧美不卡视频在线免费观看| av在线蜜桃| 日韩中字成人| 精品午夜福利在线看| 99九九线精品视频在线观看视频| 亚洲美女视频黄频| 国产亚洲5aaaaa淫片| 亚洲精品,欧美精品| 日韩大片免费观看网站| 99九九线精品视频在线观看视频| 亚洲高清免费不卡视频| 久久99热这里只有精品18| 2022亚洲国产成人精品| 精品一区二区免费观看| 激情 狠狠 欧美| 成人无遮挡网站| 日韩一区二区三区影片| 国产麻豆成人av免费视频| 欧美极品一区二区三区四区| 日韩成人伦理影院| 精品国产露脸久久av麻豆 | 两个人视频免费观看高清| 精品一区二区三区视频在线| 亚洲精品国产av蜜桃| 天堂av国产一区二区熟女人妻| 国产成人精品福利久久| 国产精品久久久久久精品电影| 女人十人毛片免费观看3o分钟| 五月天丁香电影| 中文字幕人妻熟人妻熟丝袜美| 99久久精品一区二区三区| 久久精品国产亚洲av天美| 久久精品久久久久久久性| 免费黄频网站在线观看国产| 九草在线视频观看| 国内少妇人妻偷人精品xxx网站| 一边亲一边摸免费视频| 好男人在线观看高清免费视频| 午夜福利在线观看吧| 99热这里只有精品一区| 精品人妻熟女av久视频| 国产黄片视频在线免费观看| 男插女下体视频免费在线播放| 亚洲欧美日韩卡通动漫| 久99久视频精品免费| 青春草视频在线免费观看| 日本免费在线观看一区| 国产真实伦视频高清在线观看| or卡值多少钱| videossex国产| 精品久久久久久成人av| 青春草视频在线免费观看| 中文资源天堂在线| 国产爱豆传媒在线观看| 七月丁香在线播放| 卡戴珊不雅视频在线播放| 少妇人妻精品综合一区二区| 国产在视频线在精品| 波野结衣二区三区在线| 日日撸夜夜添| 亚洲aⅴ乱码一区二区在线播放| 亚洲人与动物交配视频| 精品国内亚洲2022精品成人| 大陆偷拍与自拍| 男人舔女人下体高潮全视频| 国产精品一区www在线观看| 亚洲国产最新在线播放| 亚洲国产精品国产精品| 不卡视频在线观看欧美| 国产爱豆传媒在线观看| 日日撸夜夜添| 日韩中字成人| 亚洲国产精品sss在线观看| 亚洲乱码一区二区免费版| 日韩精品青青久久久久久| 亚洲av中文av极速乱| 国产欧美另类精品又又久久亚洲欧美| 亚洲一级一片aⅴ在线观看| 欧美成人a在线观看| 极品教师在线视频| 大香蕉久久网| 日日撸夜夜添| 麻豆av噜噜一区二区三区| 人人妻人人看人人澡| 国产永久视频网站| 国产欧美另类精品又又久久亚洲欧美| 一个人免费在线观看电影| 亚洲精品中文字幕在线视频 | 99热这里只有精品一区| 成人鲁丝片一二三区免费| 91久久精品国产一区二区三区| 2021少妇久久久久久久久久久| 如何舔出高潮| 99久国产av精品国产电影| 欧美日韩国产mv在线观看视频 | 久久久久久久国产电影| 一级毛片aaaaaa免费看小| 亚洲第一区二区三区不卡| 人妻夜夜爽99麻豆av| 97在线视频观看| 亚洲国产精品成人久久小说| 一边亲一边摸免费视频| 日本猛色少妇xxxxx猛交久久| 好男人视频免费观看在线| 国产亚洲av嫩草精品影院| 日本色播在线视频| 三级经典国产精品| 国产熟女欧美一区二区| 国产免费一级a男人的天堂| 身体一侧抽搐| 1000部很黄的大片| 久久久久久久久久黄片| 亚洲内射少妇av| 一级毛片久久久久久久久女| 插逼视频在线观看| 26uuu在线亚洲综合色| 国产色婷婷99| av在线亚洲专区| 男人舔女人下体高潮全视频| 91久久精品国产一区二区成人| av女优亚洲男人天堂| 国产一区有黄有色的免费视频 | 国产精品国产三级国产av玫瑰| 欧美xxxx黑人xx丫x性爽| 色尼玛亚洲综合影院| 亚洲精品第二区| 国产中年淑女户外野战色| 联通29元200g的流量卡| ponron亚洲| 亚洲国产精品成人久久小说| 国产日韩欧美在线精品| 少妇人妻精品综合一区二区| 亚洲最大成人手机在线| 精品少妇黑人巨大在线播放| 国产人妻一区二区三区在| 久久综合国产亚洲精品| 中文资源天堂在线| 午夜免费观看性视频| 99久久人妻综合| 观看免费一级毛片| 建设人人有责人人尽责人人享有的 | 国产成人一区二区在线| 插逼视频在线观看| av免费在线看不卡| 免费播放大片免费观看视频在线观看| 美女主播在线视频| 日本爱情动作片www.在线观看| 色播亚洲综合网| 九九爱精品视频在线观看| 国产色爽女视频免费观看| 夫妻性生交免费视频一级片| 国产亚洲午夜精品一区二区久久 | 免费不卡的大黄色大毛片视频在线观看 | 国产精品熟女久久久久浪| 亚洲人成网站高清观看| 国产久久久一区二区三区| 99久久九九国产精品国产免费| freevideosex欧美| 日韩大片免费观看网站| 少妇人妻精品综合一区二区| 国产亚洲精品av在线| 亚洲av日韩在线播放| 一二三四中文在线观看免费高清| 观看免费一级毛片| 亚洲成人精品中文字幕电影| 国产精品久久久久久av不卡| 又爽又黄a免费视频| 国产av码专区亚洲av| 国产精品人妻久久久影院| 秋霞在线观看毛片| 久久草成人影院| 精品国产露脸久久av麻豆 | 亚洲色图av天堂| 亚洲伊人久久精品综合| 天天躁日日操中文字幕| av女优亚洲男人天堂| 亚洲精品影视一区二区三区av| 亚洲人成网站在线播| 伦理电影大哥的女人| 免费电影在线观看免费观看| 毛片女人毛片| av女优亚洲男人天堂| 简卡轻食公司| 老女人水多毛片| 亚洲精品,欧美精品| 欧美性猛交╳xxx乱大交人| 精品一区在线观看国产| 国产片特级美女逼逼视频| 韩国av在线不卡| 久久久久久久大尺度免费视频| 99久久九九国产精品国产免费| 亚洲av男天堂| 国产一区二区在线观看日韩| 亚洲一区高清亚洲精品| 人体艺术视频欧美日本| 精品午夜福利在线看| 一级av片app| 免费观看的影片在线观看| 丝袜喷水一区| 欧美3d第一页| 国产伦精品一区二区三区四那| 中国美白少妇内射xxxbb| 2022亚洲国产成人精品| 精华霜和精华液先用哪个| 搡女人真爽免费视频火全软件| 午夜亚洲福利在线播放| 午夜精品国产一区二区电影 | 成人一区二区视频在线观看| 亚洲自拍偷在线| 久久6这里有精品| 干丝袜人妻中文字幕| 亚洲欧美中文字幕日韩二区| 成人美女网站在线观看视频| ponron亚洲| 青春草亚洲视频在线观看| 我的老师免费观看完整版| 亚洲成人精品中文字幕电影| 青春草亚洲视频在线观看| 国产永久视频网站| 少妇高潮的动态图| 国产亚洲5aaaaa淫片| 综合色av麻豆| 久热久热在线精品观看| 欧美+日韩+精品| 国产极品天堂在线| 午夜激情久久久久久久| 乱人视频在线观看| 日韩一区二区三区影片| 久久鲁丝午夜福利片| 亚州av有码| 少妇的逼好多水| 麻豆av噜噜一区二区三区| 看免费成人av毛片| 97在线视频观看| 成人一区二区视频在线观看| 日韩精品有码人妻一区| 亚洲精品影视一区二区三区av| 国产免费又黄又爽又色| 97人妻精品一区二区三区麻豆| 精品久久久久久久久av| 国产v大片淫在线免费观看| 国产精品一区二区性色av| 国产一区亚洲一区在线观看| 国产69精品久久久久777片| 久久久久国产网址| 亚洲美女视频黄频| 久久人人爽人人片av| 精品酒店卫生间| 美女黄网站色视频| 国产视频内射| 免费大片黄手机在线观看| 五月玫瑰六月丁香| av国产久精品久网站免费入址| 小蜜桃在线观看免费完整版高清| 色综合色国产| 久久精品综合一区二区三区| 欧美成人午夜免费资源| 亚洲精品自拍成人| 亚洲熟妇中文字幕五十中出| 国产在视频线精品| 亚洲欧美成人精品一区二区| 久久久亚洲精品成人影院| 最近中文字幕高清免费大全6| 亚洲不卡免费看| 欧美高清成人免费视频www| 日韩精品有码人妻一区| 噜噜噜噜噜久久久久久91| 日本一本二区三区精品| 国产爱豆传媒在线观看| 久久久成人免费电影| 高清日韩中文字幕在线| 在线免费观看不下载黄p国产| av专区在线播放| 免费观看a级毛片全部| 在线免费观看的www视频| 欧美xxxx性猛交bbbb| 伦理电影大哥的女人| 日韩三级伦理在线观看|