樓蕓 周永明 朱文偉
摘要:骨髓增生異常綜合征是一種具有高度異質(zhì)性的源于骨髓造血干細(xì)胞的克隆性疾病,免疫失衡和骨髓微環(huán)境異常在其發(fā)病機(jī)制中具有重要地位。骨髓間充質(zhì)干細(xì)胞是骨髓微環(huán)境中重要的細(xì)胞成分,具有支持和調(diào)節(jié)造血干細(xì)胞的增殖和分化以及免疫調(diào)節(jié)的作用。骨髓間充質(zhì)干細(xì)胞異常在骨髓增生異常綜合征發(fā)病中表現(xiàn)為造血支持缺陷和免疫抑制,本文現(xiàn)就此機(jī)制進(jìn)行綜述。關(guān)鍵詞:骨髓增生異常綜合征;間充質(zhì)干細(xì)胞;骨髓微環(huán)境;造血支持缺陷;免疫抑制
中圖分類號(hào):R551 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?DOI:10.3969/j.issn.1006-1959.2020.06.008
文章編號(hào):1006-1959(2020)06-0024-04
Abstract:Myelodysplastic syndrome is a highly heterogeneous clonal disease derived from bone marrow hematopoietic stem cells. Immunological imbalance and abnormal bone marrow microenvironment play an important role in its pathogenesis. Bone marrow mesenchymal stem cells are important cellular components in the bone marrow microenvironment, and have the role of supporting and regulating the proliferation and differentiation of hematopoietic stem cells and immune regulation. The abnormality of bone marrow mesenchymal stem cells in the pathogenesis of myelodysplastic syndrome manifests as defects in hematopoietic support and immunosuppression. This article reviews the mechanism.
Key words:Myelodysplastic syndrome;Mesenchymal stem cells;Bone marrow microenvironment;Hematopoietic support defects;Immunosuppression
骨髓增生異常綜合征(myelodysplastic syndrome,MDS)是起源于造血干細(xì)胞的一組高度異質(zhì)性克隆性疾病,以一系或多系血細(xì)胞病態(tài)造血及無(wú)效造血,高風(fēng)險(xiǎn)向急性白血病轉(zhuǎn)化為特征。目前對(duì)其發(fā)病機(jī)制的研究涉及染色體基因突變、表觀遺傳學(xué)改變、免疫失衡、骨髓微環(huán)境異常等方面。骨髓微環(huán)境被稱為造血干細(xì)胞(hematopoietic stem cells,HSCs)的“土壤”,以三維網(wǎng)狀空間結(jié)構(gòu)為HSCs提供生存的細(xì)胞和分子微環(huán)境,主要由間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)、細(xì)胞外基質(zhì)和各種細(xì)胞因子組成,各成分互相作用以維持和調(diào)節(jié)HSCs的正常造血[1,2]。研究顯示[2],MDS的無(wú)效造血可能與骨髓微環(huán)境異常有關(guān)。間充質(zhì)干細(xì)胞是骨髓微環(huán)境中的重要成分,其異常在MDS的發(fā)病和進(jìn)展中有著重要的作用,本文就近幾年骨髓微環(huán)境中的間充質(zhì)干細(xì)胞異常在MDS發(fā)病機(jī)制中的研究進(jìn)展進(jìn)行綜述。
1間充質(zhì)干細(xì)胞
間充質(zhì)干細(xì)胞來(lái)源于胚胎發(fā)育早期的中胚層,是一類具有自我更新和多向分化潛能的成體干細(xì)胞。1968年Friedenstein AJ等[3]從自然貼壁法中獲得了骨髓基質(zhì)細(xì)胞(bone marrow stromal cells,BMSCs),至90年代末,研究者從中成功分離出一種具有成骨、成軟骨和成脂肪能力的細(xì)胞,命名為間充質(zhì)干細(xì)胞。其后,諸如脂肪、臍帶、胎盤、肌肉等其他組織中也被分離出間充質(zhì)干細(xì)胞,不同來(lái)源的MSCs在蛋白質(zhì)表達(dá)譜系及特性上有所差異,骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BM-MSCs),簡(jiǎn)稱MSCs。研究顯示,體內(nèi)固有的MSCs經(jīng)體外培養(yǎng)后,其生物學(xué)特性發(fā)生了根本的變化,又由于其來(lái)源于骨髓的支持結(jié)構(gòu),滋養(yǎng)HSCs的生長(zhǎng),因此又稱為間充質(zhì)基質(zhì)細(xì)胞(mesenchymal stromal cells,MSCs)。
MSCs有很強(qiáng)的增殖分化潛能,可被誘導(dǎo)分化為中胚層的成骨樣細(xì)胞、軟骨樣細(xì)胞,外胚層的神經(jīng)元樣細(xì)胞、胰島素分泌細(xì)胞、心肌樣細(xì)胞和外胚層的肝細(xì)胞樣細(xì)胞[4,5],具有組織修復(fù)功能的可能性。免疫耐受性是MSCs的另一大特性。研究表明[6,7],MSCs可以抑制T細(xì)胞的增殖從而導(dǎo)致免疫耐受,并且MSCs的分化并未導(dǎo)致其抗原性的增加[8]。另有研究顯示[9],MSCs可能通過(guò)抗原呈遞以及促細(xì)胞因子的分泌抑制T細(xì)胞從而產(chǎn)生免疫豁免。此外,還有MSCs通過(guò)轉(zhuǎn)分化[10]和細(xì)胞融合[11]、旁分泌作用[12]、細(xì)胞與細(xì)胞接觸依賴[7]、胞外囊泡[13]和線粒體轉(zhuǎn)移[14]以及表觀遺傳學(xué)調(diào)控[15]等機(jī)制產(chǎn)生大量生物活性物質(zhì),具有造血支持、提供營(yíng)養(yǎng)、激活內(nèi)源性干/祖細(xì)胞、組織損傷修復(fù)、免疫調(diào)節(jié)、促進(jìn)血管新生、抗細(xì)胞凋亡、抗氧化、抗纖維化以及歸巢等多方面的作用的研究報(bào)道。目前,MSCs已成為細(xì)胞治療領(lǐng)域最具臨床應(yīng)用價(jià)值的干細(xì)胞。
2間充質(zhì)干細(xì)胞異常與MDS
2.1造血支持缺陷MDS ?造血支持缺陷MDS是以病態(tài)造血和無(wú)效造血為特征表現(xiàn),異??寺〖?xì)胞在骨髓中分化、成熟障礙,出現(xiàn)病態(tài)造血,在骨髓原位或釋放入血后不久被破壞,導(dǎo)致無(wú)效造血。已有研究證實(shí)來(lái)源于MDS的MSCs(MSCs derived from MDS,MDS-MSCs)在支持造血方面存在缺陷[16]。
2.1.1 MDS-MSCs生長(zhǎng)、增殖能力降低 ?Geyh S等[17]的研究顯示,MDS所有亞型的MSCs在結(jié)構(gòu)、功能以及表觀遺傳學(xué)方面都存在改變,表現(xiàn)為生長(zhǎng)和增殖能力顯著降低,同時(shí)伴隨細(xì)胞克隆能力受損的提早衰老。MDS-MSCs特定的甲基化模式減低了其成骨分化能力,MDS-MSCs中的長(zhǎng)期培養(yǎng)起始細(xì)胞(long-termculture-initiatingcell,LTC-IC)支持CD34+造血干/祖細(xì)胞(haemopoietic stem progenitor cell,HSPC)的能力顯著降低,而LTC-IC則與細(xì)胞周期活性降低密切相關(guān),二者共同作用導(dǎo)致HSPC的基質(zhì)支持受損,從而影響其造血功能。而Zhao ZG等[18]的研究排除了巨噬細(xì)胞的干擾,在單細(xì)胞水平對(duì)MDS患者骨髓的MSCs(MDS-MSCs)進(jìn)行分離和體外擴(kuò)增,結(jié)果顯示具有正常功能的LTC-IC在擴(kuò)增的克隆MDS-MSC中的生長(zhǎng)顯著低于正常對(duì)照組。此外,與正常MSCs相比,SCF、G-CSF和GM-CSF等造血因子在MDS-MSCs的表達(dá)降低,且有研究證實(shí)MSCs能夠通過(guò)分泌上述細(xì)胞因子來(lái)支持長(zhǎng)期培養(yǎng)的骨髓基質(zhì)細(xì)胞(long-term bone marrow cultured stromal cells,LTBMC)中的造血作用[19]。
2.1.2 MDS-MSCs成骨分化能力減弱 ?費(fèi)成明等[20]研究了MSCs異常導(dǎo)致造血缺陷的機(jī)制,發(fā)現(xiàn)低危組MDS患者骨髓MSCs成骨分化能力明顯減弱,高危組則相對(duì)正常,進(jìn)而推測(cè)MSCs成骨分化能力的減弱使得成骨細(xì)胞數(shù)量的減少,造成作為造血龕的重要組成部分的成骨細(xì)胞龕結(jié)構(gòu)異常,最終導(dǎo)致造血支持能力減弱。Falconi G等[21]研究顯示,經(jīng)典的Wnt/β-連環(huán)蛋白信號(hào)通路可促進(jìn)MSCs的增殖并抑制其成骨分化,并且在分化的成骨細(xì)胞中則需要β-連環(huán)蛋白的持續(xù)穩(wěn)定表達(dá)來(lái)誘導(dǎo)骨保護(hù)素的表達(dá)并抑制破骨細(xì)胞分化。另有較多研究表明,MSCs通過(guò)CXCR4/CXCL12信號(hào)傳導(dǎo)[22,23]以及各種分泌因子如SCF、TPO、IGF1等在HSC龕中維持造血功能[17,23-27]。
2.1.3 MDS-MSCs對(duì)治療反應(yīng)的影響 ?Poon Z等[28]對(duì)MDS-MSCs造成的造血異常在治療反應(yīng)中的研究發(fā)現(xiàn),在接觸MDS-MSCs后損害了健康的CD34+HSPCs的造血功能,表明MDS基質(zhì)所產(chǎn)生的造血功能異??梢员徽T導(dǎo)并且在HSPCs中自主持續(xù)相當(dāng)長(zhǎng)一段時(shí)間,導(dǎo)致接受正常造血干細(xì)胞移植治療的失敗。而低甲基化療法可逆轉(zhuǎn)MDS-MSCs成骨分化、增殖、基因表達(dá)等特性的異常,并且對(duì)經(jīng)移植的正常造血干細(xì)胞的支持能力有明顯提升。
2.1.4 MDS-MSCs與AML-MSCs的差異 ?急性髓系白血?。╝cute myeloid leukemia,AML)的MSC(AML-MSCs)同樣以無(wú)效造血為主要特征,但與MDS-MSCs有所不同。Corradi G等[29]的研究顯示,MDS-MSCs和AML-MSCs在表型、分化能力、白血病特異性遺傳異常的缺乏、維持AML細(xì)胞活力的能力等方面并無(wú)顯著差異,但相比MDS-MSCs和健康供者的MSC(healthy donor-derived MSCs,HD-MSCs),AML-MSCs難以從患者體內(nèi)分離,可能與其體內(nèi)存在少量前體有關(guān),而MDS-MSCs則顯示出更低的增殖潛力。關(guān)于PI3K/AKT信號(hào)通路的研究亦證明了上述觀點(diǎn),該通路中GSK3b、SOS1、RASA1和MTCP1基因在MDS-MSCs中顯著下調(diào),而在AML中并無(wú)明顯異常[21],可能與微環(huán)境紊亂在MDS和AML的發(fā)病機(jī)制中的權(quán)重不同有關(guān)。白血病造血細(xì)胞的遺傳和表觀遺傳學(xué)異常足以導(dǎo)致AML的發(fā)生,而骨髓增生異常的造血功能異常則更多地取決于異常的骨髓基質(zhì)。
2.2免疫抑制 ?MDS是一種骨髓衰竭性疾病,其發(fā)病與免疫應(yīng)答的失調(diào)密切相關(guān)[30,31]。
2.2.1 MDS-MSCs抑制T細(xì)胞增殖 ?Epperson DE等[32]的研究顯示,T細(xì)胞介導(dǎo)的免疫過(guò)程是MDS的特征之一,MDS患者TCR Vβ和Jβ使用模式代表了導(dǎo)致全血細(xì)胞減少的MDS骨髓中對(duì)特定抗原的T細(xì)胞反應(yīng)。在MDS-MSCs相關(guān)的免疫異常中,以其對(duì)T細(xì)胞增殖的抑制最為關(guān)鍵。Zhao ZG等[33]的研究表明,MDS-MSCs以可溶性因子為介質(zhì)抑制有絲分裂原或混合淋巴細(xì)胞反應(yīng)(mixed lymphocyte reaction,MLR)刺激T細(xì)胞增殖,然而這種抑制作用較健康成人及其他血液系統(tǒng)惡性疾病表現(xiàn)明顯減弱,可能與轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor-β,TGF-β)的表達(dá)異?;騎細(xì)胞凋亡減少有關(guān)。
2.2.2 MDS-MSCs ?有研究以TGF-β1為介質(zhì)抑制免疫應(yīng)答,結(jié)果顯示MSCs通過(guò)分泌TGF-β1和干細(xì)胞生長(zhǎng)因子(hepatocyte growth factor,HGF)來(lái)抑制T細(xì)胞的增殖,且抑制作用與TGF-β1和HGF的表達(dá)呈正相關(guān)[34]。Wang Z等[35]發(fā)現(xiàn)MDS-MSCs以TGF-β1為介質(zhì)抑制DCs的內(nèi)吞作用、IL-12的分泌和T細(xì)胞的增殖,并且低風(fēng)險(xiǎn)MDS-MSCs對(duì)DCs功能的抑制作用弱于高風(fēng)險(xiǎn)MDS-MSCs,表明免疫應(yīng)答的失調(diào)在MDS發(fā)病過(guò)程中具有顯著作用,進(jìn)而研究者認(rèn)為MSCs通過(guò)抑制樹(shù)突狀細(xì)胞(dendritic cells,DCs)的分化和成熟的方式在免疫應(yīng)答的初始環(huán)節(jié)調(diào)節(jié)免疫系統(tǒng)。
3總結(jié)
骨髓增生異常綜合征的發(fā)病機(jī)制目前尚不明確,但研究顯示其與造血微環(huán)境和免疫系統(tǒng)的異常密切相關(guān)。骨髓間充質(zhì)干細(xì)胞是骨髓微環(huán)境中重要的細(xì)胞成分,在支持和調(diào)節(jié)造血干細(xì)胞的增殖和分化以及免疫調(diào)節(jié)中起到重要作用。MSCs的異常在MDS的發(fā)病機(jī)制中主要表現(xiàn)為造血支持的缺陷和免疫調(diào)節(jié)的抑制,涉及不同信號(hào)通路的多種基因的表達(dá)。對(duì)于MDS-MSCs的研究不僅可以闡明MDS的部分發(fā)病機(jī)制,對(duì)疾病的進(jìn)展、治療方法和療效評(píng)估亦有重大的意義,有待于進(jìn)一步的深入探索。
參考文獻(xiàn):
[1]Birbrair A,F(xiàn)renette PS.Niche heterogeneity in the bone marrow[J].Annals of the New York Academy of Sciences,2016,1370(1):82-96.
[2]Bulycheva E,Rauner M,Medyouf H,et al.Myelodysplasia is in the niche: novel concepts and emerging therapies[J].Leukemia,2015,29(2):259-268.
[3]Friedenstein AJ,Gorskaja JF,Kulagina NN.Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J].Experimental Hematology,1976,4(5):267-274.
[4]Kobolak J,Dinnyes A,Memic A,et al.Mesenchymal stem cells:Identification,phenotypic characterization,biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche[J].Methods,2016(99):62-68.
[5]Bianco P."Mesenchymal"stem cells[J].Annu Rev Cell Dev Biol,2014(30):677-704.
[6]Davies LC,Heldring N,Kadri N,et al.Mesenchymal Stromal Cell Secretion of Programmed Death-1 Ligands Regulates T Cell Mediated Immunosuppression[J].Stem Cells,2017,35(3):766-776.
[7]Di Trapani M,Bassi G,Midolo M,et al.Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T,B and NK cell functions[J].Sci Rep,2016,6(24):120.
[8]Lee HJ,Kang KS,Kang SY,et al.Immunologic properties of differentiated and undifferentiated mesenchymal stem cells derived from umbilical cord blood[J].Journal of Veterinary Science,2016,17(3):289-297.
[9]Zhao N,Li H,Yan Y,et al.Mesenchymal stem cells overexpressing IL-35 effectively inhibit CD4(+)T cell function[J].Cell Immunol,2017(312):61-66.
[10]Pesaresi M,Sebastian-Perez R,Cosma MP.Dedifferentiation,transdifferentiation and cell fusion:in vivo reprogramming strategies for regenerative medicine[J].FEBS J,2019,286(6):1074-1093.
[11]Aguilera-Castrejon A,Pasantes-Morales H,Montesinos JJ,et al.Improved Proliferative Capacity of NP-Like Cells Derived from Human Mesenchymal Stromal Cells and Neuronal Transdifferentiation by Small Molecules[J].Neurochem Res,2017,42(2):415-427.
[12]Santos ND,Mosqueira D,Sousa LM,et al.Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic,and endogenous cell-activation mechanisms[J].Stem Cell Res Ther,2014,5(1):5.
[13]Zheng G,Huang R,Qiu G,et al.Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis[J].Cell Tissue Res,2018,374(1):1-15.
[14]Paliwal S,Chaudhuri R,Agrawal A,et al.Regenerative abilities of mesenchymal stem cells through mitochondrial transfer[J].J Biomed Sci,2018,25(1):31.
[15]Mortada I,Mortada R.Epigenetic changes in mesenchymal stem cells differentiation[J].Eur J Med Genet,2018,61(2):114-118.
[16]Dazzi F,Ramasamy R,Glennie S,et al.The role of mesenchymal stem cells in haemopoiesis[J].Blood Rev,2006,20(3):161-171.
[17]Geyh S,Oz S,Cadeddu RP,et al.Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells[J].Leukemia,2013,27(9):1841.
[18]Zhao ZG,Xu W,Yu HP,et al.Functional characteristics of mesenchymal stem cells derived from bone marrow of patients with myelodysplastic syndromes[J].Cancer Letters,2012,317(2):136-143.
[19]Viswanathan C,Kulkarni R,Bopardikar A,et al.Significance of CD34 Negative Hematopoietic Stem Cells and CD34 Positive Mesenchymal Stem Cells-A Valuable Dimension to the Current Understanding[J].Curr Stem Cell Res Ther,2017,12(6):476-483.
[20]費(fèi)成明,顧樹(shù)程,趙佑山,等.骨髓增生異常綜合征患者骨髓間充質(zhì)干細(xì)胞成骨分化功能的研究[J].中國(guó)實(shí)驗(yàn)血液學(xué)雜志,2015,23(3):750-755.
[21]Falconi G,F(xiàn)abiani E,F(xiàn)ianchi L,et al.Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes[J].Experimental Hematology,2016,44(1):75-83,e4.
[22]Sackstein R.The biology of CD44 and HCELL in hematopoiesis:the"step 2-bypass pathway"and other emerging perspectives[J].Current Opinion in Hematology,2011,18(4):239.
[23]Greenbaum A,Hsu YMS,Day RB,et al.CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance[J].Nature,2013,495(7440):227.
[24]Sugino N,Miura Y,Yao H,et al.Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis-and adhesion-related gene expression profiles[J].Biochem Biophys Res Commun,2016,469(4):823-829.
[25]Fajardo-Orduna GR,Mayani H,Montesinos JJ.Hematopoietic Support Capacity of Mesenchymal Stem Cells:Biology and Clinical Potential[J].Arch Med Res,2015,46(8):589-596.
[26]Ajami M,Soleimani M,Abroun S,et al.Comparison of cord blood CD34+stem cell expansion in coculture with mesenchymal stem cells overexpressing SDF-1 and soluble/membrane isoforms of SCF[J].J Cell Biochem,2019,120(9):15297-15309.
[27]Caselli A,Olson TS,Otsuru S,et al.IGF-1-mediated osteoblastic niche expansion enhances long‐term hematopoietic stem cell engraftment after murine bone marrow transplantation[J].Stem Cells,2013,31(10):2193-2204.
[28]Poon Z,Dighe N,Venkatesan SS,et al.Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy[J].Leukemia,2019,33(6):1487-1500.
[29]Corradi G,Baldazzi C,Ocadlíková D,et al.Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival[J].Stem cell research&therapy,2018,9(1):271.
[30]Wang C,Yang Y,Gao S,et al.Immune dysregulation in myelodysplastic syndrome:Clinical features,pathogenesis and therapeutic strategies[J].Critical Reviews in Oncology/Hematology,2018(122):123-132.
[31]Ganán-Gómez I,Wei Y,Starczynowski DT,et al.Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes[J].Leukemia,2015,29(7):1458-1469.
[32]Epperson DE,Nakamura R,Saunthararajah Y,et al.Oligoclonal T cell expansion in myelodysplastic syndrome:evidence for an autoimmune process[J].Leukemia Research,2001,25(12):1075-1083.
[33]Zhao ZG,Li WM,Chen ZC,et al.Immunosuppressive properties of mesenchymal stem cells derived from bone marrow of patient with hematological malignant diseases[J]. Leukemia&Lymphoma,2008,49(11):2187-2195.
[34]Di Nicola M,Carlo-Stella C,Magni M,et al.Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J].Blood, 2002,99(10):3838-3843.
[35]Wang Z,Tang X,Xu W,et al.The different immunoregulatory functions on dendritic cells between mesenchymal stem cells derived from bone marrow of patients with low-risk or high-risk myelodysplastic syndromes[J].PloS One,2013,8(3):e57470.
收稿日期:2020-01-01;修回日期:2020-01-22
編輯/肖婷婷