• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of Apple Marssonina Blotch with PLSR, PCA, andLDA Using Outdoor Hyperspectral Imaging

    2020-05-07 09:10:26SooHyunParkYoungkiHongMubarakatShuaibuSangcheolKimWonSukLee
    光譜學(xué)與光譜分析 2020年4期

    Soo Hyun Park, Youngki Hong, Mubarakat Shuaibu, Sangcheol Kim, Won Suk Lee*

    1. Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States 2. Department of Agricultural Engineering, National Academy of Agricultural Science, RDA, Jeonju 55365, South Korea 3. Smart Farm Research Center, Korea Institute of Science and Technology (KIST) Gangneung-si, Gangwon-do 25451, South Korea

    Abstract In this study, hyperspectral images were used to detect a fungal disease in apple leaves called Marssonina blotch (AMB). Estimation models were built to classify healthy, asymptomatic and symptomatic classes using partial least squares regression (PLSR), principal component analysis (PCA), and linear discriminant analysis (LDA) multivariate methods. In general, the LDA estimation model performed the best among the three models in detecting AMB asymptomatic pixels, while all the models were able to detect the symptomatic class. LDA correctly classified asymptomatic pixels and LDA model predicted them with an accuracy of 88.0%. An accuracy of 91.4% was achieved as the total classification accuracy. The results from this work indicate the potential of using the LDA estimation model to identify asymptomatic pixels on leaves infected by AMB.

    Keywords Apple Marssonina blotch; Hyperspectral imaging; PLSR; PCA; LDA

    Introduction

    AppleMarssoninablotch(AMB), caused by the fungusDiplocarponmali, is one of the most severe apple diseases known and it is widely distributed in South Korea[1-2]. Symptoms initially appear as brownish spots which later become darker and surrounded by chlorotic regions. The disease leads to defoliation during the growing season, thereby weakening tree vigor and diminishing fruit yield and quality[3]. AMB mainly infects leaves, but in severe situations, it can also attack twigs and fruits. The disease poses a serious problem to major apple producing regions due to the fact that it occurs in consecutive years and it is difficult to detect and control[4-5]. The early symptomatic stage of the disease is particularly challenging to detect by the human eye and symptoms might differ significantly by apple variety. Worst still, even if it is detected and sprayed with fungicides at the early symptomatic stage, it might be too late to save the tree owing to the fast developing speed of AMB. Due to these challenges, most Korean apple growers spray AMB fungicides in advance of favorable conditions for disease infection before the summer months[6]. This could lead to a waste in the use of fungicides, enhance fungicide resistance and also lead to environmental pollution. As a result, the development of AMB detection methods and determination of optimal timing for fungicide spray are needed to reduce fungicide usage.

    Nondestructive measurement techniques have been developed to overcome the disadvantages of the conventional invasive methods, in recent years, hyperspectral imaging technology has been developed as an effective inspection tool for quality and safety assessment of a variety of agricultural products[7-10]. It is generally non-destructive, reliable, and carries abundant data. There are several studies concerning the application of this technique for sensing fungal diseases including detection of black spots on citrus[11-12], fungal inspection in stored canola[13], fungal infection and development in corn kernels[14-15], damages by Fusarium in wheat and oats kernels[16-17], and black pox symptom on apple surface. These studies have shown the feasibility of hyperspectral imaging for identifying symptoms in crops through image or spectroscopic processing. However, the potential of hyperspectral imaging technique has not yet been studied in the detection of AMB in apple tree leaves. Thus, the main objective of this study was to develop detection methods for AMB diseased leaves using hyperspectral images. The specific objective of the study was to investigate various classification and estimation methods for separating healthy, asymptomatic and symptomatic regions on apple leaves using spectral reflectance data.

    1 Experimental procedure

    1.1 Experimental setup and data acquisition

    The experimental apple orchard from which hyperspectral images were acquired was located in the Apple Research Institute at Gunwi, Gyeongsangbuk-do province, South Korea. The apple cultivar used in this study was Fuji/M.9; the trees were inoculated with AMB spores three months before data acquisition. A cluster comprising of twelve leaves on a single tree branch was selected to be imaged for this study and was imaged once every five to nine days between October 14 and October 28, 2014. This was done so as to track the progression of the disease on the leaves.

    A hyperspectral camera (PS-V10E, Specim, Finland) was used in acquiring hyperspectral images for the range of 400~1 000 nm and it is shown in Fig.1. The hyperspectral camera was mounted on a tripod of 70 cm in height. A black cloth was placed on the ground to prevent confusing weeds for apple leaves. A reflectance panel, with 99% reflectance , was placed on the black cloth for radiometrically correcting the images to reflectance. Images were exported to the Environment for Visualizing Images (ENVI version 5.2, EXELIS, Colorado, USA) software for further processing and extraction of reflectance spectra.

    Pixels on the apple leaves were classified into four classes: healthy green leaf (HG), healthy green vein (HGV), AMB asymptomatic (ASYM), and AMB symptomatic (SYM). The number of pixels extracted for each class is given in Table 1. The reason why HGV was included as one of the classes was because its color was similar to the color of the early symptomatic pixels. HG pixels were collected from regions far away from the symptomatic area, and HGV pixels were collected in the vein regions of the leaves. ASYM pixels were chosen from the earlier image than an image which had a developing symptomatic or new symptomatic pixels. According to the hyperspectral images acquired over time, features of developing AMB symptoms appeared as shown in Fig.2. Based on the overlapped symptomatic image of 3 stage images by time, ASYM pixels were chosen from the not-overlapped area as shown in Fig.3. In addition, pixels at the same location of the same leaf where new symptoms occurred one week later were also selected as ASYM pixels.

    Fig.1 Hyperspectral imaging system setup for appletree leaves imaging in experimental site

    Table 1 Names and the number of pixels for each class

    1.2 Data analysis

    White and dark references were captured in hyperspectral images in order to correct the acquired images to reflectance.

    Flat-field correction was performed on the original hyperspectral images using Eq. (1) defined below:

    (1)

    whereRCis the corrected reflectance,RRAWis the original sample image,RWHITEandRDARKwere the reference image obtained from white and dark references, respectively[18]. The dark reference was acquired digitally by SpectralDAQ (version 3.62, SPECIM, Spectral Imaging Ltd., Oulu, Finland). A reflectance factor of 100% for the white reference was used in this study for simplification, although the reflectance panel had a reflectance value of 99% across the wavelength range covered by the hyperspectral imaging system. The procedures used in this study for the hyperspectral images analysis are shown in Fig.4.

    Fig.2 An example to explain to select asymptomatic pixels using hyperspectral images of developingAMB symptoms over time and enlargements (polygon area means symptomatic area)

    Fig.3 How to make the overlapped images using developing symptomatic areas

    Fig.4 Steps taken in hyperspectral image analysis

    Matlab (R2015a, MathWorks, Natick, MA) was used to conduct partial least squares regression (PLSR), principal component analysis (PCA), and linear discriminant analysis (LDA) to the extracted reflectance spectra in range of 400 to 1 000 nm. The estimation model was developed with four linear discriminants from LDA classifiers. Results were represented in terms of score plots and coefficient of determination (R2) of cross-validation of the estimation model performance.

    2 Results and Discussion

    The average reflectance spectra of each class are shown in Fig.5. The other three classes, except for the symptomatic class, had a similar signature, especially around 555 nm and over 750 nm. Unlike the other classes, AMB symptomatic (SYM) spectra did not possess a peak between 495 and 570 nm due to the absence of chlorophyll in symptomatic regions. Based on the aforementioned characteristic, the SYM class can easily be separated from the other classes. PLSR, PCA, and LDA were conducted for effective separation and prediction and these estimation models were performed with the test set.

    First, PLSR and PCA were conducted to minimize spectroscopic interference and noise. For the most part, the results derived from PCA and PLSR were similar. PLSR and PCA explained 95.9% and 96.8% of the training set variation with four principal components, respectively. Figure 6 shows the first three latent variable (LV) from reflectance spectra, and it indicates that the PLSR model could efficiently classify pixels of SYM against pixels of HG, HGV and ASYM. However, pixels of ASYM should be recognized against other classes in order to develop a model to identify the early symptoms on apple leaves. The SYM class was separated easily from the other classes due to its distinct color and reflectance spectra. However, ASYM class could not be easily separated from the HG class using PLSR due to similarity in their color and spectra.

    Fig.5 Average spectra by classification

    Fig.6 Score plot between leaf pixels in terms of the principal components from PLSR

    PCA was performed to ideotify four classes. The PC1, PC2, and PC3 scores plots, shown in Fig.7, contained the greatest amount of variability in the data set, and as a result, they were used in discriminating among the classes. PCA showed similar performance results as those of PLSR. Score plots indicated that PCA could classify pixels of SYM against pixels of other classes. Just as was the case in the PLSR analysis, the ASYM class could hardly be separated from the other classes. Score plots of PCA performed less efficiently than the score plots of PLSR in separating the classes, since SYM was distributed in wide area and overlapped more with HG and ASYM in spacious plain.

    Fig.7 Score plots between leaf pixels in termsof the principal components from PCA

    Cross-validation results used in identifying the four classes from both PLSR and PCA analyses are shown in Fig.8. The PLSR estimation model performed better becauseR2of estimation models using PLSR and PCA were 0.57 and 0.36, respectively. Based on the estimation model performances, PLSR and PCA models could be suitable to separate SYM pixels against pixels of HG, HGV and ASYM. However, both models showed high separation error for ASYM class. Further analysis should be considered so as to ensure the ASYM class can easily be separated from the other classes.

    Fig.8 Cross-validation results to identify 4 classes using PLSR (a) and PCA (b)

    LDA is closely related to both PCA and factor analysis in that they all look for linear combinations of variables that explain the data well. LDA explicitly attempts to model the differences between classes while PCA does not take into account any difference between classes, it provides only a visualization of the variability of the data, does not imply any clustering, although formation of sample groups could be a possible result[19]. Score plots with the liner discriminants from LDA are shown in Fig.9. Based on the score plot formation, LDA performed better in separating the classes than PLSR and PCA. In particular, ASYM pixels were separated against the other three classes. Additionally, the reflectance taken from ASYM seems to be separated from HG effectively. Thereby, cross-validation was applied to verify the estimation model using LDA scores.

    Fig.9 Score plots between leaf pixels in terms of the liner discriminants (LD) from LDA

    The LDA score plots and cross-validation results are shown in Fig.10, and Table 2 shows the classification accuracy and error obtained for each class using thresholds of 1.7, 2.1, and 3.6. TheR2of estimation model using LDA scores was 0.81. It performed better compared toR2achieved using PLSR and PCA estimation models. In particular, the classification accuracy obtained for ASYM class was 88%, and 11.8% of SYM samples were misclassified as healthy pixels (HG and HGV). Comparing the classification accuracy achieved for the ASYM class with results obtained by other researchers who have studied similar fungal diseases, the results from this analysis were not as high as some others. Bulanon et al.[11]obtained an accuracy of 96% for citrus black spot detection , Senthilkumar et al.[13]achieved over 92% classification accuracy for infected canola seeds, and Tallada et al.[14]reported 98% detection accuracy of uninfected corn kernels. However, the AMB asymptomatic area on leaves is very difficult to characterize since they have the same color as healthy leaves. Considering that asymptomatic diseased leaves are hardly ever spotted by the human eyes, the developed estimation model using LDA has the potential for being used for identification of asymptomatic regions of leaves infected by AMB.

    Fig.10 Cross-validation result of linier estimationmodel using LD scores

    Table2NumberofpixelsandclassificationratesinperformanceofestimationmodelusingLDAscores

    WActual classHGHGVASYMSYMSumEstimatedclassHG8133482601 187HGV42759714201 166ASYM771801 2531621 672SYM0031 7111 714Sum1 3171 1251 4241 8735 739Classification accuracy/%61.753.188.088.091.4Classification error/%38.346.912.012.08.6

    3 Conclusion

    In this study, multivariate data analysis of hyperspectral images was applied to identify four different classes of apple leaves which were healthy green leaf (HG), healthy green vein (HGV), AMB asymptomatic (ASYM), and AMB symptomatic (SYM). Reflectance spectra information was extracted from time lapse hyperspectral images acquired from a cluster of leaves on a tree and class estimation models were built using PCA PLSR, and LDA. The estimation model built using LDA classifier performed better than PLSR and PCA in separating the SYM class from the other classes. Using this model, an accuracy of 88.0% was obtained in discriminating the ASYM class from the other three classes, while an accuracy of 91.4% was achieved for the SYM class. Based on the results achieved from this study, the developed estimation model using LDA score has the potential for being used for the identification of asymptomatic pixels on hyperspectral images of leaves infected by AMB. Our results indicate that the developed model has the potential for being used for the identification of asymptomatic pixels on hyperspectral images of leaves infected by AMB. Thus, this study will be of interest to many agro-engineers in disease detection.

    Acknowledgement: This study was carried out in the University of Florida, USA, and supported by the National Academy of Agricultural Science, Rural Development Administration, Republic of Korea.

    1024香蕉在线观看| 美女高潮到喷水免费观看| 国产在线免费精品| 久久香蕉激情| 啦啦啦在线免费观看视频4| 国产精品久久久久久精品电影小说| 欧美+亚洲+日韩+国产| 考比视频在线观看| 国产三级黄色录像| 国产欧美日韩一区二区精品| 伦理电影免费视频| 99国产精品99久久久久| 少妇粗大呻吟视频| 欧美黑人欧美精品刺激| 一区二区三区精品91| 一本—道久久a久久精品蜜桃钙片| 黄色a级毛片大全视频| 97人妻天天添夜夜摸| 丝袜喷水一区| 一夜夜www| 最新的欧美精品一区二区| 亚洲精品乱久久久久久| 丰满少妇做爰视频| 欧美 日韩 精品 国产| av天堂在线播放| 日韩欧美三级三区| 久久久久国内视频| www.精华液| 国产在视频线精品| 老熟女久久久| 十八禁网站网址无遮挡| 亚洲精品自拍成人| 欧美日韩亚洲国产一区二区在线观看 | 亚洲人成电影观看| 一级毛片电影观看| 欧美性长视频在线观看| 极品少妇高潮喷水抽搐| 五月开心婷婷网| 麻豆av在线久日| 成人国语在线视频| 免费在线观看视频国产中文字幕亚洲| 精品亚洲乱码少妇综合久久| 欧美激情极品国产一区二区三区| 丝袜人妻中文字幕| 男人操女人黄网站| 国产精品成人在线| 欧美精品人与动牲交sv欧美| 国产亚洲精品久久久久5区| 国产亚洲欧美在线一区二区| 国产精品免费一区二区三区在线 | 国产黄色免费在线视频| 国产三级黄色录像| 两人在一起打扑克的视频| 99国产精品99久久久久| 亚洲美女黄片视频| 免费女性裸体啪啪无遮挡网站| 99热国产这里只有精品6| 亚洲国产中文字幕在线视频| 王馨瑶露胸无遮挡在线观看| 在线观看www视频免费| 美女视频免费永久观看网站| 日本五十路高清| 国产一卡二卡三卡精品| 精品福利永久在线观看| 久久久精品国产亚洲av高清涩受| 热99re8久久精品国产| 桃红色精品国产亚洲av| 国产97色在线日韩免费| 欧美大码av| 别揉我奶头~嗯~啊~动态视频| 电影成人av| 18在线观看网站| 成人手机av| 日本一区二区免费在线视频| 日本av免费视频播放| 欧美精品一区二区免费开放| 男人操女人黄网站| av又黄又爽大尺度在线免费看| 国产精品欧美亚洲77777| 国产片内射在线| 在线播放国产精品三级| 天天躁日日躁夜夜躁夜夜| 天堂俺去俺来也www色官网| videos熟女内射| av在线播放免费不卡| 国产免费现黄频在线看| 嫁个100分男人电影在线观看| 国产色视频综合| 可以免费在线观看a视频的电影网站| 国产成人啪精品午夜网站| 色综合婷婷激情| 777久久人妻少妇嫩草av网站| 99久久人妻综合| 久久av网站| 久久精品国产亚洲av高清一级| 最黄视频免费看| 777米奇影视久久| 一级毛片精品| 国产精品一区二区精品视频观看| 欧美 日韩 精品 国产| 午夜福利乱码中文字幕| 人人妻人人澡人人爽人人夜夜| 国产精品久久久久久人妻精品电影 | 男男h啪啪无遮挡| 日韩欧美国产一区二区入口| 亚洲精品中文字幕一二三四区 | 另类亚洲欧美激情| 久久精品国产亚洲av香蕉五月 | 咕卡用的链子| 黄色成人免费大全| 十八禁高潮呻吟视频| 黄色视频不卡| 最新的欧美精品一区二区| 亚洲精品国产色婷婷电影| 国产精品国产高清国产av | 宅男免费午夜| 91av网站免费观看| 大陆偷拍与自拍| 久9热在线精品视频| √禁漫天堂资源中文www| 大片免费播放器 马上看| 无限看片的www在线观看| 黄网站色视频无遮挡免费观看| 无遮挡黄片免费观看| 高清视频免费观看一区二区| 免费观看人在逋| 99热国产这里只有精品6| 男女高潮啪啪啪动态图| 亚洲自偷自拍图片 自拍| 丝袜在线中文字幕| 国产精品麻豆人妻色哟哟久久| 91精品三级在线观看| 色精品久久人妻99蜜桃| 一本—道久久a久久精品蜜桃钙片| 男男h啪啪无遮挡| 午夜视频精品福利| 91精品三级在线观看| 国产麻豆69| 成人永久免费在线观看视频 | 久久久久视频综合| 视频区图区小说| 又紧又爽又黄一区二区| 国产亚洲一区二区精品| 免费黄频网站在线观看国产| 国产免费av片在线观看野外av| 国产欧美亚洲国产| 老司机亚洲免费影院| 激情视频va一区二区三区| 国产不卡一卡二| 日韩熟女老妇一区二区性免费视频| 国产成人精品久久二区二区91| 一区二区av电影网| 丰满迷人的少妇在线观看| 91九色精品人成在线观看| 老汉色∧v一级毛片| 精品亚洲成国产av| 天堂动漫精品| 天天操日日干夜夜撸| 色尼玛亚洲综合影院| 女同久久另类99精品国产91| 久久av网站| 三级毛片av免费| 国产亚洲精品一区二区www | 欧美日本中文国产一区发布| 狂野欧美激情性xxxx| 亚洲男人天堂网一区| 大陆偷拍与自拍| 法律面前人人平等表现在哪些方面| 久久久久久免费高清国产稀缺| 国产精品九九99| 久久久久国产一级毛片高清牌| 亚洲欧美激情在线| 人妻一区二区av| 别揉我奶头~嗯~啊~动态视频| 夜夜骑夜夜射夜夜干| 91麻豆精品激情在线观看国产 | a在线观看视频网站| 美女福利国产在线| 国产又爽黄色视频| bbb黄色大片| 中文字幕精品免费在线观看视频| 另类亚洲欧美激情| 一本色道久久久久久精品综合| 国产日韩欧美视频二区| 成在线人永久免费视频| 正在播放国产对白刺激| 久久精品国产a三级三级三级| 亚洲黑人精品在线| 久久ye,这里只有精品| 99国产极品粉嫩在线观看| 满18在线观看网站| 色播在线永久视频| 欧美变态另类bdsm刘玥| 国产欧美日韩一区二区精品| 97人妻天天添夜夜摸| 岛国毛片在线播放| 国产精品免费大片| 动漫黄色视频在线观看| 欧美精品一区二区大全| 大片免费播放器 马上看| 国产av一区二区精品久久| 91国产中文字幕| 亚洲 欧美一区二区三区| 国产日韩欧美亚洲二区| 国产精品 国内视频| av又黄又爽大尺度在线免费看| 亚洲三区欧美一区| 成人亚洲精品一区在线观看| 天堂8中文在线网| 中文字幕制服av| 国产在线视频一区二区| 日韩人妻精品一区2区三区| 好男人电影高清在线观看| 成年人免费黄色播放视频| 麻豆国产av国片精品| 中文字幕高清在线视频| 亚洲av成人不卡在线观看播放网| 免费高清在线观看日韩| 人人妻人人澡人人看| 青青草视频在线视频观看| 手机成人av网站| 18禁国产床啪视频网站| 国产极品粉嫩免费观看在线| 国精品久久久久久国模美| 成人国产一区最新在线观看| 亚洲欧美一区二区三区黑人| 久久久久精品国产欧美久久久| 黄色 视频免费看| 日本黄色日本黄色录像| 亚洲一码二码三码区别大吗| 法律面前人人平等表现在哪些方面| 亚洲色图综合在线观看| 久久久久久久大尺度免费视频| 国产成人精品在线电影| 亚洲国产av新网站| 欧美 亚洲 国产 日韩一| 欧美av亚洲av综合av国产av| 岛国毛片在线播放| 亚洲七黄色美女视频| 男女高潮啪啪啪动态图| 国产无遮挡羞羞视频在线观看| 久久久久精品人妻al黑| 国产精品美女特级片免费视频播放器 | 99国产精品免费福利视频| 欧美日韩视频精品一区| 制服人妻中文乱码| 黑人巨大精品欧美一区二区mp4| 午夜福利一区二区在线看| 欧美精品人与动牲交sv欧美| svipshipincom国产片| 欧美人与性动交α欧美软件| 免费在线观看完整版高清| 欧美激情高清一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产国语对白av| 天天影视国产精品| 91国产中文字幕| 天天躁日日躁夜夜躁夜夜| 成年动漫av网址| 亚洲一码二码三码区别大吗| 欧美精品av麻豆av| 国产无遮挡羞羞视频在线观看| 久久久国产成人免费| 脱女人内裤的视频| av天堂在线播放| 亚洲精品自拍成人| 在线观看免费高清a一片| 国产成人系列免费观看| 狠狠狠狠99中文字幕| 别揉我奶头~嗯~啊~动态视频| 一级片'在线观看视频| 在线 av 中文字幕| 久久av网站| 操出白浆在线播放| 在线 av 中文字幕| 久久久久精品人妻al黑| 国产单亲对白刺激| 97人妻天天添夜夜摸| 深夜精品福利| 亚洲五月婷婷丁香| 丰满迷人的少妇在线观看| 午夜精品国产一区二区电影| 美女国产高潮福利片在线看| 亚洲精品一二三| 99精品久久久久人妻精品| 国产片内射在线| 成人av一区二区三区在线看| 三上悠亚av全集在线观看| 国产av一区二区精品久久| 叶爱在线成人免费视频播放| 国产单亲对白刺激| 成人特级黄色片久久久久久久 | 国产在线免费精品| 久久精品国产99精品国产亚洲性色 | 在线av久久热| 久久精品国产综合久久久| 国产高清激情床上av| 黑丝袜美女国产一区| 可以免费在线观看a视频的电影网站| 亚洲午夜精品一区,二区,三区| 高清视频免费观看一区二区| 99精品久久久久人妻精品| 女人爽到高潮嗷嗷叫在线视频| 精品人妻在线不人妻| 99riav亚洲国产免费| 性色av乱码一区二区三区2| 最近最新中文字幕大全电影3 | 麻豆国产av国片精品| 高清欧美精品videossex| 精品视频人人做人人爽| 久久精品亚洲av国产电影网| 午夜日韩欧美国产| www.自偷自拍.com| 国产黄色免费在线视频| 欧美精品av麻豆av| 午夜精品国产一区二区电影| 男女下面插进去视频免费观看| 久久人人爽av亚洲精品天堂| 久久精品国产a三级三级三级| 久久99一区二区三区| 久久人人爽av亚洲精品天堂| 精品人妻1区二区| 最新的欧美精品一区二区| netflix在线观看网站| 久久中文看片网| 一区二区av电影网| av免费在线观看网站| 亚洲精品美女久久av网站| 色综合欧美亚洲国产小说| 国产亚洲av高清不卡| 亚洲成av片中文字幕在线观看| 日本一区二区免费在线视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美日本中文国产一区发布| 色婷婷av一区二区三区视频| 超碰成人久久| 久久狼人影院| 人人妻人人澡人人爽人人夜夜| www.熟女人妻精品国产| 日韩制服丝袜自拍偷拍| 十八禁人妻一区二区| 在线播放国产精品三级| 午夜视频精品福利| 叶爱在线成人免费视频播放| 日韩中文字幕视频在线看片| 建设人人有责人人尽责人人享有的| 免费高清在线观看日韩| 亚洲精品国产色婷婷电影| 女人高潮潮喷娇喘18禁视频| 中文欧美无线码| 中文字幕av电影在线播放| 在线观看人妻少妇| 肉色欧美久久久久久久蜜桃| 色尼玛亚洲综合影院| 欧美亚洲日本最大视频资源| 亚洲精品中文字幕一二三四区 | 亚洲专区中文字幕在线| 亚洲av日韩在线播放| 9色porny在线观看| 国产在线一区二区三区精| 久久99一区二区三区| 最近最新中文字幕大全电影3 | 久久性视频一级片| 99国产精品99久久久久| 久久精品aⅴ一区二区三区四区| 成年人黄色毛片网站| 成人永久免费在线观看视频 | 法律面前人人平等表现在哪些方面| 中文字幕制服av| 日韩人妻精品一区2区三区| 国精品久久久久久国模美| 久久久欧美国产精品| 婷婷丁香在线五月| 精品亚洲乱码少妇综合久久| 后天国语完整版免费观看| 日日爽夜夜爽网站| 亚洲第一av免费看| 午夜精品久久久久久毛片777| 国产精品一区二区精品视频观看| 亚洲熟妇熟女久久| 99久久精品国产亚洲精品| 老汉色∧v一级毛片| 人成视频在线观看免费观看| 亚洲av成人一区二区三| 欧美激情 高清一区二区三区| 欧美成人免费av一区二区三区 | 人人澡人人妻人| 国产野战对白在线观看| 国产精品影院久久| 国产精品一区二区在线观看99| aaaaa片日本免费| 久久精品亚洲熟妇少妇任你| 亚洲精品国产精品久久久不卡| 久久ye,这里只有精品| 波多野结衣av一区二区av| 狠狠狠狠99中文字幕| 大片免费播放器 马上看| 十八禁网站免费在线| 国产人伦9x9x在线观看| 国产在线一区二区三区精| 欧美日韩福利视频一区二区| 久久久久久免费高清国产稀缺| 叶爱在线成人免费视频播放| 久久青草综合色| 精品人妻1区二区| 日本黄色日本黄色录像| 精品国产乱码久久久久久小说| 亚洲成人手机| 人人妻,人人澡人人爽秒播| 99国产精品一区二区蜜桃av | 欧美人与性动交α欧美精品济南到| 久久国产亚洲av麻豆专区| 亚洲一区中文字幕在线| 久久久久久久国产电影| 欧美变态另类bdsm刘玥| 狠狠婷婷综合久久久久久88av| 欧美日韩视频精品一区| 一级片'在线观看视频| 9191精品国产免费久久| 亚洲精品中文字幕在线视频| 美女午夜性视频免费| 亚洲精品美女久久av网站| 久久免费观看电影| 一本色道久久久久久精品综合| 日日夜夜操网爽| 午夜两性在线视频| 无遮挡黄片免费观看| 亚洲精品国产精品久久久不卡| 久久精品91无色码中文字幕| 亚洲精品乱久久久久久| 久久 成人 亚洲| 日本黄色视频三级网站网址 | 黄色成人免费大全| 国产在线观看jvid| 亚洲精品粉嫩美女一区| 99国产精品一区二区蜜桃av | 久久亚洲真实| 菩萨蛮人人尽说江南好唐韦庄| 正在播放国产对白刺激| 757午夜福利合集在线观看| 久久久久久久国产电影| 亚洲男人天堂网一区| 最近最新免费中文字幕在线| 精品久久蜜臀av无| 午夜激情av网站| 九色亚洲精品在线播放| videos熟女内射| 视频区欧美日本亚洲| 国产熟女午夜一区二区三区| 最新美女视频免费是黄的| 色老头精品视频在线观看| 精品亚洲成国产av| 啦啦啦 在线观看视频| 成年人黄色毛片网站| 国产日韩一区二区三区精品不卡| 国产精品98久久久久久宅男小说| 国产又爽黄色视频| 中文字幕人妻丝袜制服| av片东京热男人的天堂| 中文字幕av电影在线播放| 欧美亚洲日本最大视频资源| 午夜福利,免费看| 欧美日韩成人在线一区二区| 国产激情久久老熟女| 老司机深夜福利视频在线观看| 女人高潮潮喷娇喘18禁视频| 午夜福利免费观看在线| 国产国语露脸激情在线看| 日本av手机在线免费观看| 亚洲五月色婷婷综合| 日韩欧美一区视频在线观看| 男女免费视频国产| 91麻豆av在线| 欧美 亚洲 国产 日韩一| 欧美av亚洲av综合av国产av| 肉色欧美久久久久久久蜜桃| 桃花免费在线播放| 久久精品亚洲精品国产色婷小说| 色在线成人网| 色94色欧美一区二区| 一区在线观看完整版| 久久青草综合色| 午夜视频精品福利| 成人免费观看视频高清| 麻豆国产av国片精品| 日日爽夜夜爽网站| 国产精品影院久久| 国产有黄有色有爽视频| 精品久久蜜臀av无| 欧美日韩av久久| 1024香蕉在线观看| 国产av又大| 午夜福利视频精品| 成人av一区二区三区在线看| 99国产精品一区二区蜜桃av | 国产精品欧美亚洲77777| 久热爱精品视频在线9| 他把我摸到了高潮在线观看 | 国产1区2区3区精品| 人人妻,人人澡人人爽秒播| 性色av乱码一区二区三区2| 欧美日韩亚洲国产一区二区在线观看 | 99久久人妻综合| 久久国产精品大桥未久av| aaaaa片日本免费| 色婷婷久久久亚洲欧美| 午夜福利一区二区在线看| 老鸭窝网址在线观看| 国产片内射在线| 老司机靠b影院| 黑丝袜美女国产一区| av网站在线播放免费| 一边摸一边做爽爽视频免费| 高清视频免费观看一区二区| 日本一区二区免费在线视频| 美国免费a级毛片| av欧美777| 如日韩欧美国产精品一区二区三区| 一区二区三区国产精品乱码| 欧美av亚洲av综合av国产av| 亚洲精品自拍成人| 啦啦啦中文免费视频观看日本| 精品亚洲乱码少妇综合久久| 亚洲av日韩在线播放| 国产精品一区二区在线不卡| 欧美成人午夜精品| 一本一本久久a久久精品综合妖精| 一进一出抽搐动态| 欧美精品啪啪一区二区三区| 亚洲,欧美精品.| 亚洲精品国产色婷婷电影| 日本精品一区二区三区蜜桃| 脱女人内裤的视频| 午夜福利,免费看| 国产亚洲午夜精品一区二区久久| 免费黄频网站在线观看国产| 一区在线观看完整版| 国产视频一区二区在线看| 性色av乱码一区二区三区2| 色综合婷婷激情| 日韩熟女老妇一区二区性免费视频| 制服人妻中文乱码| 丁香六月天网| 欧美精品一区二区免费开放| 无限看片的www在线观看| 精品乱码久久久久久99久播| av片东京热男人的天堂| 亚洲欧美激情在线| 99精国产麻豆久久婷婷| 国产激情久久老熟女| 男人舔女人的私密视频| 夜夜爽天天搞| 黄色a级毛片大全视频| 国产精品久久久av美女十八| 亚洲人成电影观看| 国产在视频线精品| 日本精品一区二区三区蜜桃| 少妇的丰满在线观看| 欧美日韩黄片免| 国产福利在线免费观看视频| 人人妻人人添人人爽欧美一区卜| 欧美精品高潮呻吟av久久| 制服诱惑二区| 五月天丁香电影| 午夜福利在线观看吧| 在线观看www视频免费| 亚洲色图 男人天堂 中文字幕| 天堂俺去俺来也www色官网| 日韩大码丰满熟妇| 少妇 在线观看| 亚洲黑人精品在线| a级毛片黄视频| 久久99一区二区三区| 久久精品亚洲熟妇少妇任你| 免费观看av网站的网址| 久久精品亚洲精品国产色婷小说| 欧美日韩亚洲综合一区二区三区_| av国产精品久久久久影院| 久久精品国产亚洲av香蕉五月 | 久久精品成人免费网站| 欧美日韩国产mv在线观看视频| 日本精品一区二区三区蜜桃| 国产激情久久老熟女| 国产亚洲精品第一综合不卡| 免费观看a级毛片全部| 久久国产精品影院| 国产免费福利视频在线观看| 亚洲中文日韩欧美视频| 美女高潮喷水抽搐中文字幕| 亚洲国产欧美在线一区| 国产深夜福利视频在线观看| 两性夫妻黄色片| 成年版毛片免费区| 国产精品自产拍在线观看55亚洲 | av片东京热男人的天堂| 每晚都被弄得嗷嗷叫到高潮| 十八禁人妻一区二区| 欧美日韩av久久| 天堂中文最新版在线下载| 亚洲国产欧美网| 黄色视频不卡| 亚洲欧美日韩高清在线视频 | 精品熟女少妇八av免费久了| 欧美日韩精品网址| 51午夜福利影视在线观看| 啦啦啦在线免费观看视频4| 免费在线观看完整版高清| 欧美国产精品一级二级三级| 日本欧美视频一区| 在线av久久热| 久久人人97超碰香蕉20202| 如日韩欧美国产精品一区二区三区| 侵犯人妻中文字幕一二三四区| 国产成人精品无人区| 超碰成人久久|