• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    HERMITIAN-EINSTEIN METRICS FOR HIGGS BUNDLES OVER COMPLETE HERMITIAN MANIFOLDS?

    2020-04-27 08:11:08DebinLIU劉德斌

    Debin LIU(劉德斌)

    School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,China

    E-mail:liudebin@mail.ustc.edu.cn

    Pan ZHANG(張攀)?

    School of Mathematics,Sun Yat-sen University,Guangzhou 510275,China

    E-mail:zhangpan5@mail.sysu.edu.cn

    Abstract In this paper,we solve the Dirichlet problem for the Hermitian-Einstein equations on Higgs bundles over compact Hermitian manifolds.Then we prove the existence of the Hermitian-Einstein metrics on Higgs bundles over a class of complete Hermitian manifolds.

    Key words Higgs bundles;complete Hermitian manifolds;Hermitian-Einstein metric

    1 Introduction

    Let(M,g)be a Hermitian manifold and the corresponding K?hler form is denoted by ω .A Higgs bundle(E,,θ)over M is a holomorphic vector bundle(E,)coupled with a 1-form θ∈?1,0(M,End(E))satisfying=0 and θ∧θ=0,which is called the Higgs field.Higgs bundle was introduced by Hitchin[10]in his study of self-dual equations on a Riemann surface.It has rich structures and plays an important role in many areas including gauge theory,K?hler and hyper-K?hler geometry,group representations and nonabelian Hodge theory.

    For any given Hermitian metric H on a Higgs bundle E,we de fine its Hitchin-Simpson connection[26]to be

    where DHis the Chern connection with respect to H and,and θ?His the adjoint with respect to H.The curvature of this connection is given by

    where FHis the curvature of the Chern connection DHand?His the(1,0)part of DH.We say H is a Hermitian-Einstein metric,if its curvature FH,θsatis fies the Einstein condition:

    The celebrated Donaldson-Uhlernbeck-Yau theorem states that holomorphic vector bundles over compact K?hler manifolds admit Hermitian-Einstein metrics if they are stable.It was proved by Narasimhan and Seshadri[22]for compact Riemann surface,by Donaldson[7]for algebraic manifolds and by Uhlenbeck-Yau[29]for general compact K?hler manifolds.The inverse problem is that a holomorphic bundle admitting such a metric must be polystable(that is a direct sum of stable bundles with the same slope).And this was proved by Kobayashi[12]and L¨ubke[19]independently.This is the so-called Hitchin-Kobayashi correspondence for holomorphic vector bundles over compact K?hler manifolds.There were many interesting generalized Hitchin-Kobayashi correspondences(see the References[1–6,10,11,13–16,20,21,25,30,32],etc.).In the meanwhile,the Dirichlet problem was solved by Donaldson[8]for Hermitian-Einstein metrics over compact K?hler manifolds with non-empty boundary,and many interesting applications were addressed.Li and Zhang[18]generalized Donaldson’s result to the general Hermitian manifolds and considered a class of vortex equations,which generalize the well-known Hermitian-Einstein equations.As for the non-compact case,Ni and Ren[24]proved that a holomorphic vector bundle over a complete non-compact K?hler manifold with a spectral gap admits a Hermitian-Einstein metric if it admits a metric whose failure to be Hermitian-Einstein is in Lpfor p>1.Ni[23]also showed that the same conclusion holds,for example,if the K?hler manifold satis fies a L2-Sobolev inequality,or if it is non-parabolic(i.e.,admits a positive Green’s function).Later,Zhang[33]studied the existence of Hermitian-Einstein metrics for holomorphic vector bundles over complete Hermitian manifolds.At the same time,he[34]also proved the existence of Hermitian Yang-Mills-Higgs metrics for holomorphic vector bundles on a class of complete K?hler manifolds.

    When it comes to the Higgs bundles,Hitchin[10]and Simpson[26]obtained a Higgs bundle version of Donaldson-Unlenbeck-Yau theorem,i.e.,they proved that a Higgs bundle admits a Hermitian-Einstein metric if and only if it is Higgs polystable.Simpson[26]also considered some non-compact K?hler cases.He introduced the concept of analytic stability for Higgs bundles and proved that the analytic stability implies the existence of Hermitian-Einstein metrics.Recently,Zhang et al.[31]showed the existence of Hermitian-Einstein metrics of analytic stable Higgs bundles over complete non-compact Gauduchon manifolds.

    In this paper,we skip the stability conditions,and assume that the spectrum of a holomorphic Laplace operator has a positive lower bound(see[24]and[33])or the holomorphic Laplace operator satis fies the L2-Sobolev inequality(see[23]),we study the existence of Hermitian-Einstein metrics of Higgs bundles over complete Hermitian manifolds.More precisely,we will prove the following theorem.

    Theorem 1.1Let(M,g)be a complete Hermitian manifold of complex dimension m,and(E,,θ)be a Higgs bundle over M,with an initial Hermitian metric H0.

    1)Assume that the holomorphic operatorhas positive first eigenvalue(M)and thatfor some p ≥ 2 and real number λ.Then there exists a Hermitian-Einstein metric H on E.

    This paper is organized as follows.In Section 2,we give some estimates and preliminaries which will be used in the proof of the theorem.In Section 3,using the Hermitian-Einstein flow,we solve the Dirichlet problem for the Hermitian-Einstein equations over a compact Hermitian manifold.In Section 4,we prove the long-time existence of the Hermitian-Einstein flow over a complete Hermitian manifold.At last,we complete the proof of the main theorem in Section 5.

    2 Preliminary Results

    Let(M,g)be a compact Hermitian manifold,and(E,ˉ?,θ)be a rank r Higgs bundle over M with an initial Hermitian metric H0.Denote by ω the K?hler form,and de fine the operator Λ as the contraction with ω,i.e.,for α ∈ ?1,1(M,E),one has Λα =hα,ωi.For any local complex coordinatein M,we can de fine the holomorphic Laplace operator for functions as

    where V is a well-de fined vector fields on M.The holomorphic Laplace operatorcoincides with the usual Beltrami-Laplace operator if and only if the base manifold(M,g)is K?hler.

    Given any Hermitian metric H on E,since the bundle E is holomorphic with the holomorphic structure,there is a unique corresponding connection AHwhich is called the Chern connection.Under a holomorphic local frame{eα},we can express the metric H as a positive de fined matrix()1≤α,β≤r,where=H(eα,eβ).For simplicity we will still denote it by H.Then locally the Chern connection AHand its curvature form FHcan be written as

    Now consider two Hermitian metrics H and K on E.Set h=K?1H ∈?0(M,End(E)).It is easy to check that h is positive de fined and self-adjoint with respect to both H and K.Then by a direct calculation we have

    Next,we turn to a family of Hermitian metrics H(t)on E with an initial metric H(0)=H0.We will follow the classical heat flow method to deduce the existence of Hermitian-Einstein metric.Actually,we consider the following Hermitian-Einstein flow

    Taking a local holomorphic frame{eα}of E and local complex coordinates{zi}of M,the above flow can be written as

    We will see later the following proposition plays an important role in our discussion.

    Proposition 2.1Let H(t)be a solution of the flow(2.1),then

    ProofFor simplicity,setThen by a direct calculation,we have

    and

    Hence

    Now we recall the Donaldson’s distance on the space of Hermitian metrics as follows.

    De finition 2.2For any two Hermitian metrics H and K on the bundle E,we de fine

    where r=rank(E).

    If we choose a local frame to diagonalize H?1K to be diag(λ1,···,λr),then

    from which we can see that σ≥0 with equality if and only if H=K.Let d be the Riemannian distance function on the metric space,then

    holds for some monotone functions f1and f2.So we can conclude from this inequality that a sequence of metrics Hiconverges to some H in C0-topology if and only if

    For later use,we need the following lemma.

    Lemma 2.3

    ProofIt is easy to check that

    On the other hand,it is easy to check that tris nonnegative,by doing calculation locally[27].Hence we have the following proposition.

    Proposition 2.4Let H,K be two Hermitian-Einstein metrics,then

    Next,instead of considering H,K as Hermitian-Einstein metrics,we assume H=H(t),K=K(t)to be two solutions of the Hermitian-Einstein flow(2.1)with the same initial value H0.Similar to Proposition 2.4,we prove the following proposition.

    Proposition 2.5

    ProofSet h(t)=K(t)?1H(t).Notice that

    These two identities together with Lemma 2.3 show that

    For further discussion,we prove the following.

    Proposition 2.6Let H(x,t)be a solution of the Hermitian-Einstein flow with the initial metric H0and set h=H,then

    ProofThe proof is quite straightforward.First notice that

    And following the same argument as in[27],one can show that

    Set d=trh+trh?1,then from the above two inequalities,we can get

    Using the above discussion and Lemma 2.3,we can deduce that

    where the last inequality follows from the fact that

    Proceeding by a similar argument,we have

    Corollary 2.7Let H be a Hermitian-Einstein metric and H0be the initial Hermitian metric.Let h=H,then

    3 Over Compact Manifolds

    In this section our primary purpose is to solve the Dirichlet problem for the Hermitian-Einstein flow over a compact manifold.Speci fi cally,when the base manifold M is closed,we consider the following problem

    And when M is a compact manifold with a non-empty smooth boundary?M,for any given initial metric ? over ?M we instead consider the following boundary value problem

    One can easily check that the equation in(3.1)is non-linear,strictly parabolic.So we get the short-time existence from the standard parabolic PDE theory[9].

    Theorem 3.1For sufficiently small ε>0,problems(3.1)and(3.2)have a smooth solution de fined for 0≤ t< ε.

    Next,following a standard argument,we can show the long-time existence of(3.1)and(3.2).

    Lemma 3.2Suppose that a smooth solution Htto(3.1)or(3.2)is de fined for 0≤t

    Then Htconverges in C0topology to some continuous non-degenerate metric HTas t→T.

    ProofIn order to prove the convergence,it suffices to show that,given any ε>0,we can find δ>0 such that

    And this can be easily seen from the continuity at t=0 combining with Proposition 2.5 and the maximum principle.

    So,it remains to show HTis non-degenerate.By Proposition 2.1,we know that

    where C=C(H0)is a uniform constant.By a direct calculation we have

    And similarly

    Then we can conclude that σ(H,H0)is uniformly bounded on M × [0,T),which implies that HTis non-degenerate.

    For further consideration,we need the following lemma.

    Lemma 3.3Suppose M is a closed Hermitian manifold without boundary(compact with non-empty boundary).Let H(t)for 0≤t

    1)H(t)converges in C0topology to some continuous metric HTas t→T,

    2)supM|ΛFH|H0is uniformly bounded for t

    Then H(t)is bounded in C1,and also bounded in(for any 1

    Since the proof is exactly the same as that in[7]and[26],we omit it here.

    Theorem 3.4Problems(3.1)and(3.2)have a unique solution H(t)which exists for 0≤t<∞.

    ProofTheorem 3.1 guarantees that a solution exists for a short time.Then we suppose that there is a solution H(t)existing for 0≤t

    Finally,since we have proved the long-time existence of the Dirichlet problem(3.2),it remains for us to show that the solution H(t)converges to a metric H∞as the time t approaches to the in fi nity,and that the limit H∞is Hermitian-Einstein.

    Suppose H(t)is a solution to(3.2)for 0≤t<∞.As in the previous section we still setFrom Proposition 2.1 and the fact thatholds for any section α of End(E),we have

    Next,according to Proposition 1.8 of Chapter 5 in[28],the following Dirichlet problem is solvable

    Therefore the maximum principle implies that

    for any y∈M and 0≤t<∞.

    Let 0≤t1≤t<∞,=H?1(x,t1)H(x,t).Obviouslyˉh satis fies

    Then we have

    Integrating it over[t1,t]gives

    From(3.6)and(3.7),we have that H(t)converges in the C0topology to some continuous metric H∞as t?→ +∞.Hence using Lemma 3.3 again we know that H(t)has uniform C1andbounds.This together with the fact thatis uniformly bounded and the standard elliptic regularity arguments shows that,by passing to a subsequence if necessary,H(t)→H∞in C∞topology.And from(3.6)we have

    i.e.,H∞is the desired Hermitian-Einstein metric satisfying the Dirichlet boundary condition.Since for any given initial Hermitian metric ? over boundary ?M one can construct a Hermitian metric H0over M with H0|?M= ? by choosing a proper partition of unity,we have eventually proved the following theorem.

    Theorem 3.5Suppose(M,g)is a compact Hermitian manifold with non-empty boundary?M and(E,,θ)is a Higgs bundle over M.Then for any Hermitian metric ? on restriction of E to?M there is a unique Hermitian metric H on E such that

    4 Hermitian-Einstein Flow Over Complete Hermitian Manifolds

    Let M be a complete non-compact Hermitian manifold without boundary,in which case we will still call it complete for short,and E be a rank r Higgs bundle over M with an initial Hermitian metric H0.Suppose the curvature of AH0satis fiesIdE|H0≤C0for some positive constant C0.What we want to prove is the existence of the long time solution to the Hermitian-Einstein flow over M starting at H0.

    It is well known that for any topological manifold M we can always find a compact exhaustion sequence,i.e.,a countable collection of compact subsetsof M which satis fies?i? ?i+1and?i=M.Moreover,if the manifold is smooth we can further assume that??iis smooth for each i.Now for such an exhaustion,by our discussion in Section 3 we can find Hermitian metrics H(x,t)on E|?ifor each i,which solve the following problems

    Notice here we use H0as both the initial metric with respect to t and the boundary metric.So Proposition 2.1 together with the maximum principle shows that

    As before we set hi=Hi.Then through a simple calculation(as is shown in the proof of Lemma 3.2),we can see that

    Integrating along time direction from 0 to T,we have

    This immediately implies

    and

    In particular,for any compact subset K we can choose i large enough so that K??i,then we get the following C0-estimate

    Without loss of generality,we can assume that K=Bo(R),here K=Bo(R)denotes the geodesic ball of radius R center at a fixed point o∈M.We want to show that,by passing to a subsequence if necessary,{Hi}converges uniformly to a Hermitian metric H∞(x,t)over Bo(R)×[0,T/2].By Lemma 2.3,we have

    Hence using(4.3)and(4.4),we can get the following estimate

    where C3is a uniform constant depending only on C0,T,R and V.Since(4.7)gives the uniform C0-estimate for hiand notice thatis also uniformly bounded,(4.8)implies that hiis uniformly bounded in(Bo(2R)×[0,T]).From Sobolev embedding theorem we know that(Bo(2R)×[0,T])can be compactly embedded into L2(Bo(2R)×[0,T]).So by passing to a subsequence if necessary,we conclude that hi,and hence Hi,converges in L2(Bo(2R)×[0,T]).

    This implies that given any ε>0,we have

    for j,k sufficiently large.In order to show the uniform convergence,we need the following mean-value type inequality.

    Lemma 4.1(see[33,Lemma 5.2])Let M be an m-dimensional complete non-compact Hermitian manifold without boundary,and Bo(2R)be a geodesic ball,centered at o∈M of radius 2R.Suppose that f(x,t)is a non-negative function satisfying

    over Bo(2R)×[0,T].Let?K ≤0 be the lower bound of the Ricci curvature of Bo(2R).Then for any p>0,there exist positive constant C′and C′′depending only on C,m,R,K,p,T and V such that

    Now let f(x,t)=σ2(Hj(x,t),Hk(x,t)).Obviously fsatis fies(4.10)with C=0.Then by Lemma 4.1,(4.9)and the fact that Hj=Hkat t=0 gives

    here C4is a positive constant depending only on C0,R,T and the bound of the sectional curvature on Bo(2R).And this implies that,by passing to a subsequence if necessary,Hiconverges uniformly to a continuous Hermitian metric H∞over Bo(R)×[0,T/2].

    Finally,we want to use the above C0-estimate to deduce a C1-estimate over any compact subset K.We will follow Donaldson[8]and Zhang[33].For any point x∈Bo(2R)we can choose a coordinate ball Bx(R′)centered at p small enough such that E can be locally trivialized over it.Let{yj}be a real coordinate on Bx(R′)and denote?0(M,End(E)).Then we have the following.

    Proposition 4.2ρlis de fined as above,then

    ProofFrom(4.1),we know Hisatis fies

    For now for the sake of calculation convenience,we omit the subscript i and l and denote Hi,ρlto be H,ρ respectively.Then by considering a one-parameter family of solutions obtained by translating in the direction ofone can check that

    where

    As is shown in the proof of Proposition 2.1,one can check that

    By direct calculation,we have

    and one can easily check that

    Then combining those calculations together shows that

    Then this proposition together with Lemma 4.1 and(4.8)gives

    where C5is a positive constant independently on i.Moreover,for the Hermitian metric g there exist constants C6and C7such that

    holds over Bx(R′).Hence we have

    From this and(4.12)we can fi nally conclude that there exists a positive constant C8which is independently of i such that

    Since x is arbitrary,we can see that Hihas a uniform C1-bound over Bo(R)×[0,T/4].Since we have derive the C0and C1estimates,the standard parabolic theory is enough to show the global convergence of Hi,which is

    Theorem 4.3Let(M,g)be a complete non-compact Hermitian manifold without boundary,and(E,,θ)be a Higgs bundle over M with an initial Hermitian metric H0.If the initial data satisfiesfor some positive constant C0,then the following Hermitian-Einstein flow

    has a solution which is de fined on M ×[0,∞).

    5 Hermitian-Einstein Metrics on Complete Hermitian Manifolds

    In this section we will prove the existence of Hermitian-Einstein metric on complete noncompact Hermitian manifold.We will proceed by the direct elliptic method.The argument is similar to that in[33]for holomorphic vector bundle case.The following are the main assumptions we will need.

    De finition 5.1(Positive spectrum) Let M be a complete Hermitian manifold.We say the holomorphic Laplace operatorhas positive first eigenvalue,if there exists a positive number c such that for any compactly supported smooth function φ one has

    De finition 5.2(L2-Sobolev inequality) Let M be a complete Hermitian manifold of complex dimension m.We say the holomorphic Laplace operatorsatis fies L2-Sobolev inequality,if there exists a positive constant SMsuch that for any compact supported smooth function φ one has

    In order to use the direct elliptic method,we now introduce a new distance function instead of σ.For two metrics H and K,we de fine

    The relationship between σ and τ is given by

    Now choose a compact exhaustion sequenceas in Section 4.By our previous discussion in Section 3,we know that over each ?ithere exists a Hermitian metric Hisuch that

    where H0is the given initial metric on E.Denote hi=Hiand τi= τ(H0,Hi).Then by Corollary 2.7 we can see that

    Next we impose the following condition on the holomorphic Laplace operator.

    Condition 5.3There exists a positive number p>0 such that for every non-negative function f∈Lp(M),there exists a non-negative solution u∈C0(M)of

    Theorem 5.4Let(M,g)be a complete Hermitian manifold,and(E,,θ)be a Higgs bundle over M with an initial Hermitian metric H0.Assume for the holomorphic Laplace operator?,Condition 5.3 is satis fied with some positive number p.Assume further thatThen there exists a Hermitian-Einstein metric H on E.

    ProofLet u be a solution to.If M satis fies Condition 5.3,this together with(5.1)and the maximun principle shows that

    holds for any x∈?i.Using this C0-estimate,and proceeding as how we did in Section 4 shows that Hiconverges uniformly over any compact subset of M to a smooth Hermitian metric H satisfying

    over any compact subset.Hence H is a Hermitian-Einstein metric over the whole manifold M.

    Therefore we complete the proof of Theorem 1.1 by the following lemma.

    Lemma 5.5(see[33,Lemma 6.4,Lemma 6.5])Let M be a complete Hermitian manifold of complex dimension m.

    1)Assume the holomorphic Laplace operator??has positive first eigenvalue(M).Then for a non-negative function f∈Lp(M),where p≥2,the following equation

    has a non-negative solution

    2)Assume??satis fies the L2-Sobolev inequality.Then for a non-negative function f∈Lp(M),where 2≤p

    国产视频首页在线观看| 最黄视频免费看| 欧美日韩成人在线一区二区| 国产日韩一区二区三区精品不卡| 下体分泌物呈黄色| 一区二区日韩欧美中文字幕| 交换朋友夫妻互换小说| 日韩中文字幕视频在线看片| 午夜老司机福利剧场| 999久久久国产精品视频| 亚洲视频免费观看视频| a级毛片在线看网站| av免费在线看不卡| av国产久精品久网站免费入址| 飞空精品影院首页| 女性生殖器流出的白浆| 国产精品秋霞免费鲁丝片| 日本av手机在线免费观看| 秋霞在线观看毛片| 国产毛片在线视频| 亚洲熟女精品中文字幕| 啦啦啦在线免费观看视频4| 精品少妇一区二区三区视频日本电影 | 中国三级夫妇交换| 91精品三级在线观看| 伊人久久大香线蕉亚洲五| 国产精品久久久久久久久免| 久久精品熟女亚洲av麻豆精品| 亚洲在久久综合| 性高湖久久久久久久久免费观看| 日韩精品有码人妻一区| 日韩欧美精品免费久久| 波多野结衣av一区二区av| 最近中文字幕2019免费版| 精品国产一区二区久久| 大片免费播放器 马上看| 999久久久国产精品视频| 看免费成人av毛片| 亚洲av成人精品一二三区| 日日爽夜夜爽网站| 99久久人妻综合| 伦理电影大哥的女人| 男人操女人黄网站| 国产成人a∨麻豆精品| 亚洲精品国产av蜜桃| 深夜精品福利| 男的添女的下面高潮视频| 国产精品不卡视频一区二区| 777久久人妻少妇嫩草av网站| 午夜老司机福利剧场| 少妇熟女欧美另类| 亚洲精品美女久久久久99蜜臀 | 久久精品国产亚洲av涩爱| 汤姆久久久久久久影院中文字幕| 91久久精品国产一区二区三区| 亚洲欧美精品综合一区二区三区 | 日日撸夜夜添| 丝袜美足系列| 一个人免费看片子| 母亲3免费完整高清在线观看 | 久久久a久久爽久久v久久| 熟女电影av网| 熟女少妇亚洲综合色aaa.| 9热在线视频观看99| 亚洲精品久久成人aⅴ小说| 中文天堂在线官网| av天堂久久9| 国产亚洲一区二区精品| 免费在线观看完整版高清| 亚洲欧美成人精品一区二区| 美女视频免费永久观看网站| 欧美精品国产亚洲| 青青草视频在线视频观看| 成年人午夜在线观看视频| 亚洲av综合色区一区| 九色亚洲精品在线播放| 国产精品一二三区在线看| 国产精品久久久久久久久免| 亚洲精品美女久久av网站| 制服诱惑二区| 日韩欧美精品免费久久| av在线老鸭窝| freevideosex欧美| 美女福利国产在线| 男人添女人高潮全过程视频| 亚洲精品视频女| 成人影院久久| 18禁观看日本| 国产精品av久久久久免费| 国产97色在线日韩免费| 日韩 亚洲 欧美在线| 国产又色又爽无遮挡免| 欧美bdsm另类| 午夜日韩欧美国产| 精品亚洲成a人片在线观看| 人体艺术视频欧美日本| av一本久久久久| 人妻系列 视频| 伦精品一区二区三区| 69精品国产乱码久久久| 国产在视频线精品| 免费看不卡的av| 91国产中文字幕| 看免费av毛片| 国产爽快片一区二区三区| 色网站视频免费| 中国三级夫妇交换| 黄网站色视频无遮挡免费观看| 高清视频免费观看一区二区| 久久这里只有精品19| 咕卡用的链子| 国产精品麻豆人妻色哟哟久久| 午夜福利网站1000一区二区三区| 午夜免费鲁丝| 午夜精品国产一区二区电影| 欧美激情 高清一区二区三区| 超色免费av| 精品久久蜜臀av无| 不卡av一区二区三区| 精品一品国产午夜福利视频| 美女主播在线视频| av国产久精品久网站免费入址| 日本欧美视频一区| 黄片无遮挡物在线观看| av国产久精品久网站免费入址| 国产日韩欧美在线精品| 母亲3免费完整高清在线观看 | 亚洲国产成人一精品久久久| 成人亚洲欧美一区二区av| 一本色道久久久久久精品综合| www日本在线高清视频| 人妻 亚洲 视频| 国产精品国产三级专区第一集| 日本爱情动作片www.在线观看| 精品99又大又爽又粗少妇毛片| 99国产综合亚洲精品| 一边亲一边摸免费视频| 在线亚洲精品国产二区图片欧美| 国产成人精品无人区| 伦理电影免费视频| 国产乱人偷精品视频| 在线看a的网站| 国产视频首页在线观看| videos熟女内射| av网站免费在线观看视频| 中国国产av一级| 久久久久久人妻| 久久人妻熟女aⅴ| 亚洲内射少妇av| 在线观看www视频免费| 国产成人精品福利久久| 日韩av免费高清视频| 亚洲精品日本国产第一区| 三级国产精品片| 欧美精品国产亚洲| 久久精品国产综合久久久| 高清欧美精品videossex| 欧美成人午夜精品| 九九爱精品视频在线观看| 深夜精品福利| 美女高潮到喷水免费观看| 不卡视频在线观看欧美| 亚洲国产精品999| 国产淫语在线视频| 看十八女毛片水多多多| 久久精品亚洲av国产电影网| 午夜激情久久久久久久| 亚洲综合精品二区| 国产不卡av网站在线观看| 中文字幕人妻熟女乱码| 免费在线观看视频国产中文字幕亚洲 | 日本免费在线观看一区| 在线观看美女被高潮喷水网站| 韩国精品一区二区三区| 亚洲精品,欧美精品| 亚洲婷婷狠狠爱综合网| 久久亚洲国产成人精品v| 最新中文字幕久久久久| 国产 精品1| 黄色一级大片看看| 欧美少妇被猛烈插入视频| 亚洲国产欧美日韩在线播放| 精品福利永久在线观看| 热re99久久国产66热| 国产淫语在线视频| 亚洲综合色惰| 国产一级毛片在线| 大话2 男鬼变身卡| 丝袜美足系列| av视频免费观看在线观看| 最新中文字幕久久久久| 建设人人有责人人尽责人人享有的| 国产白丝娇喘喷水9色精品| 国产男人的电影天堂91| 久热久热在线精品观看| 寂寞人妻少妇视频99o| 男女边吃奶边做爰视频| 夜夜骑夜夜射夜夜干| 看免费av毛片| av国产精品久久久久影院| 亚洲精品日本国产第一区| 亚洲精品中文字幕在线视频| 亚洲人成77777在线视频| 最近最新中文字幕大全免费视频 | 久久久久国产网址| 色吧在线观看| 999久久久国产精品视频| 交换朋友夫妻互换小说| 制服人妻中文乱码| 国产日韩欧美视频二区| www.精华液| 一区二区三区乱码不卡18| 黄色 视频免费看| 国产一区二区激情短视频 | 久久女婷五月综合色啪小说| 欧美日韩精品成人综合77777| 欧美日韩视频高清一区二区三区二| 最近手机中文字幕大全| 黑人巨大精品欧美一区二区蜜桃| 18+在线观看网站| 亚洲激情五月婷婷啪啪| 丰满乱子伦码专区| 一边摸一边做爽爽视频免费| 日本黄色日本黄色录像| 亚洲欧洲精品一区二区精品久久久 | 欧美日韩av久久| 欧美激情极品国产一区二区三区| 欧美中文综合在线视频| 久久精品国产a三级三级三级| 日韩一本色道免费dvd| 王馨瑶露胸无遮挡在线观看| 亚洲在久久综合| 久久久国产一区二区| 在线亚洲精品国产二区图片欧美| 免费人妻精品一区二区三区视频| 欧美日韩av久久| 国产成人精品在线电影| 亚洲 欧美一区二区三区| 久久精品熟女亚洲av麻豆精品| 免费播放大片免费观看视频在线观看| 啦啦啦啦在线视频资源| 国产精品 国内视频| 久久精品国产综合久久久| 亚洲国产精品999| 最近最新中文字幕免费大全7| 亚洲av综合色区一区| 国产成人精品无人区| 一级片'在线观看视频| 亚洲精品第二区| 国产在线视频一区二区| 亚洲人成网站在线观看播放| av女优亚洲男人天堂| 国产野战对白在线观看| 国产日韩欧美视频二区| 男人添女人高潮全过程视频| 人人妻人人澡人人爽人人夜夜| 欧美日韩亚洲国产一区二区在线观看 | 99热国产这里只有精品6| 国产av国产精品国产| 国产亚洲av片在线观看秒播厂| 亚洲精品视频女| 人人澡人人妻人| 欧美精品亚洲一区二区| 久久久国产精品麻豆| 国产成人91sexporn| 男男h啪啪无遮挡| 天天影视国产精品| 亚洲av日韩在线播放| 亚洲欧洲精品一区二区精品久久久 | 精品一区二区三区四区五区乱码 | 亚洲欧美精品自产自拍| 国产精品免费大片| 在线免费观看不下载黄p国产| 成人免费观看视频高清| 在线观看三级黄色| 亚洲av免费高清在线观看| 亚洲欧美成人精品一区二区| 亚洲国产av影院在线观看| 最近的中文字幕免费完整| 欧美日本中文国产一区发布| av片东京热男人的天堂| 国产日韩欧美视频二区| 成人亚洲欧美一区二区av| 欧美中文综合在线视频| 麻豆精品久久久久久蜜桃| a级片在线免费高清观看视频| 国产精品无大码| 好男人视频免费观看在线| 两个人免费观看高清视频| 国产国语露脸激情在线看| 午夜日韩欧美国产| 久久久久久久亚洲中文字幕| 亚洲精品视频女| 免费观看无遮挡的男女| 亚洲精品中文字幕在线视频| 亚洲一码二码三码区别大吗| 久久午夜综合久久蜜桃| 国产在线一区二区三区精| 婷婷色麻豆天堂久久| 日日爽夜夜爽网站| 乱人伦中国视频| 亚洲欧美精品自产自拍| 校园人妻丝袜中文字幕| 波多野结衣av一区二区av| 一区二区三区精品91| 在线观看免费高清a一片| 青春草视频在线免费观看| 亚洲天堂av无毛| 夜夜骑夜夜射夜夜干| 久久这里有精品视频免费| 亚洲精品自拍成人| 国产亚洲欧美精品永久| 麻豆乱淫一区二区| 精品一品国产午夜福利视频| 国产精品无大码| 久久久久国产精品人妻一区二区| 久久久久久久久久久久大奶| 777久久人妻少妇嫩草av网站| 天堂中文最新版在线下载| 99久久综合免费| 亚洲国产日韩一区二区| 亚洲精品av麻豆狂野| 人人妻人人爽人人添夜夜欢视频| 精品第一国产精品| 18禁国产床啪视频网站| 丰满迷人的少妇在线观看| 人妻 亚洲 视频| 一边亲一边摸免费视频| 午夜免费观看性视频| 777米奇影视久久| 日本91视频免费播放| 免费在线观看黄色视频的| 丝袜在线中文字幕| 欧美bdsm另类| 女人被躁到高潮嗷嗷叫费观| 国产熟女午夜一区二区三区| 免费黄网站久久成人精品| 欧美xxⅹ黑人| 欧美人与性动交α欧美软件| 久久人妻熟女aⅴ| 精品久久久精品久久久| 中文字幕人妻丝袜制服| 亚洲欧美清纯卡通| 在线看a的网站| 国产精品熟女久久久久浪| 免费女性裸体啪啪无遮挡网站| 天天躁日日躁夜夜躁夜夜| 成人免费观看视频高清| 精品国产国语对白av| 精品酒店卫生间| 免费观看性生交大片5| 国产探花极品一区二区| 久久99热这里只频精品6学生| 午夜福利,免费看| 91久久精品国产一区二区三区| 日韩欧美一区视频在线观看| 免费av中文字幕在线| 午夜免费观看性视频| 免费久久久久久久精品成人欧美视频| 日韩一区二区视频免费看| 精品久久蜜臀av无| 在线观看免费视频网站a站| 亚洲内射少妇av| 国产xxxxx性猛交| 欧美精品国产亚洲| 久久这里有精品视频免费| 国产精品秋霞免费鲁丝片| 亚洲国产最新在线播放| 丰满迷人的少妇在线观看| 熟妇人妻不卡中文字幕| 永久免费av网站大全| 嫩草影院入口| 国产伦理片在线播放av一区| 26uuu在线亚洲综合色| 天天躁日日躁夜夜躁夜夜| 精品一区二区三卡| 亚洲美女视频黄频| 欧美国产精品va在线观看不卡| 国产精品不卡视频一区二区| 日韩精品有码人妻一区| 久久国内精品自在自线图片| 国产精品香港三级国产av潘金莲 | 飞空精品影院首页| 亚洲精品aⅴ在线观看| 国产成人av激情在线播放| a级片在线免费高清观看视频| 久久影院123| 亚洲精华国产精华液的使用体验| 久久热在线av| 国产在线免费精品| 国产免费视频播放在线视频| 欧美最新免费一区二区三区| 不卡av一区二区三区| 国产福利在线免费观看视频| 丝袜脚勾引网站| 一级,二级,三级黄色视频| 亚洲欧美一区二区三区国产| 久久99蜜桃精品久久| 啦啦啦啦在线视频资源| 又大又黄又爽视频免费| 精品人妻一区二区三区麻豆| 国产成人精品婷婷| 赤兔流量卡办理| 亚洲av电影在线观看一区二区三区| 日韩在线高清观看一区二区三区| 国产成人av激情在线播放| 久久鲁丝午夜福利片| 亚洲精品av麻豆狂野| 亚洲经典国产精华液单| 高清欧美精品videossex| 久久99一区二区三区| 午夜激情av网站| 亚洲精品久久久久久婷婷小说| 妹子高潮喷水视频| 最新中文字幕久久久久| tube8黄色片| 高清av免费在线| 久久毛片免费看一区二区三区| 久久影院123| 捣出白浆h1v1| 欧美日韩国产mv在线观看视频| 久久人妻熟女aⅴ| 下体分泌物呈黄色| 成人手机av| 午夜精品国产一区二区电影| 一本—道久久a久久精品蜜桃钙片| 国产一区有黄有色的免费视频| 免费久久久久久久精品成人欧美视频| 免费在线观看完整版高清| 久久97久久精品| 欧美最新免费一区二区三区| 成年人午夜在线观看视频| 亚洲精品视频女| 国产精品久久久久久精品古装| 看非洲黑人一级黄片| 精品人妻一区二区三区麻豆| 午夜久久久在线观看| 久久久欧美国产精品| 天美传媒精品一区二区| 色网站视频免费| 亚洲一区中文字幕在线| 久久99蜜桃精品久久| 狠狠精品人妻久久久久久综合| 亚洲伊人久久精品综合| 久久婷婷青草| 校园人妻丝袜中文字幕| 国产精品av久久久久免费| 国产片特级美女逼逼视频| av不卡在线播放| 欧美日韩av久久| 亚洲一区二区三区欧美精品| 国产一级毛片在线| 女人精品久久久久毛片| 欧美变态另类bdsm刘玥| av在线播放精品| 国产有黄有色有爽视频| 久久久久国产精品人妻一区二区| 欧美日韩精品成人综合77777| av在线app专区| 高清av免费在线| 人妻一区二区av| 大片免费播放器 马上看| 满18在线观看网站| 激情视频va一区二区三区| 日韩精品有码人妻一区| 青春草视频在线免费观看| 丰满迷人的少妇在线观看| 国产精品.久久久| 午夜福利影视在线免费观看| 1024视频免费在线观看| 久久人人97超碰香蕉20202| 精品久久蜜臀av无| 国产成人一区二区在线| 亚洲欧美一区二区三区久久| 欧美精品人与动牲交sv欧美| 女人被躁到高潮嗷嗷叫费观| 国产精品人妻久久久影院| 18禁国产床啪视频网站| 色播在线永久视频| 一级片免费观看大全| 亚洲国产欧美日韩在线播放| 中文字幕色久视频| 欧美变态另类bdsm刘玥| 午夜福利视频精品| 欧美精品人与动牲交sv欧美| 久久久久久人人人人人| 久久久久视频综合| 久久av网站| 99久久综合免费| 亚洲av欧美aⅴ国产| 亚洲国产欧美日韩在线播放| av又黄又爽大尺度在线免费看| a级片在线免费高清观看视频| av卡一久久| 国产成人精品久久二区二区91 | 一级黄片播放器| 亚洲欧美成人综合另类久久久| 男人添女人高潮全过程视频| xxxhd国产人妻xxx| 亚洲av日韩在线播放| 国产无遮挡羞羞视频在线观看| 国产一区二区在线观看av| 久热这里只有精品99| 看免费av毛片| 成年美女黄网站色视频大全免费| 三级国产精品片| 色婷婷av一区二区三区视频| 亚洲视频免费观看视频| 王馨瑶露胸无遮挡在线观看| 亚洲av中文av极速乱| www.自偷自拍.com| 午夜久久久在线观看| 欧美激情极品国产一区二区三区| 亚洲一区中文字幕在线| 少妇被粗大猛烈的视频| 欧美97在线视频| 免费观看性生交大片5| 寂寞人妻少妇视频99o| 亚洲av综合色区一区| 爱豆传媒免费全集在线观看| 欧美+日韩+精品| 99久久精品国产国产毛片| 青草久久国产| 国产一区有黄有色的免费视频| 9色porny在线观看| 你懂的网址亚洲精品在线观看| 秋霞在线观看毛片| 七月丁香在线播放| 国产精品不卡视频一区二区| 一本久久精品| 亚洲美女黄色视频免费看| 亚洲国产毛片av蜜桃av| 人人妻人人添人人爽欧美一区卜| 日本免费在线观看一区| 成人二区视频| 国产一区亚洲一区在线观看| 老汉色av国产亚洲站长工具| 男人爽女人下面视频在线观看| 国产成人免费无遮挡视频| 国产成人精品无人区| 中文字幕制服av| www.精华液| 人人妻人人澡人人爽人人夜夜| 最近的中文字幕免费完整| 精品久久久久久电影网| 宅男免费午夜| 一级毛片我不卡| 黄片无遮挡物在线观看| 日韩视频在线欧美| 国产av国产精品国产| 老鸭窝网址在线观看| 乱人伦中国视频| 中国国产av一级| 肉色欧美久久久久久久蜜桃| 另类精品久久| 亚洲av福利一区| 久久鲁丝午夜福利片| 人妻少妇偷人精品九色| 日韩制服骚丝袜av| 免费在线观看完整版高清| av不卡在线播放| 看非洲黑人一级黄片| 赤兔流量卡办理| 精品久久久精品久久久| 午夜av观看不卡| 精品一区二区三卡| av卡一久久| 免费人妻精品一区二区三区视频| 午夜影院在线不卡| xxxhd国产人妻xxx| 国产精品 国内视频| 女人高潮潮喷娇喘18禁视频| 国产精品女同一区二区软件| 满18在线观看网站| 自线自在国产av| 久久久久人妻精品一区果冻| 一级毛片黄色毛片免费观看视频| 蜜桃国产av成人99| 国产亚洲午夜精品一区二区久久| 亚洲成人av在线免费| 免费看av在线观看网站| 大码成人一级视频| 中文字幕人妻丝袜一区二区 | 日韩电影二区| 久久韩国三级中文字幕| 亚洲精品,欧美精品| 美女午夜性视频免费| 天美传媒精品一区二区| 天天躁夜夜躁狠狠久久av| 国产日韩欧美亚洲二区| xxxhd国产人妻xxx| 久久久亚洲精品成人影院| 在线观看人妻少妇| 国精品久久久久久国模美| 亚洲精品日韩在线中文字幕| 久久久久久久亚洲中文字幕| 免费观看无遮挡的男女| 免费高清在线观看视频在线观看| 久久国产精品男人的天堂亚洲| 国产精品久久久久久av不卡| 久久精品亚洲av国产电影网| 男女无遮挡免费网站观看| 午夜免费鲁丝| 香蕉丝袜av| 最近2019中文字幕mv第一页| av有码第一页| 国产麻豆69| 国产免费又黄又爽又色| √禁漫天堂资源中文www| 18+在线观看网站| 最近中文字幕高清免费大全6| 狠狠婷婷综合久久久久久88av| 亚洲五月色婷婷综合| 日产精品乱码卡一卡2卡三| 伊人久久大香线蕉亚洲五|