• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Roles of Rap1 signaling in tumor cell migration and invasion

    2017-02-27 05:54:21YiLeiZhangRuoChenWangKenChengBrianRingLiSuKeyLaboratoryofMolecularBiophysicsofMinistryofEducationSchoolofLifeScienceandTechnologyHuazhongUniversityofScienceandTechnologyWuhan40074ChinaSunYatsenUniversityGuangzhou50
    Cancer Biology & Medicine 2017年1期

    Yi-Lei Zhang, Ruo-Chen Wang, Ken Cheng, Brian Z. Ring, Li Su,Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 40074, China;Sun Yat-sen University, Guangzhou 5075, China;Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 5806, China

    Roles of Rap1 signaling in tumor cell migration and invasion

    Yi-Lei Zhang1, Ruo-Chen Wang1, Ken Cheng2, Brian Z. Ring1, Li Su1,31Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;2Sun Yat-sen University, Guangzhou 510275, China;3Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China

    Ras-associated protein-1 (Rap1), a small GTPase in the Ras-related protein family, is an important regulator of basic cellular functions (e.g., formation and control of cell adhesions and junctions), cellular migration, and polarization. Through its interaction with other proteins, Rap1 plays many roles during cell invasion and metastasis in different cancers. The basic function of Rap1 is straightforward; it acts as a switch during cellular signaling transduction and regulated by its binding to either guanosine triphosphate (GTP) or guanosine diphosphate (GDP). However, its remarkably diverse function is rendered by its interplay with a large number of distinct Rap guanine nucleotide exchange factors and Rap GTPase activating proteins. This review summarizes the mechanisms by which Rap1 signaling can regulate cell invasion and metastasis, focusing on its roles in integrin and cadherin regulation, Rho GTPase control, and matrix metalloproteinase expression.

    Tumor; metastasis; Rap1; RapGEFs; RapGAPs

    Introduction

    Cell migration and tumor metastasis are responsible for up to 90% of cancer-associated mortality1. Ras-associated protein-1 (Rap1) plays important roles in the regulation of multiple key events in tumor cell migration, invasion, and metastasis. Rap1, a member of the 21-kilodalton Ras-like small GTPase family, can bind to either guanosine triphosphate (GDP) or guanosine diphosphate (GDP) and is modulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs)2,3. Rap1 shares a high degree of sequence identity (53%) with Ras protein4and can revert the phenotype of K-Ras-transformed cells5. Consistent with this observation, overexpressed Rap1V12, a constitutively active form of Rap1 (Rap1GTP), inhibits lysophosphatidic acid (LPA)-induced Ras-dependent ERK activation6. However, Rap1 can also activate B-Raf and ERKs in a manner independent and distinct of Ras7. The many roles of Rap1 include its participation in regulation of integrin- and cadherin-mediated cell adhesion in response to various membrane receptors8and regulation of both the recycling,avidity, and affinity of integrins by modulating an inside-out activation process9-11. Rap1 activation may promote the formation of cadherin-mediated cell-cell contacts through inside-out regulation12or cell-cell contact-induced E-cadherin-mediated outside-in signaling13.

    Regulation of Rap1 activity is primarily controlled by RapGEFs and GAPs (Figure 1). The dissociation rate of nucleotides from Rap1 is slow; however, GEFs accelerate this exchange reaction by several orders of magnitude14. Given that GEFs weaken the association between Rap1 and nucleotides, increases in GTP-bound forms over GDP-bound forms are caused by the higher intracellular concentration of GTP than GDP by approximately ten times15. GEFs contain a catalytic CDC25 homology domain and show selective activity for Rap1, although some GEFs can interact with other small G proteins16. This modulation of nucleotide binding of GEFs allows GEFs to respond to diverse stimuli, resulting in spatiotemporal regulation of Rap1. For example, RapGEFs, such as Epac1 and Epac2, are directly regulated by the secondary messenger cAMP, which controls local Epac-Rap1 signaling through its cellular distribution. Epac1 activation triggers the relocalization of Epac1 to the plasma membrane, activating membrane-localized Rap1 and enhancing integrin-mediated cell adhesion17. Another RapGEF, C3G, is regulated through post-translational modifications by Src and interacts with adaptor proteins of the Crk family upon activation of several receptors, includingplatelet-derived growth factor receptor and insulin receptor18-20. Rap1-bound GTP is efficiently hydrolyzed into GDP in the presence of RapGAPs, which accelerate the GTP hydrolysis reaction by several orders of magnitude.

    Figure 1 Mechanisms by which Rap1 signaling controls tumor cell invasion and metastasis. Rap1 signaling regulates integrin- or cadherinmediated cell adhesion, expression levels of proteases (e.g., matrix metalloproteinase), and cytoskeletal changes, which are linked to tumor cell proliferation, invasion, and metastasis.

    Two families of Rap1-specific GAPs exist: the Rap1GAP and SIPA1 families21. The mechanism through which all GAPs catalyze GTP hydrolysis primarily depends on the stabilization of the catalytic machinery of G protein through insertion of a catalytic side chain into the nucleotide-binding pocket, an arginine side chain for RasGAPs and asparagine side chain for RapGAPs22. Through differentially distributed subcellular features, such as protein-protein interactions and epigenetic modifications, RapGAPs target different Rap1-dependent signaling complexes and consequently perform distinct cellular functions. For example, Rap1GAP is recruited from the cytosol to the plasma membrane by its interaction with Gαz, which is activated by G protein coupled receptors23. E6 oncoprotein binds to SIPA1L1 (E6TP1) and targets it for degradation, resulting in deregulation of Rap1 activity24. In melanoma cells, Rap1GAP is downregulated via promoter methylation, promoting Rap1 activation, ERK phosphorylation, and cell proliferation and survival25.

    Moreover, the diversity of cellular functions regulated by small G proteins is determined by the distinct downstream effectors of these proteins. The effectors of Rap1 include the adaptor proteins AF-6, RAPL, Ezrin, Rasip1, Radil, Krit1, RacGEFs (e. g. , Tiam1 and Vav2), and RhoGAPs, including RA-RhoGAP and Arap326-31, which contribute to the regulation of Rap1-dependent cellular functions, such as cell adhesion, junction, migration, and polarization. RAPL deficiency has been speculated to significantly reduce the ability of chemokine-stimulated lymphocytes to adhere to ICAM and migrate into peripheral lymph nodes and spleen26. AF-6 interacts with p120 catenin and inhibits E-cadherin endocytosis in a Rap1-dependent manner27, affecting E-cadherin-mediated cell-cell adhesion. Rasip1 mediates Rap1-induced cell spreading without affecting adhesion; it induces junctional tightening via interaction with Radil28. Concomitantly, Rap1 promotes translocation of Radil from cytoplasm to plasma membrane, and Radil overexpression increases cell adhesion29. Rap1 interacts with Tiam1 and Vav2 without affecting their catalytic activity but in turn activates Rac and CDC42, regulating cell polarization and movement30,31. Furthermore, the Rap1 effector B-Raf can mediate ERK activation, and regulation of PI3K/Akt by Rap1 is an important mechanism in the control of cell survival and proliferation32(Figure 1).

    Tumor cell migration, invasion, and metastasis: roles of Rap1 signaling and its regulators

    The diverse roles of Rap1 in the regulation of normal cell growth are translated into several distinct activities in tumorcell development. Rap1 demonstrates distinct actions during metastasis depending on the assay employed and cancer type studied (Table 1) based on standard assays used to determine the roles of Rap1 include overexpression of wild-type Rap1 or its active mutants (Rap1V12 or Rap1E63), the use of extracellular stimuli, such as HGF, TGFβ, EGF, or cAMP analogs, and the use of siRNAs and the pharmacological inhibitor GGTI-298, followed by assessment of the invasive capacity of tumor cells by means of scratch and Transwell assays in vitro or xenograft models in vivo. Active Rap1 inhibits tumor invasion and metastasis in bladder, lung, and brain33,34, whereas it has the opposite effect in melanoma, leukemia, breast cancer, esophageal squamous cell carcinoma, head and neck squamous cell carcinoma (HNSCC), pancreatic carcinoma, and non-small cell lung carcinoma35-40. Rap1 activation promotes the adhesion of lymphoma cells to endothelial cells and its subsequent transmigration into the hematopoietic system, through which lymphoma cells spread to distant organs39. Moreover, Rap1E63 contributes to the invasive ability of prostate cancer cells41, whereas Rap1V12 suppresses prostate cancer metastasis42. Additionally, both Rap1V12 and Rap1GAP impair the migratory and invasive abilities of melanoma cells39, whereas the two isoforms of Rap1, Rap1A, and Rap1B exert the opposite effect on cell motility in glioma43,44. These manifold phenotypes reflect the multiple signaling pathways that exist downstream of Rap1.

    Similar to Rap1, which plays diverse roles in tumor metastasis, Rap1 regulators are pleiotropic (Table 2). Overexpression of the Rap1 activator DOCK4 suppresses invasion of mouse osteosarcoma cells45. Targeted shRNA-mediated EPAC1 inhibition reduces pancreatic cancer cell migration and invasion46. Stable expression of a nondegradable mutant of RAPGEF2 in breast cancer cells blocks tumor invasion and metastasis47. Rap1GAP inhibits tumor cell invasion in pancreatic carcinoma, thyroid carcinoma, melanoma, renal carcinoma, and colon cancer48-50; however, increased expression of Rap1GAP induces cell invasion in leukemia51. High expression of SIPA1 promotes tumor invasion and metastasis in prostate cancer, melanoma, and breast cancer52,53In colon cancer, downregulation of endogenous SIPA1 increases the invasive ability of cells54. This finding is inconsistent with the result for ovarian cancer, wherein C3G/Rap1 signaling promotes cell invasion, whereas Rap1GAP does not affect cell mobility55,56. Most of the studies included in Table 2 also assessed the role of Rap1 and the effect of GEFs and GAPs on tumor invasion and metastasis. Exceptions are the study on Rap1GAP in pancreatic carcinoma49and SIPA1 in melanoma and colorectal carcinoma52,54; these studies did not assess whether Rap1 is involved in the observed cellular changes.

    Other potential functions of Rap1 GEFs and GAPs in addition to their regulatory role on Rap1 activity cannot be ruled out. A recent study demonstrated that nuclear SIPA1 could activate integrin β1 promoter and promote breast cancer cell invasion in a Rap1-independent manner53. Moreover, the opposite influences of Rap1GAP and SIPA1 on regulation of melanoma cell invasion imply that there exist multiple mechanisms through which Rap1GAPs can affect cell migration and invasion. Several independent investigations have shown that the Rap1 GEF PDZ-GEF2 promotes tumor cell invasion in colon cancer, whereas Rap1GAP and SIPA1 suppresses cancer cell invasion54,57. This finding suggests a potential central role of Rap1 signaling and Rap1 signaling partners in colorectal carcinoma metastasis, and that the function of the Rap1 signaling proteins in tumor metastasis is very complex and mediates the effect of a host of other cellular and tissue-specific factors. Dissemination of tumor cells from the original tumor mass involves a breakdown of cell-cell adhesion. Tumor cell migration is promoted by disruption of the extracellular matrix to form a proteolytic microtrack. Rap1 signaling participates in several processes that contribute to these events (Figure 2), as outlined below.

    Rap1 signaling regulates cell adhesion

    Rap1 signaling regulates integrins and cadherins, which play important roles in cell adhesion to ECM and in cell-cell adhesion58. In lung cancer, cAMP-induced Epac-Rap activation suppresses TGFβ- and HGF-stimulated cell migration by enhancing cell-cell adhesion34. JAM-A drives breast cancer cell migration and adhesion through activation of Rap1 and integrin β1 and formation of a complex between JAM-A, AF-6, and PDZ-GEF236. Disrupting the balance in Rap1 activity in melanoma cells via expression of Rap1V12 or Rap1GAP impairs cell adhesion and migration via the FAK-and integrin-dependent pathways39. Given that both Rap1-specific GAPs Rap1GAP and SIPA1 inhibit cell adhesion to ECM, concluding that Rap1 plays a role in the regulation of cell adhesion is reasonable25,52. In prostate cancer cells, SIPA1 promotes tumor cell invasion and metastasis at least partially by inhibiting Rap1-mediated cell adhesion to ECM42. Reduced cell-cell adhesion is required for individual cell dissemination and invasion at the leading edge of the tumor mass during epithelial mesenchymal transition (EMT), and mesenchymal-migrating tumor cells require strong cell-to-ECM adhesion, whereas amoeboid movement does not58. In terms of the specific role of Rap1 in regulating integrin activation and integrin-mediated cell adhesion, Rap1 forms a complex containing talin combined with RIAM, which

    Table 1 Rap1 in tumor cell invasion and metastasis

    Table 2 Role of Rap1 GEFs and GAPs in tumor cell invasion and metastasis

    Figure 2 Dynamic change in Rap1 signaling during tumor cell invasion and metastasis. Dynamic change or cycling of Rap1 activity is required for invasive and metastatic behavior of tumor cells. For instance, while inactivation of Rap1-cadherin or integrin signaling is associated with reduced cell-cell adhesion or cell adhesion to extracellular matrix in one stage (steps 1 and 3), a separate step might entail increased Rap1 activity and cell adhesion (steps 2, 4, 5, and 6).

    targets talin to integrin59. However, a complete description of the roles of Rap1 in mediating cell adhesion in tumor cell invasion and metastasis requires further clarification.

    Rap1 signaling modulates expression of matrix metalloproteinases (MMPs)

    During tumor invasion and metastasis, MMPs degrade ECM barriers, cleave and activate target proteins, and regulate cell adhesion. In HNSCCs, Rap1 promotes nuclear localization of β-catenin, which induces TCF-dependent MMP7 transcription, thereby contributing to tumor cell invasion37. Knockdown of C3G in ovarian cancer cells reduces MMP2 and MMP9 production and Rap1-GTP level56. However, in HNSCCs, overexpression of Rap1GAP increases the expression levels of MMP2 and MMP9 and the invasive capacity of cells, although the role of Rap1 in this process is unclear62. Overexpression of SIPA1 in prostate cancer cells reduces MMP12 expression42. By contrast, SIPA1 knockdown in breast cancer cells reduces MMP9 expression through the FAK/Akt pathway53.

    Rap1 signaling controls Rho GTPase-mediated regulation of cytoskeletal dynamics

    Several Rho family members function in actin cytoskeleton rearrangement and consequently in modulation of cell motility. Rap1 signaling can participate in motility regulation involving Rho family proteins, particularly Cdc42, Rac1, and RhoA. Rap1 associates with RacGEFs, such as Vav2 and Tiam1, to induce translocation of Vav2 and activates Rac1 to promote cell spreading30. Cdc42 activation by Rap1 increases the activity of cell polarization-related protein complex, which in turn activates Rac1 through Tiam1 and subsequently enhances cell polarization31. Moreover, Rap1 can interact with and activates Arap3, a RhoA GAP. During tumor metastasis, Rap1 increases the ability of melanoma cell to migrate via Vav2-dependent activation of the RhoA/ ROCK/MLC pathway60. In vitro overexpressed Rap1GAP inhibits Rap1, Rac1 activation, and thyroid tumor cell migration61. Additionally, Rap1's inhibitory effects on bladder cancer and glioma cell migration are intensified by reduced Rac1 activity33,43. Rap1 signaling can regulate Rhofamily protein activities either positively or negatively, causing a wide range of effects on tumor cell invasion and metastasis.

    Rap1 signaling controls cell proliferation

    Tumor cell growth can increase tumor volume and mass, contributing to invasion via physical pushing63. An inhibitory effect of Rap1 signaling-related molecules on cell proliferation and invasion has been repeatedly observed; for instance, DOCK4 inhibits osteosarcoma and Rap1GAP inhibits pancreatic cancer, thyroid carcinoma, and melanoma cells25,45,48,49. Additionally, SIPA1 drives both cell proliferation and invasion in melanoma cells52. SIPA1-induced expression exerts little effect on primary tumor mass in prostate cancer but significantly increases both tumor cell invasion and metastasis, suggesting that SIPA1 promotes metastasis through mechanisms other than proliferation42. SIPA1 knockdown impairs the invasive capacity of breast cancer cells while it enhances their proliferation53. Similarly, overexpression of Rap1V12 in melanoma cells increases tumor mass but inhibits tumor metastasis in vivo39. Moreover, Rap1GAP overexpression inhibits cell growth but induces MMP2- and MMP9-mediated oropharyngeal squamous carcinomas cell invasion51.

    Regulation of Rap1 is dependent on tissue and subcellular-specific factors

    Rap1 signaling can affect metastasis in different manners depending on tumor types (Table 3). Tissue-specific protein expression in different tumor types likely contributes to theregulation of Rap1 signaling, similar to the spatiotemporally regulated patterns of gene expression during tumor development64. Indeed, Rap1 has been implicated in the activation and inhibition of ERK pathway in different cell types21; cAMP-induced activation of Rap1 inhibits C-Rafinduced ERK activation65. However, in neuronal cells expressing B-Raf, activated Rap1 can directly bind to B-Raf and induces downstream ERK activation7,66. Additionally, over-activation or inactivation of Rap1 inhibits melanoma cell motility, suggesting that change in Rap1 activity is critical for the metastatic dissemination of melanoma cells39. The interaction of Rap1 signaling with tissue-specific factors may explain this considerably diverse functions of Rap1. For example, while basal level of Rap1-GTP maintains cell adhesion, insulin-like growth factor type I receptor transiently regulates Rap1 activity through C3G and Rap1GAP to promote cell movement67.

    Table 3 Bidirectional effects of Rap1 signaling in different tumor types

    Protein subcellular localization of Rap1 is vital to the specificity and diversity of its function68. Relatedly, tumor cell dissemination and invasion depends on the stability and activity of Rap1 (Figure 2). Rap1 phosphorylation prevents the membrane association of Rap1, resulting in cytosolic and nuclear accumulation and in subsequent decrease in Rap1-dependent cell adhesion69,70. In addition, Rap1 stabilizes βcatenin in the nucleus and enhances β-catenin-dependent transcription and invasion in HNSCC37,51. SIPA1, recruited by AF6 and co-localized with Rap1 at cell adhesion sites, inhibits endogenous Rap1GTP and integrin β1-mediated cell adhesion to fibronectin71. However, nuclear-localized SIPA1 activates the integrin β1 gene promoter and promotes cell invasion and adhesion (Figure 3)53.

    Novel targets for the prevention of metastasis: insights from related studies on Rap1 signaling

    Prevention or early detection of the initial dissemination of tumor cells and secondary spread of tumor is an important goal in research aiming to find better clinical therapies72. In a melanoma metastasis model, six distinct Rap1-regulating molecules were used to predict the aggressive capability of melanoma cells52. Several inhibitors of cell motility, such as metalloproteinase inhibitor73and the fascin inhibitor Migrastatin74, have been suggested to demonstrate clinical utility in preventing tumor cell dissemination and subsequent invasion and metastasis. However, formation of metastases often occurs prior to the diagnosis of cancer. The Rap1 signaling pathway offers many targets for novel clinical tools given that Rap1 affects not only cell polarity and cell adhesion but also cell proliferation and invasion. Treatmentwith the demethylating agent 5-aza-2'-deoxycytidine induces Rap1GAP expression and reduces melanoma cell proliferation and survival25. In addition, treatment with 5-aza-deoxycytidine and/or the histone deacetylation inhibitor trichostatin A induces Rap1GAP expression in thyroid tumor cells, reducing cell invasion and proliferation48,75. Additional studies on these and other novel reagents targeting Rap1 signaling molecules are called for.

    Figure 3 Subcellular localization of Rap1 and SIPA1 during tumor cell invasion and metastasis. Subcellular localization of Rap1 (A) and SIPA1 (B) contributes to their distinct functions within a cell.

    Conclusions

    Rap1 signaling plays several important roles in tumor cell invasion and metastasis. The full scope of its functions remains unknown; Rap1 can induce very distinct effects depending on the tissue in which Rap1 is expressed. Therefore, the specific functions and effects of Rap1 signaling on metastasis in different tumor types remains a subject of continuing research. Additionally, many proteins contribute to the diversity in the control of tumor invasion and metastasis by Rap1 signaling, and the full panoply of factors that work with Rap1 resulting in diverse control mechanisms is not yet fully elucidated. Future works employing high throughput screening strategies to identify new molecules contributing to Rap1 signaling and real-time monitoring of Rap1 signaling during tumor invasion and metastasis are needed to further define the roles of Rap1.

    Acknowledgements

    This study is supported by grants from the National Natural Science Foundation of China (Grant No. 31271504 and 31471310) and the Shenzhen Science and Technology Innovation Committee, China (Grant No. JCYJ2013040 1144744187).

    Conflict of interest statement

    No potential conflicts of interest are disclosed.

    1.Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011; 147: 275–92.

    2.Gloerich M, Bos JL. Regulating rap small G-proteins in time and space. Trends Cell Biol. 2011; 21: 615–23.

    3.Hattori M, Minato N. Rap1 GTPase: functions, regulation, and malignancy. J Biochem. 2003; 134: 479–84.

    4.Caron E. Cellular functions of the Rap1 GTP-binding protein: a pattern emerges. J Cell Sci. 2003; 116: 435–40.

    5.Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M. A rasrelated gene with transformation suppressor activity. Cell. 1989; 56: 77–84.

    6.Cook SJ, Rubinfeld B, Albert I, McCormick F. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 1993; 12: 3475–85.

    7.Vossler MR, Yao H, York RD, Pan MG, Rim CS, Stork PJS. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell. 1997; 89: 73–82.

    8.Retta SF, Balzac F, Avolio M. Rap1: a turnabout for the crosstalk between cadherins and integrins. Eur J Cell Biol. 2006; 85: 283–93.

    9.Bos JL, de Bruyn K, Enserink J, Kuiperij B, Rangarajan S, Rehmann H, et al. The role of Rap1 in integrin-mediated cell adhesion. Biochem Soc Trans. 2003; 31: 83–6.

    10.Dustin ML, Bivona TG, Philips MR. Membranes as messengers in T cell adhesion signaling. Nat Immunol. 2004; 5: 363–72.

    11.Lafuente EM, van Puijenbroek AAFL, Krause M, Carman CV, Freeman GJ, Berezovskaya A, et al. RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell. 2004; 7: 585–95.

    12.Pannekoek WJ, Kooistra MRH, Zwartkruis FJT, Bos JL. Cell-cell junction formation: the role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochim Biophys Acta. 2009; 1788: 790–6.

    13.Balzac F, Avolio M, Degani S, Kaverina I, Torti M, Silengo L, et al. E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J Cell Sci. 2005; 118: 4765–83.

    14.Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001; 294: 1299–304.

    15.Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J. The structural basis of the activation of Ras by Sos. Nature. 1998; 394: 337–43.

    16.Rebhun JF, Castro AF, Quilliam LA. Identification of Guanine Nucleotide Exchange Factors (GEFs) for the Rap1 GTPase: regulation of MR-GEF by M-RAS-GTP interaction. J Biol Chem. 2000; 275: 34901-8.

    17.Ponsioen B, Gloerich M, Ritsma L, Rehmann H, Bos JL, Jalink K. Direct spatial control of Epac1 by cyclic AMP. Mol Cell Biol. 2009; 29: 2521–31.

    18.Takahashi M, Rikitake Y, Nagamatsu Y, Hara T, Ikeda W, Hirata K, et al. Sequential activation of Rap1 and Rac1 small G proteins by PDGF locally at leading edges of NIH3T3 cells. Genes Cells. 2008; 13: 549–69.

    19.Ohba Y, Ikuta K, Ogura A, Matsuda J, Mochizuki N, Nagashima K, et al. Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J. 2001; 20: 3333–41.

    20.Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, et al. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature. 2001; 410: 944–8.

    21.Bos JL, de Rooij J, Reedquist KA. Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol. 2001; 2: 369–77.

    22.Raaijmakers JH, Bos JL. Specificity in Ras and Rap signaling. J Biol Chem. 2009; 284: 10995–9.

    23.Meng JW, Glick JL, Polakis P, Casey PJ. Functional interaction between Gαzand Rap1GAP suggests a novel form of cellular crosstalk. J Biol Chem. 1999; 274: 36663–9.

    24.Gao QS, Srinivasan S, Boyer SN, Wazer DE, Band V. The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Mol Cell Biol. 1999; 19: 733–44.

    25.Zheng H, Gao L, Feng YF, Yuan LY, Zhao HB, Cornelius LA. Down-regulation of Rap1GAP via promoter hypermethylation promotes melanoma cell proliferation, survival, and migration. Cancer Res. 2009; 69: 449–57.

    26.Katagiri K, Ohnishi N, Kabashima K, Iyoda T, Takeda N, Shinkai Y, et al. Crucial functions of the Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nat Immunol. 2004; 5: 1045–51.

    27.Hoshino T, Sakisaka T, Baba T, Yamada T, Kimura T, Takai Y. Regulation of E-cadherin endocytosis by nectin through afadin, Rap1, and p120ctn. J Biol Chem. 2005; 280: 24095–103.

    28.Post A, Pannekoek WJ, Ross SH, Verlaan I, Brouwer PM, Bos JL. Rasip1 mediates Rap1 regulation of Rho in endothelial barrier function through ArhGAP29. Proc Natl Acad Sci U S A. 2013; 110: 11427–32.

    29.Liu LH, Aerbajinai W, Ahmed SM, Rodgers GP, Angers S, Parent CA. Radil controls neutrophil adhesion and motility through β2-integrin activation. Mol Biol Cell. 2012; 23: 4751–65.

    30.Arthur WT, Quilliam LA, Cooper JA. Rap1 promotes cell spreading by localizing Rac guanine nucleotide exchange factors. J Cell Biol. 2004; 167: 111–22.

    31.Gérard A, Mertens AEE, van der Kammen RA, Collard JG. The Par polarity complex regulates Rap1- and chemokine-induced T cell polarization. J Cell Biol. 2007; 176: 863–75.

    32.Christian SL, Lee RL, McLeod SJ, Burgess AE, Li AHY, Dang-Lawson M, et al. Activation of the Rap GTPases in B lymphocytes modulates B cell antigen receptor-induced activation of Akt but has no effect on MAPK activation. J Biol Chem. 2003; 278: 41756–67.

    33.Vallés AM, Beuvin M, Boyer B. Activation of Rac1 by paxillin-Crk-DOCK180 signaling complex is antagonized by Rap1 in migrating NBT- cells. J Biol Chem. 2004; 279: 44490–6.

    34.Lyle KS, Raaijmakers JH, Bruinsma W, Bos JL, de Rooij J. cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics. Cell Signal. 2008; 20: 1104–16.

    35.Gao L, Feng YF, Bowers R, Becker-Hapak M, Gardner J, Council L, et al. Ras-associated protein-1 regulates extracellular signalregulated kinase activation and migration in melanoma cells: two processes important to melanoma tumorigenesis and metastasis. Cancer Res. 2006; 66: 7880–8.

    36.McSherry EA, Brennan K, Hudson L, Hill AD, Hopkins AM. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase. Breast Cancer Res. 2011; 13: R31.

    37.Goto M, Mitra RS, Liu M, Lee J, Henson BS, Carey T, et al. Rap1 stabilizes β-catenin and enhances β-catenin-dependent transcription and invasion in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2010; 16: 65–76.

    38.Huang M, Anand S, Murphy EA, Desgrosellier JS, Stupack DG, Shattil SJ, et al. EGFR-dependent pancreatic carcinoma cell metastasis through Rap1 activation. Oncogene. 2012; 31: 2783–93.

    39.Lin KBL, Tan P, Freeman SA, Lam M, McNagny KM, Gold MR. The Rap GTPases regulate the migration, invasiveness and in vivo dissemination of B-cell lymphomas. Oncogene. 2010; 29: 608–15.

    40.Infante E, Heasman SJ, Ridley AJ. Statins inhibit T-acute lymphoblastic leukemia cell adhesion and migration through Rap1b. J Leukoc Biol. 2011; 89: 577–86.

    41.Bailey CL, Kelly P, Casey PJ. Activation of Rap1 promotes prostate cancer metastasis. Cancer Res. 2009; 69: 4962–8.

    42.Shimizu Y, Hamazaki Y, Hattori M, DoiK, Terada N, Kobayashi T, et al. SPA-1 controls the invasion and metastasis of human prostate cancer. Cancer Sci. 2011; 102: 828–36.

    43.Malchinkhuu E, Sato K, Maehama T, Ishiuchi S, Yoshimoto Y, Mogi C, et al. Role of Rap1B and tumor suppressor PTEN in the negative regulation of lysophosphatidic acid--induced migration by isoproterenol in glioma cells. Mol Biol Cell. 2009; 20: 5156–65.

    44.Barrett A, Evans IM, Frolov A, Britton G, Pellet-Many C, Yamaji M, et al. A crucial role for DOK1 in PDGF-BB-stimulated glioma cell invasion through p130Cas and Rap1 signalling. J Cell Sci. 2014; 127: 2647–58.

    45.Yajnik V, Paulding C, Sordella R, McClatchey AI, Saito M, Wahrer DCR, et al. DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell. 2003; 112: 673–84.

    46.Almahariq M, Tsalkova T, Mei FC, Chen HJ, Zhou J, Sastry SK, et al. A novel EPAC-specific inhibitor suppresses pancreatic cancer cell migration and invasion. Mol Pharmacol. 2013; 83: 122–8.

    47.Magliozzi R, Low TY, Weijts BGMW, Cheng TH, Spanjaard E, Mohammed S, et al. Control of epithelial cell migration and invasion by the IKKβ- and CK1α-mediated degradation of RAPGEF2. Dev Cell. 2013; 27: 574–85.

    48.Zuo H, Gandhi M, Edreira MM, Hochbaum D, Nimgaonkar VL, Zhang P, et al. Downregulation of Rap1GAP through epigenetic silencing and loss of heterozygosity promotes invasion and progression of thyroid tumors. Cancer Res. 2010; 70: 1389–97.

    49.Zhang LZ, Chenwei L, Mahmood R, van Golen K, Greenson J, Li GY, et al. Identification of a putative tumor suppressor gene Rap1GAP in pancreatic cancer. Cancer Res. 2006; 66: 898–906.

    50.Kim WJ, Gersey Z, Daaka Y. Rap1GAP regulates renal cell carcinoma invasion. Cancer Lett. 2012; 320: 65–71.

    51.Mitra RS, Goto M, Lee JS, Maldonado D, Taylor JMG, Pan QT, et al. Rap1GAP promotes invasion via induction of matrix metalloproteinase 9 secretion, which is associated with poor survival in low N-stage squamous cell carcinoma. Cancer Res. 2008; 68: 3959–69.

    52.Mathieu V, Pirker C, Schmidt WM, Spiegl-Kreinecker S, L?tsch D, Heffeter P, et al. Aggressiveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression deregulation. Oncotarget. 2012; 3: 399–413.

    53.Zhang Y, Gong Y, Hu D, Zhu P, Wang N, Zhang Q, et al. Nuclear SIPA1 activates integrin β1 promoter and promotes invasion of breast cancer cells. Oncogene. 2015; 34: 1451–62.

    54.Ji K, Ye L, Toms AM, Hargest R, Martin TA, Ruge F, et al. Expression of signal-induced proliferation-associated gene 1 (SIPA1), a RapGTPase-activating protein, is increased in colorectal cancer and has diverse effects on functions of colorectal cancer cells. Cancer Genomics Proteomics. 2012; 9: 321–7.

    55.Ho SM, Lau KM, Mok SC, Syed V. Profiling follicle stimulating hormone-induced gene expression changes in normal and malignant human ovarian surface epithelial cells. Oncogene. 2003; 22: 4243–56.

    56.Che YL, Luo SJ, Li G, Cheng M, Gao YM, Li XM, et al. The C3G/Rap1 pathway promotes secretion of MMP-2 and MMP-9 and is involved in serous ovarian cancer metastasis. Cancer Lett. 2015; 359: 241–9.

    57.Vuchak LA, Tsygankova OM, Meinkoth JL. Rap1GAP impairs cellmatrix adhesion in the absence of effects on cell-cell adhesion. Cell Adh Migr. 2011; 5: 323–31.

    58.Kooistra MRH, Dubé N, Bos JL. Rap1: a key regulator in cell-cell junction formation. J Cell Sci. 2007; 120: 17–22.

    59.Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, et al. Reconstructing and deconstructing agonistinduced activation of integrin αbβ3. Curr Biol. 2006; 16: 1796–806.

    60.Hernández-Varas P, Coló GP, Bartolomé RA, Paterson A, Medra?o-Fernández I, Arellano-Sánchez N, et al. Rap1-GTP-interacting adaptor molecule (RIAM) protein controls invasion and growth of melanoma cells. J Biol Chem. 2011; 286: 18492–504.

    61.Tsygankova OM, Prendergast GV, Puttaswamy K, Wang Y, Feldman MD, Wang HB, et al. Downregulation of Rap1GAP contributes to Ras transformation. Mol Cell Biol. 2007; 27: 6647–58.

    62.Mitra RS, Zhang ZC, Henson BS, Kurnit DM, Carey TE, D'Silva NJ. Rap1A and rap1B ras-family proteins are prominently expressed in the nucleus of squamous carcinomas: nuclear translocation of GTP-bound active form. Oncogene. 2003; 22: 6243–56.

    63.Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011; 147: 992–1009.

    64.Levine M. Transcriptional enhancers in animal development and evolution. Curr Biol. 2010; 20: R754–63.

    65.Zwartkruis FJT, Wolthuis RMF, Nabben NMJM, Franke B, Bos JL. Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signalling. EMBO J. 1998; 17: 5905–12.

    66.Grewal SS, Horgan AM, York RD, Withers GS, Banker GA, Stork PJS. Neuronal calcium activates a Rap1 and B-Raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase. J Biol Chem. 2000; 275: 3722–8.

    67.Guvakova MA, Lee WSY, Furstenau DK, Prabakaran I, Li DC, Hung R, et al. The small GTPase Rap1 promotes cell movement rather than stabilizes adhesion in epithelial cells responding to insulin-like growth factor I. Biochem J. 2014; 463: 257–70.

    68.Butler GS, Overall CM. Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov. 2009; 8: 935–48.

    69.Takahashi M, Dillon TJ, Liu C, Kariya Y, Wang ZP, Stork PJS. Protein kinase A-dependent phosphorylation of Rap1 regulates its membrane localization and cell migration. J Biol Chem. 2013; 288: 27712–23.

    70.Ntantie E, Gonyo P, Lorimer EL, Hauser AD, Schuld N, McAllister D, et al. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci Signal. 2013; 6: ra39.

    71.Su L, Hattori M, Moriyama M, Murata N, Harazaki M, Kaibuchi K, et al. AF-6 controls integrin-mediated cell adhesion by regulating Rap1 activation through the specific recruitment of Rap1GTP and SPA-1. J Biol Chem. 2003; 278: 15232–8.

    72.Wells A, Grahovac J, Wheeler S, Ma B, Lauffenburger D. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol Sci. 2013; 34: 283–9.

    73.Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010; 141: 52–67.

    74.Chen L, Yang SY, Jakoncic J, Zhang JJ, Huang XY. Migrastatin analogues target fascin to block tumour metastasis. Nature. 2010; 464: 1062–6.

    75.Dong X, Korch C, Meinkoth JL. Histone deacetylase inhibitors upregulate Rap1GAP and inhibit Rap activity in thyroid tumor cells. Endocr Relat Cancer. 2011; 18: 301-10.

    76.Wang K, Li J, Guo H, Xu XQ, Xiong G, Guan XY, et al. MiR-196a binding-site SNP regulates RAP1A expression contributing to esophageal squamous cell carcinoma risk and metastasis. Carcinogenesis. 2012; 33: 2147–54.

    77.Alemayehu M, Dragan M, Pape C, Siddiqui I, Sacks DB, Di Guglielmo GM, et al. β-Arrestin2 regulates lysophosphatidic acidinduced human breast tumor cell migration and invasion via Rap1 and IQGAP1. PloS One. 2013; 8: e56174.

    78.Tsygankova OM, Wang HB, Meinkoth JL. Tumor cell migration and invasion are enhanced by depletion of Rap1 GTPase-activating protein (Rap1GAP). J Biol Chem. 2013; 288: 24636–46.

    79.Wu JJ, Zhang YS, Frilot N, Kim JI, Kim WJ, Daaka Y. Prostaglandin E2regulates renal cell carcinoma invasion through the EP4 receptor-Rap GTPase signal transduction pathway. J Biol Chem. 2011; 286: 33954–62.

    80.Qiu TT, Qi XF, Cen JN, Chen ZX. Rap1GAP alters leukemia cell differentiation, apoptosis and invasion in vitro. Oncol Rep. 2012; 28: 622–8.

    81.Dong XY, Tang WX, Stopenski S, Brose MS, Korch C, Meinkoth JL. RAP1GAP inhibits cytoskeletal remodeling and motility in thyroid cancer cells. Endocr Relat Cancer. 2012; 19: 575–88.

    82.Severson EA, Lee WY, Capaldo CT, Nusrat A, Parkos CA. Junctional adhesion molecule A interacts with Afadin and PDZGEF2 to activate Rap1A, regulate β1 integrin levels, and enhance cell migration. Mol Biol Cell. 2009; 20: 1916–25.

    Cite this article as:Zhang Y, Wang R, Cheng K, Ring BZ, Su L. Roles of Rap1 signaling in tumor cell migration and invasion. Cancer Biol Med. 2017; 14: 90-9. doi: 10.20892/j.issn.2095-3941.2016.0086

    Brian Z. Ring and Li Su

    E-mail: bzring@gmail.com and lisu@hust.edu.cn

    Received October 24, 2016; accepted December 7, 2016. Available at www.cancerbiomed.org

    Copyright ? 2017 by Cancer Biology & Medicine

    国产精品久久电影中文字幕 | 他把我摸到了高潮在线观看 | 老司机午夜福利在线观看视频 | 岛国在线观看网站| 国精品久久久久久国模美| 国产精品一区二区免费欧美| 黑人猛操日本美女一级片| 久久久国产精品麻豆| 亚洲欧美一区二区三区久久| 色播在线永久视频| 欧美日韩国产mv在线观看视频| 天堂8中文在线网| 午夜激情久久久久久久| 别揉我奶头~嗯~啊~动态视频| 欧美精品一区二区大全| 日韩欧美免费精品| 俄罗斯特黄特色一大片| 国产午夜精品久久久久久| 蜜桃在线观看..| 国产在线观看jvid| 亚洲欧美色中文字幕在线| 嫩草影视91久久| 精品人妻1区二区| 久久久久久久大尺度免费视频| 欧美亚洲日本最大视频资源| 黄色视频在线播放观看不卡| 午夜激情av网站| 欧美激情久久久久久爽电影 | 黄频高清免费视频| 国产一卡二卡三卡精品| 国产不卡av网站在线观看| 蜜桃在线观看..| 欧美黄色片欧美黄色片| 一区福利在线观看| 一区福利在线观看| 美女午夜性视频免费| 一区福利在线观看| 欧美变态另类bdsm刘玥| 男女无遮挡免费网站观看| 人妻 亚洲 视频| 亚洲国产看品久久| 国产精品久久久av美女十八| 男女无遮挡免费网站观看| 精品人妻在线不人妻| 一进一出好大好爽视频| 两个人免费观看高清视频| 人妻 亚洲 视频| 99re6热这里在线精品视频| 国产三级黄色录像| 1024香蕉在线观看| 国产精品免费一区二区三区在线 | 国产日韩欧美视频二区| 亚洲欧美精品综合一区二区三区| 亚洲欧美精品综合一区二区三区| 亚洲五月色婷婷综合| 精品一区二区三区视频在线观看免费 | 两个人看的免费小视频| 欧美另类亚洲清纯唯美| 国产亚洲欧美精品永久| 十分钟在线观看高清视频www| 国产成人免费观看mmmm| 最新在线观看一区二区三区| 免费观看a级毛片全部| 69精品国产乱码久久久| 高清毛片免费观看视频网站 | 高清在线国产一区| 亚洲国产中文字幕在线视频| 国产单亲对白刺激| 国产极品粉嫩免费观看在线| 久久性视频一级片| 免费看十八禁软件| 又大又爽又粗| 99riav亚洲国产免费| 久久亚洲真实| 1024视频免费在线观看| 国产黄色免费在线视频| 大香蕉久久成人网| 国产精品 国内视频| 叶爱在线成人免费视频播放| 少妇裸体淫交视频免费看高清 | 久热这里只有精品99| 国产91精品成人一区二区三区 | www.精华液| 久久久国产一区二区| 正在播放国产对白刺激| 国产日韩一区二区三区精品不卡| 怎么达到女性高潮| 怎么达到女性高潮| 日日摸夜夜添夜夜添小说| av国产精品久久久久影院| 亚洲精品久久午夜乱码| 99精品在免费线老司机午夜| 精品国产国语对白av| 亚洲av成人一区二区三| 久久精品亚洲熟妇少妇任你| 午夜福利影视在线免费观看| 国产免费视频播放在线视频| av国产精品久久久久影院| 我要看黄色一级片免费的| 午夜激情av网站| 97人妻天天添夜夜摸| 激情视频va一区二区三区| 不卡一级毛片| 欧美 日韩 精品 国产| 精品亚洲乱码少妇综合久久| 亚洲 国产 在线| 少妇粗大呻吟视频| 人人妻,人人澡人人爽秒播| 97在线人人人人妻| 免费少妇av软件| 欧美老熟妇乱子伦牲交| 久久av网站| 成人免费观看视频高清| 亚洲精品中文字幕一二三四区 | av不卡在线播放| 又紧又爽又黄一区二区| 建设人人有责人人尽责人人享有的| 一本久久精品| a级毛片黄视频| 黑人巨大精品欧美一区二区mp4| 色婷婷久久久亚洲欧美| 国产精品1区2区在线观看. | av一本久久久久| 午夜免费鲁丝| 在线观看舔阴道视频| 丰满少妇做爰视频| 色婷婷久久久亚洲欧美| 一区二区三区激情视频| 少妇粗大呻吟视频| 精品国产超薄肉色丝袜足j| 动漫黄色视频在线观看| 97在线人人人人妻| 久久天堂一区二区三区四区| 亚洲av电影在线进入| 18禁美女被吸乳视频| av超薄肉色丝袜交足视频| 久久香蕉激情| 亚洲人成伊人成综合网2020| 夜夜夜夜夜久久久久| 国产成人啪精品午夜网站| 精品少妇内射三级| 亚洲va日本ⅴa欧美va伊人久久| 久热爱精品视频在线9| 亚洲精品av麻豆狂野| 久久国产亚洲av麻豆专区| 亚洲综合色网址| 老司机福利观看| 国产日韩一区二区三区精品不卡| av天堂久久9| 精品国产国语对白av| 激情视频va一区二区三区| 亚洲专区国产一区二区| 999久久久国产精品视频| 国产又色又爽无遮挡免费看| 99精品欧美一区二区三区四区| 美女高潮到喷水免费观看| 满18在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 国产一区二区 视频在线| 啦啦啦中文免费视频观看日本| 免费一级毛片在线播放高清视频 | 老熟妇仑乱视频hdxx| 国产在线一区二区三区精| 99re在线观看精品视频| 91麻豆精品激情在线观看国产 | 夜夜骑夜夜射夜夜干| 日日摸夜夜添夜夜添小说| 国产精品熟女久久久久浪| 日本五十路高清| 80岁老熟妇乱子伦牲交| 免费在线观看完整版高清| 五月开心婷婷网| 叶爱在线成人免费视频播放| 最新的欧美精品一区二区| 日本av免费视频播放| 日本wwww免费看| 美女扒开内裤让男人捅视频| 美女福利国产在线| 一级a爱视频在线免费观看| 亚洲全国av大片| 日韩欧美一区视频在线观看| 美女高潮到喷水免费观看| 国产成人精品无人区| 欧美日韩福利视频一区二区| 日韩中文字幕视频在线看片| 日本av手机在线免费观看| 变态另类成人亚洲欧美熟女 | 热re99久久精品国产66热6| 91成人精品电影| 精品人妻熟女毛片av久久网站| 黄频高清免费视频| 如日韩欧美国产精品一区二区三区| 国产精品秋霞免费鲁丝片| 中文字幕最新亚洲高清| 国产精品久久久久成人av| 少妇 在线观看| 男女午夜视频在线观看| 日韩欧美三级三区| 18禁美女被吸乳视频| 色精品久久人妻99蜜桃| 如日韩欧美国产精品一区二区三区| 最黄视频免费看| 日本一区二区免费在线视频| 精品久久久久久电影网| 青青草视频在线视频观看| 不卡av一区二区三区| 亚洲精品中文字幕在线视频| 国产又色又爽无遮挡免费看| 久久av网站| 日韩欧美免费精品| 欧美成狂野欧美在线观看| 亚洲国产欧美在线一区| 色尼玛亚洲综合影院| 91九色精品人成在线观看| 亚洲精品成人av观看孕妇| 亚洲全国av大片| 精品国产乱码久久久久久男人| 国产一区二区三区在线臀色熟女 | 999精品在线视频| 亚洲美女黄片视频| 国产精品.久久久| 久久九九热精品免费| av一本久久久久| 国产精品久久久久久精品电影小说| 大型黄色视频在线免费观看| 亚洲男人天堂网一区| 国产男女超爽视频在线观看| 欧美日韩一级在线毛片| 免费av中文字幕在线| 在线十欧美十亚洲十日本专区| 极品少妇高潮喷水抽搐| 国产精品.久久久| 日韩大码丰满熟妇| 人妻久久中文字幕网| 窝窝影院91人妻| 在线观看www视频免费| 国产真人三级小视频在线观看| 一二三四社区在线视频社区8| 免费人妻精品一区二区三区视频| 久久久精品国产亚洲av高清涩受| 国产在线精品亚洲第一网站| 国产精品1区2区在线观看. | 黑人操中国人逼视频| 国产亚洲av高清不卡| 久久精品熟女亚洲av麻豆精品| 一个人免费在线观看的高清视频| 成人手机av| 欧美国产精品一级二级三级| 成年人午夜在线观看视频| 欧美+亚洲+日韩+国产| 日韩欧美三级三区| 汤姆久久久久久久影院中文字幕| 精品国产一区二区久久| 国产日韩一区二区三区精品不卡| 五月天丁香电影| 99国产极品粉嫩在线观看| 天堂动漫精品| 久久免费观看电影| 欧美成人免费av一区二区三区 | 69精品国产乱码久久久| 国产人伦9x9x在线观看| 不卡av一区二区三区| 男女午夜视频在线观看| 日本黄色日本黄色录像| 中文字幕人妻丝袜制服| 日本一区二区免费在线视频| 日本av手机在线免费观看| 日韩一区二区三区影片| 亚洲欧美色中文字幕在线| 精品久久久久久久毛片微露脸| 91成人精品电影| 亚洲久久久国产精品| 男女边摸边吃奶| 怎么达到女性高潮| 亚洲中文日韩欧美视频| 精品一区二区三区视频在线观看免费 | 纵有疾风起免费观看全集完整版| 久久这里只有精品19| 精品少妇久久久久久888优播| 黄网站色视频无遮挡免费观看| 国产免费av片在线观看野外av| 亚洲七黄色美女视频| 法律面前人人平等表现在哪些方面| 午夜福利视频精品| 91老司机精品| 国产亚洲一区二区精品| 久久精品国产亚洲av香蕉五月 | 欧美午夜高清在线| 亚洲一码二码三码区别大吗| 国产成人免费观看mmmm| 美女福利国产在线| 在线亚洲精品国产二区图片欧美| 人人妻人人澡人人爽人人夜夜| 国产欧美日韩一区二区精品| 国产亚洲欧美精品永久| 亚洲一区中文字幕在线| 国产成人系列免费观看| 日本a在线网址| 日本wwww免费看| 亚洲中文日韩欧美视频| 韩国精品一区二区三区| 91精品三级在线观看| 国产黄频视频在线观看| 丰满迷人的少妇在线观看| 黄色视频在线播放观看不卡| 国产高清激情床上av| 久久精品国产亚洲av高清一级| 日本vs欧美在线观看视频| 精品国产乱子伦一区二区三区| 999久久久精品免费观看国产| 国产91精品成人一区二区三区 | 91大片在线观看| 国产97色在线日韩免费| 国产淫语在线视频| 亚洲成人手机| 国产单亲对白刺激| 麻豆av在线久日| 国产色视频综合| 精品久久久久久电影网| 少妇猛男粗大的猛烈进出视频| 18禁观看日本| 精品人妻熟女毛片av久久网站| 十八禁人妻一区二区| 夫妻午夜视频| 亚洲专区国产一区二区| 久久中文看片网| 欧美乱妇无乱码| 最近最新中文字幕大全电影3 | 深夜精品福利| 嫁个100分男人电影在线观看| 国产aⅴ精品一区二区三区波| 亚洲专区国产一区二区| 高清视频免费观看一区二区| 亚洲天堂av无毛| 精品国产乱子伦一区二区三区| 婷婷成人精品国产| 国产亚洲欧美在线一区二区| 女警被强在线播放| 国产1区2区3区精品| 老熟女久久久| 黄频高清免费视频| 精品久久蜜臀av无| 成年人午夜在线观看视频| 精品视频人人做人人爽| 日韩人妻精品一区2区三区| 欧美中文综合在线视频| 在线观看www视频免费| 99re6热这里在线精品视频| 免费在线观看黄色视频的| 国产在线精品亚洲第一网站| 亚洲专区中文字幕在线| 国产男女超爽视频在线观看| 亚洲成a人片在线一区二区| 色婷婷久久久亚洲欧美| 在线观看免费视频网站a站| 麻豆av在线久日| 黄片播放在线免费| 亚洲精品中文字幕在线视频| videosex国产| 18禁裸乳无遮挡动漫免费视频| 国产精品国产高清国产av | 80岁老熟妇乱子伦牲交| 高清毛片免费观看视频网站 | 免费少妇av软件| 老鸭窝网址在线观看| 久久午夜综合久久蜜桃| 日韩一区二区三区影片| 亚洲精品美女久久av网站| 国产精品秋霞免费鲁丝片| 欧美日韩精品网址| 捣出白浆h1v1| 18禁裸乳无遮挡动漫免费视频| 一边摸一边抽搐一进一出视频| 美女高潮喷水抽搐中文字幕| 操美女的视频在线观看| 亚洲欧美精品综合一区二区三区| 久久久久精品人妻al黑| 夜夜夜夜夜久久久久| 国产精品久久久久久精品电影小说| 亚洲,欧美精品.| 国产成人免费观看mmmm| 亚洲精品成人av观看孕妇| 亚洲中文av在线| 高清av免费在线| 在线亚洲精品国产二区图片欧美| 国产成人精品无人区| 国产成人av激情在线播放| 一个人免费看片子| 欧美亚洲 丝袜 人妻 在线| 精品高清国产在线一区| 欧美av亚洲av综合av国产av| 视频在线观看一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 波多野结衣av一区二区av| 制服诱惑二区| 又黄又粗又硬又大视频| 久久av网站| 精品一区二区三区四区五区乱码| 欧美日韩av久久| 色94色欧美一区二区| 亚洲伊人久久精品综合| 国产精品亚洲一级av第二区| 国产免费现黄频在线看| 亚洲avbb在线观看| 日韩制服丝袜自拍偷拍| 超色免费av| 免费一级毛片在线播放高清视频 | 黄片小视频在线播放| 色婷婷av一区二区三区视频| 妹子高潮喷水视频| 亚洲精品中文字幕一二三四区 | 午夜福利一区二区在线看| tocl精华| 亚洲色图av天堂| 90打野战视频偷拍视频| 美女扒开内裤让男人捅视频| 飞空精品影院首页| 母亲3免费完整高清在线观看| 久久 成人 亚洲| 考比视频在线观看| 日本wwww免费看| 亚洲五月色婷婷综合| 99国产综合亚洲精品| 两个人看的免费小视频| 亚洲欧美色中文字幕在线| 制服诱惑二区| 国产精品久久久久久精品电影小说| 亚洲中文av在线| 国产精品久久电影中文字幕 | 99国产精品一区二区三区| 日韩熟女老妇一区二区性免费视频| 国产区一区二久久| 无限看片的www在线观看| 欧美黄色片欧美黄色片| 菩萨蛮人人尽说江南好唐韦庄| 日韩一区二区三区影片| 51午夜福利影视在线观看| 中文字幕高清在线视频| 国产91精品成人一区二区三区 | 成人av一区二区三区在线看| 99热网站在线观看| 国产极品粉嫩免费观看在线| 欧美 亚洲 国产 日韩一| 十八禁网站网址无遮挡| 成年女人毛片免费观看观看9 | 窝窝影院91人妻| 精品人妻在线不人妻| 十分钟在线观看高清视频www| 国产亚洲一区二区精品| 一夜夜www| 精品国内亚洲2022精品成人 | 一二三四在线观看免费中文在| 女人久久www免费人成看片| 久久午夜综合久久蜜桃| 国产在线观看jvid| av福利片在线| 精品福利观看| 亚洲人成77777在线视频| 搡老乐熟女国产| tube8黄色片| 日本一区二区免费在线视频| 在线观看66精品国产| 国产免费福利视频在线观看| 国产1区2区3区精品| 考比视频在线观看| 日本撒尿小便嘘嘘汇集6| 成人特级黄色片久久久久久久 | 桃花免费在线播放| 久久久久久免费高清国产稀缺| 日本a在线网址| 国产99久久九九免费精品| 久久精品熟女亚洲av麻豆精品| 亚洲国产av影院在线观看| 黄色视频在线播放观看不卡| 亚洲九九香蕉| 看免费av毛片| 久久亚洲精品不卡| 久久久久久亚洲精品国产蜜桃av| 大型黄色视频在线免费观看| 桃红色精品国产亚洲av| 免费日韩欧美在线观看| 性高湖久久久久久久久免费观看| 天堂8中文在线网| 一区福利在线观看| 久久久久久亚洲精品国产蜜桃av| 麻豆成人av在线观看| 免费观看人在逋| 99国产精品99久久久久| 国产91精品成人一区二区三区 | 丝瓜视频免费看黄片| 一区二区三区精品91| 9热在线视频观看99| 国产精品九九99| 久久人人爽av亚洲精品天堂| 美女午夜性视频免费| 国产国语露脸激情在线看| 一二三四在线观看免费中文在| 精品久久久久久久毛片微露脸| 久久ye,这里只有精品| videos熟女内射| 久久久精品国产亚洲av高清涩受| 国产精品免费视频内射| 香蕉丝袜av| 丰满少妇做爰视频| 免费在线观看完整版高清| 夫妻午夜视频| 巨乳人妻的诱惑在线观看| 女警被强在线播放| 999久久久精品免费观看国产| 亚洲一区二区三区欧美精品| 777久久人妻少妇嫩草av网站| 免费观看av网站的网址| 精品久久久精品久久久| 亚洲精品粉嫩美女一区| 淫妇啪啪啪对白视频| 亚洲成av片中文字幕在线观看| 亚洲精品国产色婷婷电影| 久热这里只有精品99| 亚洲欧洲日产国产| 国产淫语在线视频| 午夜激情久久久久久久| 天天影视国产精品| 国产成人欧美在线观看 | 在线亚洲精品国产二区图片欧美| 国产欧美日韩一区二区精品| 欧美日韩黄片免| 中文欧美无线码| 精品国产亚洲在线| 十八禁人妻一区二区| 9热在线视频观看99| 亚洲av欧美aⅴ国产| 我要看黄色一级片免费的| 日韩欧美免费精品| 搡老熟女国产l中国老女人| 天天添夜夜摸| netflix在线观看网站| 国产成人精品在线电影| 国产1区2区3区精品| 国产一区二区三区综合在线观看| 成人18禁在线播放| 国产高清激情床上av| 午夜久久久在线观看| 成年动漫av网址| 大码成人一级视频| 精品人妻1区二区| 18禁黄网站禁片午夜丰满| 18禁观看日本| 三级毛片av免费| 国产野战对白在线观看| 首页视频小说图片口味搜索| 波多野结衣av一区二区av| 久久精品国产99精品国产亚洲性色 | 精品国产乱码久久久久久男人| 亚洲av成人一区二区三| 亚洲人成77777在线视频| 亚洲av成人一区二区三| 欧美激情高清一区二区三区| 成人永久免费在线观看视频 | 啦啦啦视频在线资源免费观看| 国产伦理片在线播放av一区| 黄色怎么调成土黄色| 美女高潮喷水抽搐中文字幕| 色视频在线一区二区三区| 十八禁网站免费在线| 99精品在免费线老司机午夜| 国产精品.久久久| 亚洲av成人一区二区三| 国产有黄有色有爽视频| 老司机亚洲免费影院| 99国产精品一区二区蜜桃av | 欧美成人午夜精品| 如日韩欧美国产精品一区二区三区| 亚洲精品在线美女| 69精品国产乱码久久久| 大型黄色视频在线免费观看| 三级毛片av免费| 在线观看人妻少妇| 亚洲国产欧美在线一区| 国产主播在线观看一区二区| 亚洲成国产人片在线观看| 精品一区二区三卡| 欧美中文综合在线视频| 国产不卡av网站在线观看| 伦理电影免费视频| 99国产精品免费福利视频| 天堂8中文在线网| 国产一区二区三区在线臀色熟女 | 女性生殖器流出的白浆| 亚洲精华国产精华精| 极品人妻少妇av视频| 久久婷婷成人综合色麻豆| 一边摸一边抽搐一进一小说 | 午夜老司机福利片| 亚洲精品在线观看二区| 免费人妻精品一区二区三区视频| 成人特级黄色片久久久久久久 | 九色亚洲精品在线播放| 1024视频免费在线观看| 精品少妇一区二区三区视频日本电影| 国产欧美日韩精品亚洲av| av国产精品久久久久影院| a级片在线免费高清观看视频| www.熟女人妻精品国产| 亚洲第一青青草原| 丰满人妻熟妇乱又伦精品不卡| 亚洲第一av免费看| 日本wwww免费看| 老熟女久久久| 在线av久久热| 涩涩av久久男人的天堂| 亚洲免费av在线视频| 一个人免费看片子| 国产精品久久电影中文字幕 | 久久久国产精品麻豆| 在线观看舔阴道视频|