• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model-free adaptive control of space manipulator under different gravity environment①

    2020-04-13 07:05:56WenYintang溫銀堂GaoLinqiLiuFucaiQinLi
    High Technology Letters 2020年1期

    Wen Yintang (溫銀堂),Gao Linqi,Liu Fucai,Qin Li

    (School of Electrical Engineering,Yanshan University,Qin Huangdao 066004,P.R.China)

    Abstract

    Key words:space manipulator,microgravity,model-free adaptive,trajectory tracking control

    0 Introduction

    Along with the increasing frequency of human space activities,the number of ‘space debris’ in space is increasing,and they are not beneficial for the normal operation of space vehicles and even seriously affect the safety of normal satellites[1].In order to reduce the losses and protect the orbital resources,the national scientists have been working on on-orbit service technology for satellite maintenance and orbital garbage removal[2,3].Using space manipulators instead of astronauts for space operations can not only avoid the damage to astronauts,but also reduce the costs and improve the benefits of space exploration.Therefore,it is necessary to design an adaptive controller to track the particular trajectory.

    Due to the release of gravity in the space environment[4]and the uncertain external disturbance,the dynamic characteristics of space manipulator have changed compared with that of the ground.Once the space manipulator trajectory tracking controller is assembled on gravity environment,it will be inapplicable for microgravity environment due to the changes of dynamics characteristics,which result in the space manipulator cannot track the desired trajectory.This robot system is multi-input and multi-output nonlinear system,which has time-varying and strong coupling properties,the control of this mechanism turns to be complicated[5].In order to achieve the end of the space manipulator trajectory tracking control,the researchers have done a lot of experiments on this topic.Walker and Wee[6]presented an adaptive control method for space manipulator,which can achieve global stablility in the presence of uncertainties in the inertial parameters.Kim and Lewis[7]proposed a robust neural network output feedback scheme for the motion control of robot manipulators without measuring the joint velocities.Qin et al.[8]proposed a fuzzy adaptive robust control strategy for space manipulator,in which the fuzzy algorithm was employed to approximate the nonlinear uncertainties in the model and achieved effective space manipulator trajectory tracking task.Qin et al.[9]proposed an adaptive back stepping sliding mode controller to eliminate the impact of parameter uncertainties and disturbances.However,when the manipulator is in different gravity environment,it has to adjust the control law to track the trajectory,and also the above methods depend on the prior knowledge about the upper bound of the system,which is not applicable to the trajectory tracking task of manipulator in microgravity environment.For this reason,it is necessary to understand the changes of the dynamics and motion behaviour of the manipulator under different gravity environment,then design a proper controller that can track the desired trajectory in different gravity environment,which could overcome the influence of gravity changes of the space manipulator.

    In recent years,model-free adaptive control (MFAC) algorithm is paid more attention by researchers in various fields.Gao et al.[10]proposed a CFDL based MFAC controller to the polishing robot,achieved a good control performance and adaptively decoupled the coupled outputs for MIMO system.Wang et al.[11]applied the MFAC method combined with sliding mode algorithm to the robotic exoskeleton tracking system,which could make the robotic exoskeleton tracking on its desired velocity tightly even when the dynamic parameter of the exoskeleton was time-varying irregularly and uncertainly.The data-driven MFAC strategy was proposed by Hou[12]in 1994 to solve the problem of inaccurate modelling of the controlled system.Hou[12]aimed to establish a nonparametric model of a nonlinear system and developed an adaptive control theory that did not depend on the mathematical model of the control system,but depended on the input/output (I/O) measurement data of the system.The core of the theory were three new dynamic linearization approaches and a novel concept of matrix[13,14]which will establish an equivalent dynamic linearized model of each dynamic working point of the closed-loop system.Inspired by the principle of the algorithm,the MFAC strategy is proposed to apply to the complicated space manipulator end trajectory tracking system.The algorithm can eliminate the dynamics changes caused by gravity changes,so that the space manipulator can be debugged on the ground environment and then achieve high accuracy trajectory tracking task in microgravity environment without changing the controller parameters.

    The main contributions of this paper lie in three aspects:1) The dynamic equation of space manipulator system is transformed dynamically,and the input-output relationship of the control system is obtained.2) The MFAC controller is designed and the control system is constructed.3) The simulation results show that MFAC strategy can achieve higher precision trajectory tracking task when the controller parameters are the same under different gravity environment.

    The remainder of this paper is organized as follows.In Section 1,by analysing the dynamic equation of the robot,we get the structure of the control system.According to the principle of the MFAC algorithm,the dynamic equation is transformed to obtain the input-output relationship of the system,and then the stability of the controller is proved.Simulation results of the trajectory tracking system are presented in Section 2.Finally,Section 3 summarizes the conclusion of the research.

    1 Space manipulator control system design

    1.1 Control system design

    In this paper,the controller is designed by MFAC theory and the controlled object is the 2 degrees of freedom of space manipulator.Fig.1 shows the structure of the control system.

    Fig.1 MFAC control of the space manipulator system

    The inputs of the space manipulator control system are the desired joint angles,which are obtained by inverse kinematics of the desired trajectory of the end.The outputs of this system are the actual joint angles of the space manipulator.By dynamic linearizing and discretizing the space manipulator dynamics system,we get the value of the state variables at each sample time.The outputs of the controller are the desired joint torques,which are also used as the input of the controller.At the same time,the differential of the desired joint angles and the differential of actual joint angles are also the inputs of the controller.By updating the value of PPJM,the joint torques of the next moment can be obtained.Through the above operations,the end trajectory tracking task of the space manipulator can be realized based on MFAC algorithm.

    1.2 Transformation of the dynamics and dynamic linearization

    For the space manipulator is a complex nonlinear system which cannot be directly linearized by the common approach[15],and inspired by the method proposed in Ref.[11],a method to transform and linearize the dynamical equation of the space manipulator is introduced.According to the influence of gravity,inertia as well as Coriolis and centrifugal effects,its dynamics can be expressed as the following form:

    (1)

    (2)

    -M(k)-1(G(k)+f(k))

    (3)

    When the sampling timeTof the discrete system is small enough,the following equation is got:

    (4)

    Thus,the input-output relationship between timekand timek+1 can be expressed as following:

    y(k+1)=TM(k)-1u(k)-TM(k)-1C(k)y(k)

    -TM(k)-1(G(k)+f(x))+y(k)

    (5)

    The above equation is the discrete transformation form of space robot dynamic model.According to this equation,the partial derivatives ofy(k+1) with respect toy(k) andu(k) are continuous,Eq.(5) satisfies the Lipschitz condition,therefore,there must be time-varying parameter matrixΦ(k)=[φ1(k),φ2(k)],which enables Eq.(5) to convert into the following full form dynamic linearized data model:

    y(k+1)=φ1(k)Δy(k)+φ2(k)Δu(k)+y(k)

    (6)

    where ‖Φ(k)‖

    1.3 MFAC controller design

    1.3.1 Control law

    Due to the complexity of space environment,the output of space manipulator system is not only related to the input changes of adjacent time,but also related to the output changes,these factors will affect the stability of the control system.Thus,the following control input criteria function is introduced:

    J(u(k))=‖y*(k+1)-y(k+1)‖2

    +λ‖u(k)-u(k-1)‖2

    (7)

    wherey*(k+1) is the given desired joint angular velocity.Combining Eq.(6) with Eq.(7) to deriveu(k) and make it equal to zero,the following expression can be obtained:

    Δu(k)=(λI+ΦT(k)Φ(k))-1ΦT(k)

    ×((y*(k+1)-y(k))

    -Φ(k)Δy(k))

    (8)

    Simplifying the matrix inversion operation in Eq.(8),the control scheme of the 2 degrees of freedom of space manipulator can be obtained as follows:

    (9)

    1.3.2 PPJM estimation algorithm

    Considering the following estimation criteria function:

    J(Φ(k))=‖Δy(k)-φ1(k)Δy(k-1)

    -φ2(k)Δu(k-1)‖2

    (10)

    Deriving and making it equal to zero,the following expression can be obtained:

    (11)

    1.4 Stability analysis

    Theorem1Eq.(5) represents the discrete dynamics model of a space manipulator,y(k+1) is partial differential continuous with respect to the control outputsy(k) and control inputsu(k),therefore the system is generalized Lipschitz.Fory*(k+1)=y*(k)=const,there is a positive numberλmin,whenλ>λmin,gives:

    1) The tracking error of the system is asymptotically convergent.

    2) The closed-loop system is BIBO,for which the input and the output are bounded.

    ProofThe proof process involves 2 steps.The first step proves the boundedness of the PPJM estimation value and the second step proves the convergence of the tracking error and the BIBO stability of the system.

    Subtractφ1(k) andφ2(k) respectively from the Eq.(11),as follows:

    +φ1(k-1)-φ1(k)

    (12)

    +φ2(k-1)-φ2(k)

    (13)

    Since ‖φ1(k-1)-φ1(k)‖≤2a1,‖φ2(k-1)-φ2(k)‖≤2a2,take the norm of the above 2 formulas,the following expression can be obtained:

    (14)

    (15)

    Sinceμ>0,η∈(0,2],the following can be obtained

    ∈(0,1) (16)

    ∈(0,1) (17)

    ∈(0,1) (18)

    ∈(0,1) (19)

    Therefore,there are constantsb1,b2,b3,b4∈(0,1),which make the following formula true:

    (20)

    Step2Defining

    s(k)=e(k)=y*(k)-y(k)

    (21)

    According to Eq.(6),the following expression can be obtained:

    s(k+1)=e(k+1)

    =y*(k)-y(k)-(y(k+1)-y(k))

    =s(k)-(φ1(k)Δy(k)+φ2(k)Δu(k))

    (22)

    Because of the boundedness ofφ(k) and according to Lyapunov’s theorem,the system motion trajectory tends to a balance states(k),so the tracking error of the system is convergent,which means limk→∞e(k)=0.The conclusion (1) is proved.

    It can be proved that the error between the actual output value and the expected value eventually reaches zero.Substituting Eqs(6) and (12) into Eq.(19)

    e(k+1)=e(k)-φ1(k)Δy(k)-φ2(k)Δu(k)

    =e(k)-ΦT(k)ΔH(k)

    (23)

    Since limk→∞e(k)=0 andΦ(K) are bounded in the above equation,it can be obtained that limk→∞ΔH(k)=0,which meansy(k) andu(k) are bounded.The conclusion (2) is obtained.

    It can be proved that the MFAC control algorithm provides a bounded input for the 2 degrees of freedom of space manipulator control system so that the tracking error of the system converges,which can ensure the stability of the system.

    2 Simulation test

    2.1 Simulation parameters

    To consummate the simulation structure and inspired by the modeling of the space manipulator by Gao[16],the structure of the 2 degrees of freedom space manipulator in the gravity environment is defined as Fig.2.

    Fig. 2 The structure of two degrees of freedom space manipulator in gravity environment

    The kinematics parameters in the ground gravity environment are indicated in Table 1.

    Table 1 The kinematics parameters of the space manipulator in the ground environment

    When the space manipulator operates in a microgravity environment,the pedestal posture is out of control because of the gravity release.Thus,the pedestal of the space manipulator can be assumed to be a pseudo-mechanical space manipulator which consists of two moving joints and one rotating joint that rotates around its center of mass.The structure schematic is shown in Fig.3.

    Fig.3 The structure of two degrees of freedom space manipulator in microgravity environment

    The kinematics parameters in the space microgravity environment are indicated in Table 2.

    Table 2 The kinematics parameters of the space manipulator in the space environment

    The initial position of the end of the space manipulator is set as (1.15,0.14),and the desired trajectory of the end of the space manipulator is inspired by Gao[16],which is set as

    (24)

    Based on the desired trajectory,the angle of the joint can be obtained by inverse kinematics solution.The control system is established under the environment of Matlab R2016b.To verify the superiority of the MFAC controller,the simulation results are compared with the ones that are obtained according to traditional PD control strategy.For the comparison purpose,the simulation experiment in this paper does not change the controller parameters at different operation condition,which are the same as the ground debugging.Meanwhile,both strategies should follow the same initial conditions.

    The PD controller parameters are set as follows:

    (25)

    whereKP=diag(250,250)Kd=diag(50,50).

    2.2 Simulation result

    The simulation time is 10 s,the simulation results are shown as follows.

    Fig.4 and Fig.5 show the joint angle tracking and end-effector tracking results in different gravity environment,respectively.It can be directly observed from Fig.4 that PD control can follow the desired trajectory more precisely,while there is a little deviation for MFAC strategy.However,Fig.5 shows that MFAC can follow the desired trajectory with a high accuracy in microgravity environment,while PD control completely deviates from the desired trajectory.Fig.6 shows the tracking error of end-effector of the space manipulator in different environment.The error of PD control is nearly 0 in gravity environment.When gravity condition changes,its error peak is almost over 0.2 m in microgravity environment.Meanwhile,the error of MFAC strategy remains at a low level in different gravity environment,and the maximum error of 0.025 m for gravity environment as well as the maximum error of nearly 0 for microgravity environment.

    (a) Joint angle tracking in gravity environment

    (b) End-effector tracking in gravity environment

    Fig.4Simulation results without disturbance in gravity environment

    (a) Joint angle tracking in microgravity environment

    (b) End-effector tracking in microgravity environment

    Fig.5Simulation results without disturbance in microgravity environment

    (a) End-effector tracking error in gravity environment

    (b) End-effector tracking error in microgravity environment

    Fig.6Tracking error of different environment

    Since the space environment has many uncertain disturbances,it is considered to add a disturbance signal to inspect the anti-disturbance performance of both control strategies.Fig.7 shows the disturbance signal which is added to the control system.The amplitude of the signal is 5 which is added in the 5th second of the simulation and removed at the 7th second.

    Fig.7 Disturbance signal

    Fig.8 and Fig.9 present the tracking of end-effector when the external disturbance signal is considered.It can be obtained from Fig.8 that MFAC strategy can follow the desired trajectory more quickly after the disturbance signal occurs.Moreover,the fluctuation value of MFAC strategy is smaller than the one of PD control strategy in both environments.Fig.10 shows the tracking error of the end track does not change much when it is compared to the one in Fig.6 except that the error of both control strategies becomes larger after adding the disturbance signal.

    (a) Joint angle tracking in gravity environment

    (b) End-effector tracking in gravity environment

    Fig.8Simulation results with disturbance at gravity environment

    (a) Joint angle tracking in microgravity environment

    (b) End-effector tracking in microgravity environment

    Fig.9Simulation results with disturbance at microgravity environment

    (a) Ground environment end tracking error

    (b)Space environment end tracking error

    Fig.10Simulation results with external disturbance

    3 Conclusions

    The trajectory tracking problem of the space manipulator is investigated,aiming at the inaccuracy of the tracking control of the end of the manipulator caused by the change of gravity,the dynamic linearization of the dynamic equation is obtained,and the input and output relationship of the system is obtained.Based on this relationship,MFAC controller is designed to solve the inaccuracy trajectory tracking control of the space manipulator under different gravity environment.Finally,simulation results are given to show the effectiveness of the proposed approach.

    In the future,we will continue to improve the control accuracy of the system,and also consider the flexibility and clearance of the space manipulator mechanism.Moreover,how to extend the anti-interference ability of the control system is also the future work.

    91午夜精品亚洲一区二区三区 | 日韩精品中文字幕看吧| 看十八女毛片水多多多| 亚洲va日本ⅴa欧美va伊人久久| 免费看光身美女| 国产高清不卡午夜福利| 在线天堂最新版资源| 亚洲一区二区三区色噜噜| 在线观看av片永久免费下载| 国产av在哪里看| 91av网一区二区| 他把我摸到了高潮在线观看| 少妇的逼好多水| 一夜夜www| 色精品久久人妻99蜜桃| 99久久精品国产国产毛片| 成年人黄色毛片网站| 国产中年淑女户外野战色| 麻豆国产av国片精品| 国产日本99.免费观看| 老司机午夜福利在线观看视频| 啦啦啦啦在线视频资源| 91麻豆av在线| 久久人妻av系列| 免费人成在线观看视频色| 波多野结衣巨乳人妻| 免费看光身美女| 欧美激情久久久久久爽电影| 一个人看的www免费观看视频| 国产午夜福利久久久久久| 又粗又爽又猛毛片免费看| 久久久午夜欧美精品| 2021天堂中文幕一二区在线观| 国产午夜精品久久久久久一区二区三区 | 亚洲美女视频黄频| 丰满人妻一区二区三区视频av| 美女黄网站色视频| 哪里可以看免费的av片| 欧美性猛交黑人性爽| 亚洲av一区综合| 男女之事视频高清在线观看| 69av精品久久久久久| 嫩草影院入口| 一个人观看的视频www高清免费观看| 久久午夜福利片| 成人午夜高清在线视频| 99久久精品国产国产毛片| 狂野欧美白嫩少妇大欣赏| 干丝袜人妻中文字幕| 级片在线观看| 观看免费一级毛片| 蜜桃久久精品国产亚洲av| 国产aⅴ精品一区二区三区波| 日本一本二区三区精品| 亚洲性久久影院| 免费av不卡在线播放| 国产精品综合久久久久久久免费| 久久人人精品亚洲av| 搡女人真爽免费视频火全软件 | 久久久久久九九精品二区国产| 欧美三级亚洲精品| 国产精品亚洲美女久久久| 亚洲国产精品合色在线| 我的老师免费观看完整版| 久久人人精品亚洲av| 婷婷六月久久综合丁香| 国产男人的电影天堂91| 女人十人毛片免费观看3o分钟| 桃红色精品国产亚洲av| 麻豆国产av国片精品| 精品久久久久久成人av| 一本精品99久久精品77| av专区在线播放| 18+在线观看网站| 欧美日韩综合久久久久久 | 香蕉av资源在线| 国产在线精品亚洲第一网站| 很黄的视频免费| 久久久久性生活片| 亚洲av电影不卡..在线观看| 啦啦啦观看免费观看视频高清| 又黄又爽又免费观看的视频| 日本黄大片高清| 国产三级在线视频| 搡女人真爽免费视频火全软件 | 午夜福利欧美成人| 久久久久久国产a免费观看| 日本爱情动作片www.在线观看 | 亚洲四区av| 最近最新免费中文字幕在线| 国产淫片久久久久久久久| 很黄的视频免费| 亚洲男人的天堂狠狠| 久久久久久久久中文| 又紧又爽又黄一区二区| 2021天堂中文幕一二区在线观| 91麻豆精品激情在线观看国产| 亚洲国产欧美人成| 女人十人毛片免费观看3o分钟| 乱系列少妇在线播放| 蜜桃亚洲精品一区二区三区| 亚洲三级黄色毛片| 欧美高清成人免费视频www| 欧美不卡视频在线免费观看| 国产乱人视频| 成人国产麻豆网| 琪琪午夜伦伦电影理论片6080| 狠狠狠狠99中文字幕| 能在线免费观看的黄片| 欧美国产日韩亚洲一区| 91在线观看av| 色综合色国产| 亚洲第一区二区三区不卡| 国产乱人视频| www.色视频.com| 少妇裸体淫交视频免费看高清| 日本 欧美在线| 热99re8久久精品国产| 精品日产1卡2卡| 国产精品野战在线观看| 亚洲色图av天堂| 日韩欧美国产一区二区入口| 久久99热这里只有精品18| a级毛片免费高清观看在线播放| 国产高清有码在线观看视频| 亚洲欧美清纯卡通| 国产亚洲av嫩草精品影院| 国产v大片淫在线免费观看| 精品久久久久久久人妻蜜臀av| 99视频精品全部免费 在线| 久久国产乱子免费精品| 国产高清视频在线观看网站| 一区二区三区四区激情视频 | 成人毛片a级毛片在线播放| www日本黄色视频网| 亚洲熟妇熟女久久| 久久久久久久精品吃奶| 在线免费观看不下载黄p国产 | 香蕉av资源在线| 精品免费久久久久久久清纯| 国产成人aa在线观看| 国内久久婷婷六月综合欲色啪| 日韩在线高清观看一区二区三区 | 亚洲内射少妇av| 搡老妇女老女人老熟妇| 极品教师在线免费播放| www.www免费av| 97热精品久久久久久| 午夜免费激情av| 色尼玛亚洲综合影院| 国产精品不卡视频一区二区| 黄色日韩在线| 日韩精品有码人妻一区| 18禁在线播放成人免费| 97超级碰碰碰精品色视频在线观看| 日日夜夜操网爽| 成人国产综合亚洲| 免费看a级黄色片| 久久久久久久久久黄片| 欧美成人性av电影在线观看| 无人区码免费观看不卡| 人妻丰满熟妇av一区二区三区| 亚洲色图av天堂| 99国产极品粉嫩在线观看| 久久精品影院6| 亚洲四区av| 亚洲图色成人| 色综合色国产| 国产午夜精品久久久久久一区二区三区 | 尤物成人国产欧美一区二区三区| 国产精品电影一区二区三区| 精品福利观看| 国产爱豆传媒在线观看| 我的女老师完整版在线观看| 一边摸一边抽搐一进一小说| 亚洲男人的天堂狠狠| 成人国产综合亚洲| 欧美bdsm另类| 一个人免费在线观看电影| 久99久视频精品免费| 亚洲在线自拍视频| 亚洲电影在线观看av| 在线观看一区二区三区| 91久久精品电影网| 日韩精品青青久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 国产毛片a区久久久久| 欧美日本亚洲视频在线播放| 少妇的逼好多水| 久9热在线精品视频| 大又大粗又爽又黄少妇毛片口| 日本黄色视频三级网站网址| 亚洲成人中文字幕在线播放| 制服丝袜大香蕉在线| 成人二区视频| 日韩国内少妇激情av| av中文乱码字幕在线| 国产精品,欧美在线| 嫩草影院入口| 欧美成人免费av一区二区三区| 国产探花极品一区二区| 亚洲乱码一区二区免费版| 舔av片在线| 51国产日韩欧美| 精品一区二区三区av网在线观看| 亚洲中文字幕一区二区三区有码在线看| 久久久久久久久久黄片| 成年人黄色毛片网站| 最近最新中文字幕大全电影3| 三级男女做爰猛烈吃奶摸视频| 久久精品国产亚洲av香蕉五月| 最近最新免费中文字幕在线| 欧美成人免费av一区二区三区| 老司机深夜福利视频在线观看| www日本黄色视频网| 99国产精品一区二区蜜桃av| 内地一区二区视频在线| 看免费成人av毛片| 一a级毛片在线观看| 亚洲国产精品成人综合色| 中文字幕免费在线视频6| 黄色一级大片看看| 成人国产麻豆网| 国产成人影院久久av| 久久国产精品人妻蜜桃| 亚洲第一区二区三区不卡| 亚洲av美国av| 一本一本综合久久| 国产探花在线观看一区二区| 亚洲精品亚洲一区二区| 国国产精品蜜臀av免费| 成人av在线播放网站| 联通29元200g的流量卡| 大型黄色视频在线免费观看| 亚洲精品国产成人久久av| 一进一出抽搐动态| 亚洲国产日韩欧美精品在线观看| 国产男靠女视频免费网站| а√天堂www在线а√下载| 蜜桃久久精品国产亚洲av| 亚洲经典国产精华液单| 国产蜜桃级精品一区二区三区| 日本一二三区视频观看| 别揉我奶头 嗯啊视频| 在线观看66精品国产| 美女黄网站色视频| 久9热在线精品视频| 日韩一区二区视频免费看| av中文乱码字幕在线| 一个人免费在线观看电影| 免费看av在线观看网站| 国产精品亚洲美女久久久| 99国产极品粉嫩在线观看| 观看美女的网站| 男人狂女人下面高潮的视频| 亚洲av五月六月丁香网| 我的女老师完整版在线观看| 久久九九热精品免费| 窝窝影院91人妻| 婷婷精品国产亚洲av在线| 听说在线观看完整版免费高清| 在线免费十八禁| 免费人成在线观看视频色| 神马国产精品三级电影在线观看| 美女xxoo啪啪120秒动态图| 精品人妻熟女av久视频| 尾随美女入室| 最新中文字幕久久久久| 久久久久国内视频| 国产av一区在线观看免费| 动漫黄色视频在线观看| 十八禁网站免费在线| 国产成人aa在线观看| 国产伦在线观看视频一区| 精品人妻视频免费看| 欧美在线一区亚洲| 精品日产1卡2卡| 成年版毛片免费区| 美女高潮喷水抽搐中文字幕| 成人av在线播放网站| 亚洲,欧美,日韩| 亚洲综合色惰| 美女cb高潮喷水在线观看| a级一级毛片免费在线观看| 亚洲自拍偷在线| 色播亚洲综合网| 国产在线精品亚洲第一网站| 成人国产一区最新在线观看| 日本免费a在线| 日本三级黄在线观看| 日韩中文字幕欧美一区二区| 成人特级av手机在线观看| 国产视频内射| 超碰av人人做人人爽久久| 精品久久久久久成人av| 免费观看在线日韩| 中文字幕熟女人妻在线| 欧美3d第一页| 在线观看66精品国产| 国产国拍精品亚洲av在线观看| 欧美色欧美亚洲另类二区| 成人国产综合亚洲| 十八禁网站免费在线| 一级黄片播放器| 日本熟妇午夜| 国产高清激情床上av| 亚洲国产色片| 18+在线观看网站| 少妇丰满av| 男人和女人高潮做爰伦理| 国产精品野战在线观看| 美女大奶头视频| 99九九线精品视频在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲中文字幕日韩| 三级国产精品欧美在线观看| 亚洲美女视频黄频| 乱系列少妇在线播放| 精品福利观看| 色综合站精品国产| 亚洲第一电影网av| 日韩精品青青久久久久久| 嫩草影院入口| 午夜视频国产福利| 欧美日韩精品成人综合77777| 亚洲精华国产精华精| 中文字幕av在线有码专区| 一区福利在线观看| 一本一本综合久久| 亚洲性久久影院| 一a级毛片在线观看| 99久久精品国产国产毛片| 欧美日本视频| 国产主播在线观看一区二区| 成人性生交大片免费视频hd| 日本熟妇午夜| 国产一区二区激情短视频| 特大巨黑吊av在线直播| 老熟妇仑乱视频hdxx| 亚洲av熟女| 中文字幕高清在线视频| 日韩精品有码人妻一区| bbb黄色大片| 亚洲最大成人中文| 国产精品国产三级国产av玫瑰| 国产日本99.免费观看| 亚洲专区国产一区二区| 中文字幕熟女人妻在线| 久久精品国产鲁丝片午夜精品 | 成人av在线播放网站| 婷婷亚洲欧美| 亚洲国产欧洲综合997久久,| 性欧美人与动物交配| 亚洲电影在线观看av| 校园人妻丝袜中文字幕| 天堂网av新在线| 美女大奶头视频| 麻豆国产av国片精品| 欧美不卡视频在线免费观看| 精品久久国产蜜桃| 中文字幕免费在线视频6| 亚洲精品亚洲一区二区| 欧美成人一区二区免费高清观看| netflix在线观看网站| 国产精品久久久久久精品电影| 成年免费大片在线观看| 三级男女做爰猛烈吃奶摸视频| av在线天堂中文字幕| 国产在线精品亚洲第一网站| 日韩欧美精品v在线| 国产欧美日韩一区二区精品| 熟妇人妻久久中文字幕3abv| 深夜精品福利| 精品日产1卡2卡| 亚洲 国产 在线| 俺也久久电影网| 两性午夜刺激爽爽歪歪视频在线观看| 美女高潮喷水抽搐中文字幕| 如何舔出高潮| 久久热精品热| 国产成人影院久久av| 日韩国内少妇激情av| 亚洲精品国产成人久久av| av黄色大香蕉| 人人妻,人人澡人人爽秒播| 久久天躁狠狠躁夜夜2o2o| 欧美人与善性xxx| 99国产极品粉嫩在线观看| 国产欧美日韩一区二区精品| 国产白丝娇喘喷水9色精品| 九九热线精品视视频播放| 亚洲在线自拍视频| 精品国产三级普通话版| 国产日本99.免费观看| 亚洲一区二区三区色噜噜| 嫩草影院入口| 日韩在线高清观看一区二区三区 | 日本 欧美在线| 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 精品乱码久久久久久99久播| 久久精品国产鲁丝片午夜精品 | 国产成人aa在线观看| 又黄又爽又免费观看的视频| 免费观看人在逋| 中文资源天堂在线| 亚洲无线在线观看| 美女被艹到高潮喷水动态| 国产精品一区二区三区四区久久| 亚洲av不卡在线观看| 亚洲精品一区av在线观看| 最近在线观看免费完整版| 欧美不卡视频在线免费观看| 男女之事视频高清在线观看| 亚洲国产日韩欧美精品在线观看| a级毛片免费高清观看在线播放| 国产欧美日韩精品一区二区| 亚洲精品粉嫩美女一区| 国产精品电影一区二区三区| 国产高清视频在线观看网站| 黄色欧美视频在线观看| 热99在线观看视频| 特大巨黑吊av在线直播| 91av网一区二区| 亚洲成a人片在线一区二区| 免费看a级黄色片| 色视频www国产| av在线蜜桃| 久久久久九九精品影院| 国产精品亚洲一级av第二区| 一区二区三区四区激情视频 | 国产黄a三级三级三级人| 免费在线观看成人毛片| 日韩欧美 国产精品| 99在线视频只有这里精品首页| 又紧又爽又黄一区二区| 男女视频在线观看网站免费| 国产白丝娇喘喷水9色精品| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩国产亚洲二区| 婷婷六月久久综合丁香| 免费黄网站久久成人精品| 少妇被粗大猛烈的视频| 内地一区二区视频在线| 一区福利在线观看| 国内久久婷婷六月综合欲色啪| 少妇丰满av| 女的被弄到高潮叫床怎么办 | 春色校园在线视频观看| 久久久久国产精品人妻aⅴ院| 观看美女的网站| 国产亚洲精品av在线| 国产精品爽爽va在线观看网站| 久久久精品大字幕| ponron亚洲| 春色校园在线视频观看| 九九在线视频观看精品| 亚洲国产日韩欧美精品在线观看| 国产精品国产三级国产av玫瑰| 九九爱精品视频在线观看| 久久这里只有精品中国| 啦啦啦啦在线视频资源| 免费看a级黄色片| 久久久国产成人免费| 色综合色国产| 午夜亚洲福利在线播放| 亚洲中文日韩欧美视频| 亚洲精品粉嫩美女一区| 欧美潮喷喷水| 久久精品影院6| 人妻丰满熟妇av一区二区三区| 99热网站在线观看| 久久草成人影院| 日本与韩国留学比较| 久9热在线精品视频| 国内精品一区二区在线观看| 我要看日韩黄色一级片| 久99久视频精品免费| 嫁个100分男人电影在线观看| 亚洲中文日韩欧美视频| 精品久久国产蜜桃| 欧美最黄视频在线播放免费| www.色视频.com| 久久精品国产鲁丝片午夜精品 | 女人十人毛片免费观看3o分钟| 熟妇人妻久久中文字幕3abv| 我要看日韩黄色一级片| 午夜视频国产福利| 亚洲18禁久久av| 别揉我奶头 嗯啊视频| 91av网一区二区| 久久精品国产99精品国产亚洲性色| 久久人人精品亚洲av| 成年免费大片在线观看| av.在线天堂| a在线观看视频网站| 在线天堂最新版资源| www.www免费av| 中文亚洲av片在线观看爽| 精品久久久久久久末码| 成人国产综合亚洲| 亚洲aⅴ乱码一区二区在线播放| 国内精品一区二区在线观看| а√天堂www在线а√下载| 少妇熟女aⅴ在线视频| 亚洲av一区综合| 国产伦精品一区二区三区四那| 床上黄色一级片| 亚洲av成人精品一区久久| 国产精品国产三级国产av玫瑰| 成熟少妇高潮喷水视频| 五月伊人婷婷丁香| 中文字幕免费在线视频6| 一区福利在线观看| 精品久久久久久成人av| 久久精品夜夜夜夜夜久久蜜豆| 夜夜夜夜夜久久久久| 精品人妻视频免费看| 特大巨黑吊av在线直播| 精品国产三级普通话版| 久久久久久久久久久丰满 | 香蕉av资源在线| 亚洲人成网站在线播| 最新中文字幕久久久久| 校园春色视频在线观看| 日韩中字成人| 中文字幕精品亚洲无线码一区| 精品人妻1区二区| 热99re8久久精品国产| 免费av不卡在线播放| 日韩欧美精品免费久久| 国产精品久久久久久久电影| 午夜福利视频1000在线观看| 国产探花极品一区二区| av视频在线观看入口| 欧美不卡视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 小说图片视频综合网站| 少妇裸体淫交视频免费看高清| 婷婷亚洲欧美| 亚洲av一区综合| 亚洲最大成人中文| 亚洲精品影视一区二区三区av| 黄色一级大片看看| 免费大片18禁| 日韩精品中文字幕看吧| 色精品久久人妻99蜜桃| 久久精品91蜜桃| 简卡轻食公司| av中文乱码字幕在线| 老司机午夜福利在线观看视频| 日本 av在线| 观看免费一级毛片| 国产av不卡久久| 亚洲av中文字字幕乱码综合| a级毛片a级免费在线| 国产免费男女视频| 99久久无色码亚洲精品果冻| 亚洲av二区三区四区| 美女cb高潮喷水在线观看| 一进一出抽搐gif免费好疼| 韩国av在线不卡| 色在线成人网| 亚洲人成网站在线播| 国产私拍福利视频在线观看| 日韩大尺度精品在线看网址| 久久久久久久午夜电影| 伦精品一区二区三区| 久久亚洲真实| 亚洲成人免费电影在线观看| 日韩亚洲欧美综合| 日韩精品青青久久久久久| 免费看av在线观看网站| 男人舔女人下体高潮全视频| 中文在线观看免费www的网站| 精品久久久久久久久av| 国产精品人妻久久久久久| 日本免费a在线| 国产免费男女视频| 夜夜爽天天搞| 全区人妻精品视频| 精品欧美国产一区二区三| 免费在线观看影片大全网站| 久9热在线精品视频| 亚洲自拍偷在线| 夜夜夜夜夜久久久久| 搡女人真爽免费视频火全软件 | 欧美zozozo另类| 99久久九九国产精品国产免费| a在线观看视频网站| 身体一侧抽搐| 三级毛片av免费| 亚洲国产精品sss在线观看| 蜜桃久久精品国产亚洲av| 亚洲自偷自拍三级| 中文资源天堂在线| 男女视频在线观看网站免费| 国产精品98久久久久久宅男小说| 最近在线观看免费完整版| 欧美日本亚洲视频在线播放| 亚洲美女搞黄在线观看 | 淫秽高清视频在线观看| 欧美绝顶高潮抽搐喷水| 久久久久国内视频| 国产女主播在线喷水免费视频网站 | 午夜免费成人在线视频| 亚洲av电影不卡..在线观看| 黄色女人牲交| 成人综合一区亚洲| 免费观看人在逋| 99视频精品全部免费 在线| 能在线免费观看的黄片| 久久国产乱子免费精品| 真实男女啪啪啪动态图| 欧美性感艳星|