• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model-free adaptive control of space manipulator under different gravity environment①

    2020-04-13 07:05:56WenYintang溫銀堂GaoLinqiLiuFucaiQinLi
    High Technology Letters 2020年1期

    Wen Yintang (溫銀堂),Gao Linqi,Liu Fucai,Qin Li

    (School of Electrical Engineering,Yanshan University,Qin Huangdao 066004,P.R.China)

    Abstract

    Key words:space manipulator,microgravity,model-free adaptive,trajectory tracking control

    0 Introduction

    Along with the increasing frequency of human space activities,the number of ‘space debris’ in space is increasing,and they are not beneficial for the normal operation of space vehicles and even seriously affect the safety of normal satellites[1].In order to reduce the losses and protect the orbital resources,the national scientists have been working on on-orbit service technology for satellite maintenance and orbital garbage removal[2,3].Using space manipulators instead of astronauts for space operations can not only avoid the damage to astronauts,but also reduce the costs and improve the benefits of space exploration.Therefore,it is necessary to design an adaptive controller to track the particular trajectory.

    Due to the release of gravity in the space environment[4]and the uncertain external disturbance,the dynamic characteristics of space manipulator have changed compared with that of the ground.Once the space manipulator trajectory tracking controller is assembled on gravity environment,it will be inapplicable for microgravity environment due to the changes of dynamics characteristics,which result in the space manipulator cannot track the desired trajectory.This robot system is multi-input and multi-output nonlinear system,which has time-varying and strong coupling properties,the control of this mechanism turns to be complicated[5].In order to achieve the end of the space manipulator trajectory tracking control,the researchers have done a lot of experiments on this topic.Walker and Wee[6]presented an adaptive control method for space manipulator,which can achieve global stablility in the presence of uncertainties in the inertial parameters.Kim and Lewis[7]proposed a robust neural network output feedback scheme for the motion control of robot manipulators without measuring the joint velocities.Qin et al.[8]proposed a fuzzy adaptive robust control strategy for space manipulator,in which the fuzzy algorithm was employed to approximate the nonlinear uncertainties in the model and achieved effective space manipulator trajectory tracking task.Qin et al.[9]proposed an adaptive back stepping sliding mode controller to eliminate the impact of parameter uncertainties and disturbances.However,when the manipulator is in different gravity environment,it has to adjust the control law to track the trajectory,and also the above methods depend on the prior knowledge about the upper bound of the system,which is not applicable to the trajectory tracking task of manipulator in microgravity environment.For this reason,it is necessary to understand the changes of the dynamics and motion behaviour of the manipulator under different gravity environment,then design a proper controller that can track the desired trajectory in different gravity environment,which could overcome the influence of gravity changes of the space manipulator.

    In recent years,model-free adaptive control (MFAC) algorithm is paid more attention by researchers in various fields.Gao et al.[10]proposed a CFDL based MFAC controller to the polishing robot,achieved a good control performance and adaptively decoupled the coupled outputs for MIMO system.Wang et al.[11]applied the MFAC method combined with sliding mode algorithm to the robotic exoskeleton tracking system,which could make the robotic exoskeleton tracking on its desired velocity tightly even when the dynamic parameter of the exoskeleton was time-varying irregularly and uncertainly.The data-driven MFAC strategy was proposed by Hou[12]in 1994 to solve the problem of inaccurate modelling of the controlled system.Hou[12]aimed to establish a nonparametric model of a nonlinear system and developed an adaptive control theory that did not depend on the mathematical model of the control system,but depended on the input/output (I/O) measurement data of the system.The core of the theory were three new dynamic linearization approaches and a novel concept of matrix[13,14]which will establish an equivalent dynamic linearized model of each dynamic working point of the closed-loop system.Inspired by the principle of the algorithm,the MFAC strategy is proposed to apply to the complicated space manipulator end trajectory tracking system.The algorithm can eliminate the dynamics changes caused by gravity changes,so that the space manipulator can be debugged on the ground environment and then achieve high accuracy trajectory tracking task in microgravity environment without changing the controller parameters.

    The main contributions of this paper lie in three aspects:1) The dynamic equation of space manipulator system is transformed dynamically,and the input-output relationship of the control system is obtained.2) The MFAC controller is designed and the control system is constructed.3) The simulation results show that MFAC strategy can achieve higher precision trajectory tracking task when the controller parameters are the same under different gravity environment.

    The remainder of this paper is organized as follows.In Section 1,by analysing the dynamic equation of the robot,we get the structure of the control system.According to the principle of the MFAC algorithm,the dynamic equation is transformed to obtain the input-output relationship of the system,and then the stability of the controller is proved.Simulation results of the trajectory tracking system are presented in Section 2.Finally,Section 3 summarizes the conclusion of the research.

    1 Space manipulator control system design

    1.1 Control system design

    In this paper,the controller is designed by MFAC theory and the controlled object is the 2 degrees of freedom of space manipulator.Fig.1 shows the structure of the control system.

    Fig.1 MFAC control of the space manipulator system

    The inputs of the space manipulator control system are the desired joint angles,which are obtained by inverse kinematics of the desired trajectory of the end.The outputs of this system are the actual joint angles of the space manipulator.By dynamic linearizing and discretizing the space manipulator dynamics system,we get the value of the state variables at each sample time.The outputs of the controller are the desired joint torques,which are also used as the input of the controller.At the same time,the differential of the desired joint angles and the differential of actual joint angles are also the inputs of the controller.By updating the value of PPJM,the joint torques of the next moment can be obtained.Through the above operations,the end trajectory tracking task of the space manipulator can be realized based on MFAC algorithm.

    1.2 Transformation of the dynamics and dynamic linearization

    For the space manipulator is a complex nonlinear system which cannot be directly linearized by the common approach[15],and inspired by the method proposed in Ref.[11],a method to transform and linearize the dynamical equation of the space manipulator is introduced.According to the influence of gravity,inertia as well as Coriolis and centrifugal effects,its dynamics can be expressed as the following form:

    (1)

    (2)

    -M(k)-1(G(k)+f(k))

    (3)

    When the sampling timeTof the discrete system is small enough,the following equation is got:

    (4)

    Thus,the input-output relationship between timekand timek+1 can be expressed as following:

    y(k+1)=TM(k)-1u(k)-TM(k)-1C(k)y(k)

    -TM(k)-1(G(k)+f(x))+y(k)

    (5)

    The above equation is the discrete transformation form of space robot dynamic model.According to this equation,the partial derivatives ofy(k+1) with respect toy(k) andu(k) are continuous,Eq.(5) satisfies the Lipschitz condition,therefore,there must be time-varying parameter matrixΦ(k)=[φ1(k),φ2(k)],which enables Eq.(5) to convert into the following full form dynamic linearized data model:

    y(k+1)=φ1(k)Δy(k)+φ2(k)Δu(k)+y(k)

    (6)

    where ‖Φ(k)‖

    1.3 MFAC controller design

    1.3.1 Control law

    Due to the complexity of space environment,the output of space manipulator system is not only related to the input changes of adjacent time,but also related to the output changes,these factors will affect the stability of the control system.Thus,the following control input criteria function is introduced:

    J(u(k))=‖y*(k+1)-y(k+1)‖2

    +λ‖u(k)-u(k-1)‖2

    (7)

    wherey*(k+1) is the given desired joint angular velocity.Combining Eq.(6) with Eq.(7) to deriveu(k) and make it equal to zero,the following expression can be obtained:

    Δu(k)=(λI+ΦT(k)Φ(k))-1ΦT(k)

    ×((y*(k+1)-y(k))

    -Φ(k)Δy(k))

    (8)

    Simplifying the matrix inversion operation in Eq.(8),the control scheme of the 2 degrees of freedom of space manipulator can be obtained as follows:

    (9)

    1.3.2 PPJM estimation algorithm

    Considering the following estimation criteria function:

    J(Φ(k))=‖Δy(k)-φ1(k)Δy(k-1)

    -φ2(k)Δu(k-1)‖2

    (10)

    Deriving and making it equal to zero,the following expression can be obtained:

    (11)

    1.4 Stability analysis

    Theorem1Eq.(5) represents the discrete dynamics model of a space manipulator,y(k+1) is partial differential continuous with respect to the control outputsy(k) and control inputsu(k),therefore the system is generalized Lipschitz.Fory*(k+1)=y*(k)=const,there is a positive numberλmin,whenλ>λmin,gives:

    1) The tracking error of the system is asymptotically convergent.

    2) The closed-loop system is BIBO,for which the input and the output are bounded.

    ProofThe proof process involves 2 steps.The first step proves the boundedness of the PPJM estimation value and the second step proves the convergence of the tracking error and the BIBO stability of the system.

    Subtractφ1(k) andφ2(k) respectively from the Eq.(11),as follows:

    +φ1(k-1)-φ1(k)

    (12)

    +φ2(k-1)-φ2(k)

    (13)

    Since ‖φ1(k-1)-φ1(k)‖≤2a1,‖φ2(k-1)-φ2(k)‖≤2a2,take the norm of the above 2 formulas,the following expression can be obtained:

    (14)

    (15)

    Sinceμ>0,η∈(0,2],the following can be obtained

    ∈(0,1) (16)

    ∈(0,1) (17)

    ∈(0,1) (18)

    ∈(0,1) (19)

    Therefore,there are constantsb1,b2,b3,b4∈(0,1),which make the following formula true:

    (20)

    Step2Defining

    s(k)=e(k)=y*(k)-y(k)

    (21)

    According to Eq.(6),the following expression can be obtained:

    s(k+1)=e(k+1)

    =y*(k)-y(k)-(y(k+1)-y(k))

    =s(k)-(φ1(k)Δy(k)+φ2(k)Δu(k))

    (22)

    Because of the boundedness ofφ(k) and according to Lyapunov’s theorem,the system motion trajectory tends to a balance states(k),so the tracking error of the system is convergent,which means limk→∞e(k)=0.The conclusion (1) is proved.

    It can be proved that the error between the actual output value and the expected value eventually reaches zero.Substituting Eqs(6) and (12) into Eq.(19)

    e(k+1)=e(k)-φ1(k)Δy(k)-φ2(k)Δu(k)

    =e(k)-ΦT(k)ΔH(k)

    (23)

    Since limk→∞e(k)=0 andΦ(K) are bounded in the above equation,it can be obtained that limk→∞ΔH(k)=0,which meansy(k) andu(k) are bounded.The conclusion (2) is obtained.

    It can be proved that the MFAC control algorithm provides a bounded input for the 2 degrees of freedom of space manipulator control system so that the tracking error of the system converges,which can ensure the stability of the system.

    2 Simulation test

    2.1 Simulation parameters

    To consummate the simulation structure and inspired by the modeling of the space manipulator by Gao[16],the structure of the 2 degrees of freedom space manipulator in the gravity environment is defined as Fig.2.

    Fig. 2 The structure of two degrees of freedom space manipulator in gravity environment

    The kinematics parameters in the ground gravity environment are indicated in Table 1.

    Table 1 The kinematics parameters of the space manipulator in the ground environment

    When the space manipulator operates in a microgravity environment,the pedestal posture is out of control because of the gravity release.Thus,the pedestal of the space manipulator can be assumed to be a pseudo-mechanical space manipulator which consists of two moving joints and one rotating joint that rotates around its center of mass.The structure schematic is shown in Fig.3.

    Fig.3 The structure of two degrees of freedom space manipulator in microgravity environment

    The kinematics parameters in the space microgravity environment are indicated in Table 2.

    Table 2 The kinematics parameters of the space manipulator in the space environment

    The initial position of the end of the space manipulator is set as (1.15,0.14),and the desired trajectory of the end of the space manipulator is inspired by Gao[16],which is set as

    (24)

    Based on the desired trajectory,the angle of the joint can be obtained by inverse kinematics solution.The control system is established under the environment of Matlab R2016b.To verify the superiority of the MFAC controller,the simulation results are compared with the ones that are obtained according to traditional PD control strategy.For the comparison purpose,the simulation experiment in this paper does not change the controller parameters at different operation condition,which are the same as the ground debugging.Meanwhile,both strategies should follow the same initial conditions.

    The PD controller parameters are set as follows:

    (25)

    whereKP=diag(250,250)Kd=diag(50,50).

    2.2 Simulation result

    The simulation time is 10 s,the simulation results are shown as follows.

    Fig.4 and Fig.5 show the joint angle tracking and end-effector tracking results in different gravity environment,respectively.It can be directly observed from Fig.4 that PD control can follow the desired trajectory more precisely,while there is a little deviation for MFAC strategy.However,Fig.5 shows that MFAC can follow the desired trajectory with a high accuracy in microgravity environment,while PD control completely deviates from the desired trajectory.Fig.6 shows the tracking error of end-effector of the space manipulator in different environment.The error of PD control is nearly 0 in gravity environment.When gravity condition changes,its error peak is almost over 0.2 m in microgravity environment.Meanwhile,the error of MFAC strategy remains at a low level in different gravity environment,and the maximum error of 0.025 m for gravity environment as well as the maximum error of nearly 0 for microgravity environment.

    (a) Joint angle tracking in gravity environment

    (b) End-effector tracking in gravity environment

    Fig.4Simulation results without disturbance in gravity environment

    (a) Joint angle tracking in microgravity environment

    (b) End-effector tracking in microgravity environment

    Fig.5Simulation results without disturbance in microgravity environment

    (a) End-effector tracking error in gravity environment

    (b) End-effector tracking error in microgravity environment

    Fig.6Tracking error of different environment

    Since the space environment has many uncertain disturbances,it is considered to add a disturbance signal to inspect the anti-disturbance performance of both control strategies.Fig.7 shows the disturbance signal which is added to the control system.The amplitude of the signal is 5 which is added in the 5th second of the simulation and removed at the 7th second.

    Fig.7 Disturbance signal

    Fig.8 and Fig.9 present the tracking of end-effector when the external disturbance signal is considered.It can be obtained from Fig.8 that MFAC strategy can follow the desired trajectory more quickly after the disturbance signal occurs.Moreover,the fluctuation value of MFAC strategy is smaller than the one of PD control strategy in both environments.Fig.10 shows the tracking error of the end track does not change much when it is compared to the one in Fig.6 except that the error of both control strategies becomes larger after adding the disturbance signal.

    (a) Joint angle tracking in gravity environment

    (b) End-effector tracking in gravity environment

    Fig.8Simulation results with disturbance at gravity environment

    (a) Joint angle tracking in microgravity environment

    (b) End-effector tracking in microgravity environment

    Fig.9Simulation results with disturbance at microgravity environment

    (a) Ground environment end tracking error

    (b)Space environment end tracking error

    Fig.10Simulation results with external disturbance

    3 Conclusions

    The trajectory tracking problem of the space manipulator is investigated,aiming at the inaccuracy of the tracking control of the end of the manipulator caused by the change of gravity,the dynamic linearization of the dynamic equation is obtained,and the input and output relationship of the system is obtained.Based on this relationship,MFAC controller is designed to solve the inaccuracy trajectory tracking control of the space manipulator under different gravity environment.Finally,simulation results are given to show the effectiveness of the proposed approach.

    In the future,we will continue to improve the control accuracy of the system,and also consider the flexibility and clearance of the space manipulator mechanism.Moreover,how to extend the anti-interference ability of the control system is also the future work.

    此物有八面人人有两片| 中国美女看黄片| 欧美色视频一区免费| 成人二区视频| 真人做人爱边吃奶动态| 夜夜看夜夜爽夜夜摸| 欧美日韩在线观看h| 日韩欧美三级三区| videossex国产| 精品午夜福利视频在线观看一区| 国产免费男女视频| 2021天堂中文幕一二区在线观| 亚洲av成人av| 亚洲欧美日韩高清专用| 亚洲人成网站高清观看| 九九在线视频观看精品| 国产一区二区在线观看日韩| 日本爱情动作片www.在线观看 | 99热这里只有是精品50| 别揉我奶头 嗯啊视频| 午夜精品国产一区二区电影 | 麻豆成人午夜福利视频| 亚洲性夜色夜夜综合| 亚洲精品国产av成人精品 | 少妇人妻一区二区三区视频| 日本免费a在线| 少妇熟女欧美另类| 看黄色毛片网站| 身体一侧抽搐| 亚洲av成人av| 久久天躁狠狠躁夜夜2o2o| 综合色丁香网| 中国国产av一级| 欧美性猛交╳xxx乱大交人| 欧美激情在线99| 毛片女人毛片| 欧美中文日本在线观看视频| 国产探花极品一区二区| 小说图片视频综合网站| 两个人的视频大全免费| 97碰自拍视频| 久久精品久久久久久噜噜老黄 | 九九爱精品视频在线观看| 麻豆一二三区av精品| 1000部很黄的大片| 国产av不卡久久| 给我免费播放毛片高清在线观看| av在线老鸭窝| 99久久久亚洲精品蜜臀av| 国产一区亚洲一区在线观看| 69av精品久久久久久| 噜噜噜噜噜久久久久久91| 激情 狠狠 欧美| 亚洲成人中文字幕在线播放| 国产午夜福利久久久久久| 伦精品一区二区三区| 欧美绝顶高潮抽搐喷水| 熟女电影av网| 波多野结衣高清无吗| 精品一区二区免费观看| 国产国拍精品亚洲av在线观看| 最近中文字幕高清免费大全6| 亚洲一区高清亚洲精品| 亚洲色图av天堂| 一a级毛片在线观看| 日本a在线网址| 久久草成人影院| 国产精品亚洲美女久久久| 蜜臀久久99精品久久宅男| 日韩欧美三级三区| 99国产精品一区二区蜜桃av| 亚洲av免费高清在线观看| 美女高潮的动态| 最近最新中文字幕大全电影3| 亚洲av成人精品一区久久| av在线亚洲专区| 九九在线视频观看精品| 欧美日本亚洲视频在线播放| 国产一区亚洲一区在线观看| 美女 人体艺术 gogo| 午夜久久久久精精品| 国产成人freesex在线 | 一本精品99久久精品77| 日本免费一区二区三区高清不卡| 日韩强制内射视频| 少妇熟女欧美另类| 国产精品99久久久久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 一进一出好大好爽视频| 好男人在线观看高清免费视频| 99热这里只有是精品50| 国产精品久久久久久亚洲av鲁大| 日本爱情动作片www.在线观看 | 日韩三级伦理在线观看| 简卡轻食公司| 日韩在线高清观看一区二区三区| 最新中文字幕久久久久| 国产精华一区二区三区| 大又大粗又爽又黄少妇毛片口| 1000部很黄的大片| 亚洲av一区综合| 免费看日本二区| 看免费成人av毛片| 免费电影在线观看免费观看| 国产黄色视频一区二区在线观看 | 天堂网av新在线| 成人av一区二区三区在线看| 我要看日韩黄色一级片| 成年av动漫网址| 国产毛片a区久久久久| 日本 av在线| 性插视频无遮挡在线免费观看| 晚上一个人看的免费电影| 亚洲色图av天堂| 亚洲av.av天堂| 男女视频在线观看网站免费| 国产精品伦人一区二区| 一级黄色大片毛片| 久久久久久大精品| 成年av动漫网址| 欧美日韩综合久久久久久| 国产一区亚洲一区在线观看| 麻豆av噜噜一区二区三区| 国产成人freesex在线 | 久久久久免费精品人妻一区二区| 日韩制服骚丝袜av| 久99久视频精品免费| 97超碰精品成人国产| 色在线成人网| 亚洲高清免费不卡视频| 可以在线观看毛片的网站| 免费在线观看影片大全网站| 深夜a级毛片| 久久精品91蜜桃| 日韩一本色道免费dvd| 3wmmmm亚洲av在线观看| av在线天堂中文字幕| 欧美色视频一区免费| 观看美女的网站| 久久精品国产亚洲网站| 变态另类成人亚洲欧美熟女| 床上黄色一级片| 夜夜夜夜夜久久久久| 亚洲欧美日韩东京热| 国产成人91sexporn| 久久国内精品自在自线图片| 日日摸夜夜添夜夜添av毛片| 亚洲欧美成人综合另类久久久 | 日本爱情动作片www.在线观看 | 成年女人永久免费观看视频| 色av中文字幕| 悠悠久久av| 免费大片18禁| 日本一本二区三区精品| 成人三级黄色视频| 亚洲最大成人手机在线| 国产精品乱码一区二三区的特点| 久久精品影院6| 麻豆av噜噜一区二区三区| 国产白丝娇喘喷水9色精品| 在线免费观看的www视频| 精品人妻熟女av久视频| 免费av不卡在线播放| 天堂动漫精品| 久久精品国产亚洲网站| 人人妻人人澡人人爽人人夜夜 | 国产黄色视频一区二区在线观看 | 久久久久精品国产欧美久久久| 三级国产精品欧美在线观看| 一区二区三区四区激情视频 | 午夜福利在线观看免费完整高清在 | 国产一区亚洲一区在线观看| 国产v大片淫在线免费观看| 熟女电影av网| 18禁在线播放成人免费| 中文资源天堂在线| 亚洲av.av天堂| 久久精品夜色国产| 欧美日韩一区二区视频在线观看视频在线 | www.色视频.com| 久久久国产成人免费| 欧美日韩国产亚洲二区| 高清日韩中文字幕在线| 国产精品久久久久久久久免| 成人av一区二区三区在线看| 国产精品久久视频播放| 91狼人影院| 国产伦精品一区二区三区视频9| 好男人在线观看高清免费视频| 亚洲,欧美,日韩| 国产成人91sexporn| 热99re8久久精品国产| 少妇熟女aⅴ在线视频| 亚洲一级一片aⅴ在线观看| 日韩 亚洲 欧美在线| 欧美国产日韩亚洲一区| 天美传媒精品一区二区| 一本久久中文字幕| 日本黄色片子视频| 日日摸夜夜添夜夜添小说| 一级黄色大片毛片| 日本与韩国留学比较| 国产精品精品国产色婷婷| 日本一二三区视频观看| 在线免费十八禁| 日韩欧美国产在线观看| 老熟妇乱子伦视频在线观看| 亚洲精品日韩在线中文字幕 | 久久99热这里只有精品18| 超碰av人人做人人爽久久| 老司机午夜福利在线观看视频| 日韩在线高清观看一区二区三区| 自拍偷自拍亚洲精品老妇| 在线观看美女被高潮喷水网站| 国产大屁股一区二区在线视频| 中文字幕av成人在线电影| 黄色视频,在线免费观看| 可以在线观看的亚洲视频| 欧美最黄视频在线播放免费| 亚洲国产高清在线一区二区三| 亚洲一级一片aⅴ在线观看| 99久久精品国产国产毛片| 丝袜喷水一区| 国产高清不卡午夜福利| 九九久久精品国产亚洲av麻豆| 亚洲精品久久国产高清桃花| 级片在线观看| av.在线天堂| 色哟哟·www| 午夜激情欧美在线| 大又大粗又爽又黄少妇毛片口| 国语自产精品视频在线第100页| 亚洲真实伦在线观看| 国国产精品蜜臀av免费| 免费在线观看成人毛片| 日韩一区二区视频免费看| 寂寞人妻少妇视频99o| 精品一区二区免费观看| 一级毛片我不卡| 日韩欧美国产在线观看| 国产亚洲精品久久久久久毛片| www.色视频.com| 国产亚洲精品久久久com| av在线老鸭窝| 在线观看av片永久免费下载| av在线天堂中文字幕| 亚洲在线观看片| 国产不卡一卡二| 国产麻豆成人av免费视频| 免费av观看视频| 男人舔女人下体高潮全视频| 国内精品宾馆在线| 国产精品1区2区在线观看.| 中国国产av一级| 成人美女网站在线观看视频| 一进一出好大好爽视频| 高清毛片免费看| 午夜福利高清视频| 超碰av人人做人人爽久久| 国内精品宾馆在线| 99九九线精品视频在线观看视频| 国产亚洲精品久久久com| 国产又黄又爽又无遮挡在线| 99视频精品全部免费 在线| 深夜精品福利| 淫秽高清视频在线观看| 最近在线观看免费完整版| 亚洲成av人片在线播放无| 99热只有精品国产| 精品99又大又爽又粗少妇毛片| 国产爱豆传媒在线观看| 99久国产av精品国产电影| 少妇熟女aⅴ在线视频| 久久精品影院6| 国产69精品久久久久777片| 精品福利观看| 免费高清视频大片| 日本黄色片子视频| 波多野结衣巨乳人妻| 成人亚洲精品av一区二区| 欧美日韩国产亚洲二区| 午夜福利18| 乱人视频在线观看| 少妇人妻精品综合一区二区 | 波多野结衣高清作品| 99在线视频只有这里精品首页| 伊人久久精品亚洲午夜| 听说在线观看完整版免费高清| 亚洲三级黄色毛片| 亚洲一级一片aⅴ在线观看| 午夜激情欧美在线| 婷婷亚洲欧美| 精品乱码久久久久久99久播| 最后的刺客免费高清国语| 亚洲第一电影网av| 高清午夜精品一区二区三区 | 97热精品久久久久久| 少妇熟女aⅴ在线视频| 精品久久国产蜜桃| 久久草成人影院| 一个人看的www免费观看视频| 成年女人永久免费观看视频| 精品一区二区三区视频在线| 精品久久久久久久久久免费视频| 波野结衣二区三区在线| 男女做爰动态图高潮gif福利片| 女人十人毛片免费观看3o分钟| 亚洲av不卡在线观看| 亚洲欧美精品自产自拍| 男插女下体视频免费在线播放| 亚洲色图av天堂| 免费高清视频大片| 91精品国产九色| 男女啪啪激烈高潮av片| 一进一出抽搐动态| 免费在线观看影片大全网站| 美女cb高潮喷水在线观看| av天堂中文字幕网| 美女内射精品一级片tv| 黄色一级大片看看| 99久久无色码亚洲精品果冻| 人人妻人人澡人人爽人人夜夜 | 美女被艹到高潮喷水动态| 精品乱码久久久久久99久播| 观看免费一级毛片| 黑人高潮一二区| av黄色大香蕉| 亚洲欧美日韩无卡精品| 国产精品嫩草影院av在线观看| .国产精品久久| 日韩av在线大香蕉| 欧美不卡视频在线免费观看| 欧美在线一区亚洲| 看十八女毛片水多多多| 六月丁香七月| 波野结衣二区三区在线| 一级毛片我不卡| 看十八女毛片水多多多| 少妇猛男粗大的猛烈进出视频 | 国产亚洲av嫩草精品影院| 直男gayav资源| 两个人的视频大全免费| 亚洲aⅴ乱码一区二区在线播放| 国产激情偷乱视频一区二区| 女生性感内裤真人,穿戴方法视频| 亚洲在线观看片| 日韩三级伦理在线观看| 国内精品久久久久精免费| 亚洲av.av天堂| 国内久久婷婷六月综合欲色啪| 在线观看一区二区三区| 别揉我奶头 嗯啊视频| 男女下面进入的视频免费午夜| 欧美丝袜亚洲另类| 午夜福利高清视频| 久久精品夜色国产| 亚洲精品一区av在线观看| 最近2019中文字幕mv第一页| 在线观看av片永久免费下载| 午夜激情欧美在线| 最好的美女福利视频网| 秋霞在线观看毛片| 婷婷精品国产亚洲av在线| 51国产日韩欧美| 国产爱豆传媒在线观看| 韩国av在线不卡| 99国产极品粉嫩在线观看| 久久精品夜色国产| 亚洲乱码一区二区免费版| 最新在线观看一区二区三区| eeuss影院久久| 亚洲av不卡在线观看| www日本黄色视频网| 午夜福利成人在线免费观看| 国产蜜桃级精品一区二区三区| 欧美xxxx性猛交bbbb| 免费观看在线日韩| 简卡轻食公司| av天堂在线播放| 久久人人爽人人片av| 亚洲精品一区av在线观看| 成年免费大片在线观看| 3wmmmm亚洲av在线观看| 亚洲国产精品国产精品| 亚洲精品色激情综合| 久久久久久久亚洲中文字幕| 亚洲精品粉嫩美女一区| 久久久欧美国产精品| 中国国产av一级| 亚洲性久久影院| 免费看美女性在线毛片视频| 国产成人freesex在线 | 我的老师免费观看完整版| 在现免费观看毛片| 97碰自拍视频| 性欧美人与动物交配| 亚洲成人中文字幕在线播放| 国内久久婷婷六月综合欲色啪| 91麻豆精品激情在线观看国产| 最近最新中文字幕大全电影3| 深夜精品福利| 国产av一区在线观看免费| 国产精品无大码| 精品乱码久久久久久99久播| 91久久精品国产一区二区三区| 国产久久久一区二区三区| 亚洲电影在线观看av| 岛国在线免费视频观看| 中文字幕av在线有码专区| 一a级毛片在线观看| 亚洲欧美日韩高清专用| 99在线人妻在线中文字幕| 在线播放国产精品三级| 美女免费视频网站| 99热6这里只有精品| 亚洲电影在线观看av| 男女之事视频高清在线观看| 99热精品在线国产| 搡女人真爽免费视频火全软件 | 亚洲第一电影网av| www.色视频.com| 真实男女啪啪啪动态图| 久久久久久久午夜电影| 一个人看视频在线观看www免费| 69av精品久久久久久| 成人亚洲欧美一区二区av| 毛片女人毛片| 国产三级中文精品| 女的被弄到高潮叫床怎么办| 免费电影在线观看免费观看| 天堂av国产一区二区熟女人妻| 91久久精品国产一区二区三区| 国产伦在线观看视频一区| 欧美在线一区亚洲| 成年女人看的毛片在线观看| 最近的中文字幕免费完整| 久久人人精品亚洲av| 晚上一个人看的免费电影| 国产蜜桃级精品一区二区三区| 国产精品一区二区免费欧美| 精品久久国产蜜桃| 久久精品国产亚洲av涩爱 | 高清毛片免费看| 日韩欧美一区二区三区在线观看| 又爽又黄无遮挡网站| 波多野结衣高清无吗| 精品久久久久久久末码| 亚洲四区av| 伊人久久精品亚洲午夜| 久久久久国内视频| 国语自产精品视频在线第100页| 亚洲va在线va天堂va国产| 在线天堂最新版资源| 国产成人a∨麻豆精品| 亚洲国产精品合色在线| 日韩强制内射视频| 精品国内亚洲2022精品成人| 国产精品国产三级国产av玫瑰| 亚洲不卡免费看| 国产 一区精品| 国产精品美女特级片免费视频播放器| 国产白丝娇喘喷水9色精品| 黄色视频,在线免费观看| 中文字幕久久专区| 免费不卡的大黄色大毛片视频在线观看 | 少妇人妻一区二区三区视频| 午夜福利在线观看吧| 在线观看66精品国产| 亚洲高清免费不卡视频| 国产精品乱码一区二三区的特点| 成人午夜高清在线视频| 国产成人freesex在线 | 国产亚洲精品av在线| 舔av片在线| 亚洲成av人片在线播放无| 九色成人免费人妻av| 联通29元200g的流量卡| 亚洲自偷自拍三级| 啦啦啦观看免费观看视频高清| 国产精品一区二区三区四区久久| 十八禁国产超污无遮挡网站| 深夜精品福利| 免费观看精品视频网站| 国产av不卡久久| 青春草视频在线免费观看| 久久精品影院6| 国产欧美日韩精品一区二区| 精品一区二区免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区三区av在线 | av黄色大香蕉| 国产伦精品一区二区三区视频9| 又爽又黄a免费视频| 国产一区亚洲一区在线观看| 成人综合一区亚洲| 麻豆国产97在线/欧美| 黄色欧美视频在线观看| 波多野结衣高清作品| 人妻丰满熟妇av一区二区三区| 少妇的逼好多水| 日日摸夜夜添夜夜添小说| 激情 狠狠 欧美| 色5月婷婷丁香| 男女之事视频高清在线观看| 婷婷亚洲欧美| 18禁在线无遮挡免费观看视频 | 69av精品久久久久久| 欧美人与善性xxx| 在线观看美女被高潮喷水网站| 国产伦一二天堂av在线观看| 一级毛片久久久久久久久女| 色5月婷婷丁香| 校园人妻丝袜中文字幕| 国产精品乱码一区二三区的特点| 天美传媒精品一区二区| 精品少妇黑人巨大在线播放 | 亚洲成人中文字幕在线播放| 内地一区二区视频在线| 九九久久精品国产亚洲av麻豆| 色尼玛亚洲综合影院| 色噜噜av男人的天堂激情| 午夜精品国产一区二区电影 | 成人欧美大片| 精品久久久久久久久av| 亚洲丝袜综合中文字幕| 狂野欧美激情性xxxx在线观看| 免费av观看视频| 欧美日韩乱码在线| 欧美日韩国产亚洲二区| 嫩草影院新地址| 亚洲精品一卡2卡三卡4卡5卡| 在线观看午夜福利视频| 一级黄色大片毛片| 国产精华一区二区三区| 国产老妇女一区| 男人的好看免费观看在线视频| 亚洲最大成人中文| 亚洲欧美日韩卡通动漫| 国产精品国产高清国产av| 99在线视频只有这里精品首页| 日韩中字成人| 精品午夜福利视频在线观看一区| 精品久久久久久久久亚洲| 老司机福利观看| 国产成人91sexporn| 国产色爽女视频免费观看| 亚洲av免费在线观看| 精品人妻一区二区三区麻豆 | 欧美色视频一区免费| 国产女主播在线喷水免费视频网站 | 日韩亚洲欧美综合| 12—13女人毛片做爰片一| 国产麻豆成人av免费视频| 久久久午夜欧美精品| 国产v大片淫在线免费观看| 最新中文字幕久久久久| 午夜精品国产一区二区电影 | 在线免费观看的www视频| 黄色欧美视频在线观看| 变态另类丝袜制服| 国产欧美日韩精品一区二区| 97在线视频观看| 亚洲无线观看免费| 一区二区三区四区激情视频 | 高清午夜精品一区二区三区 | 熟女人妻精品中文字幕| ponron亚洲| aaaaa片日本免费| 国产精品美女特级片免费视频播放器| 久久热精品热| 久久久国产成人精品二区| 欧美日韩精品成人综合77777| 老司机福利观看| av免费在线看不卡| 精品久久久久久久人妻蜜臀av| 97热精品久久久久久| 国产午夜精品久久久久久一区二区三区 | 国产老妇女一区| 亚洲一区高清亚洲精品| 天堂√8在线中文| 国产毛片a区久久久久| 在线免费观看不下载黄p国产| 国产精品,欧美在线| 久久精品国产亚洲av涩爱 | 免费av观看视频| 国产成人影院久久av| 美女大奶头视频| 天堂av国产一区二区熟女人妻| 在线观看午夜福利视频| 成人三级黄色视频| 国产精品野战在线观看| 插阴视频在线观看视频| 亚洲欧美日韩无卡精品| 99久久精品一区二区三区| 午夜老司机福利剧场| 亚洲美女黄片视频| 成人欧美大片| 俺也久久电影网| 日韩中字成人| 18+在线观看网站| 日本一二三区视频观看| 在线观看一区二区三区| 国产亚洲精品av在线| 最近在线观看免费完整版| 国产蜜桃级精品一区二区三区| 久久久久久久久久成人| 亚洲国产精品成人久久小说 | 亚洲四区av| 亚洲美女视频黄频| 欧美+日韩+精品| 一进一出抽搐动态| 免费电影在线观看免费观看| 精品少妇黑人巨大在线播放 | 国产人妻一区二区三区在| 人妻夜夜爽99麻豆av|