• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new diagnosis strategy under the PMC model and applications①

    2020-04-10 06:46:42LiangJiarong梁家榮ChenFangZhangQian
    High Technology Letters 2020年1期
    關(guān)鍵詞:梁家

    Liang Jiarong (梁家榮),Chen Fang,Zhang Qian

    (*School of Computer and Electronic Information,Guangxi University,Nanning 530004,P.R.China)(**Guangxi Key Laboratory of Multimedia Communications and Network Technology,Nanning 530004,P.R.China)

    Abstract

    Key words:Double-Syndrome diagnostic,(k,t)-diagnosable,(k,t/t)-diagnosable,hypercube,2D(3D) mesh,permutation star graph

    0 Introduction

    With the rapid development of multiprocessors,multiprocessor computer systems contain hundreds and thousands of processors now[1].It is inevitable that some processors in such a system may fail.To ensure reliability,the system should have the ability to identify the faulty processors which are then isolated from the system or replaced by additional fault-free ones[2].In order to maintain the reliability of the system,automatic diagnosis procedures were proposed by Preparata et al.[3]and Somani et al.[4],which is known as system-level diagnosis.Preparata et al.[3]proposed the first system-level diagnosis model,namely the PMC model,which can be represented by a digraphG=(V,E) and the edge (i,j) means nodeitests nodej.A test resultω(i,j) is associated with each (i,j) andω(i,j)=1(0) ifievaluatesjto be faulty (fault-free).A complete set of test results associated with the edges of the system is called a syndrome[5-7].For a syndromeσ,letω(σ:i,j)=ω(i,j) whereω(i,j)∈σ.Under the PMC model,there are 2 fundamentally different strategies to system-level diagnosis:t-diagnosis[3]andt/t-diagnosis[3-9].A system ist-diagnosable if and only if all the nodes can be identified by the system correctly in the presence of mosttfaulty nodes[10].And a system ist/t-diagnosable if and only if all the faulty nodes can be isolated by it to within a set of size at mosttin the presence of at mosttfaulty nodes[11,12].However,the diagnosability (t-diagnosable andt/t-diagnosable) of a system given byG=(V,E) is nearly depending on the degree of the graphG,which results in that the improvement of the diagnosability of one system by using traditional method becomes increasingly difficult[11-16].Therefore,this provides a strong motivation to discover a new diagnosis method,for which more faulty nodes can be identified correctly.Next section will present a new diagnosis method,called Double-Syndrome diagnostic,under the PMC model,for which more faulty nodes can be identified correctly.Section 2 proposes a new system called (k,t)-diagnosable and the characterization and some properties of such systems are also presented.Section 3 proposes a new system called (k,t/t)-diagnosable system and the characterization and some properties of such a system are also presented.Section 4 uses properties of these 2 systems and Double-Syndrome diagnostic to further increase the number of faulty nodes which can be identified correctly.In Section 5,a further study is proposed on above 2 diagnosable systems under the conditional diagnosis and figure out some special conditional diagnosability of above 2 diagnosable systems.In the last section,a conclusion is drawn.

    1 Double-Syndrome diagnostic

    Under PMC model,for a system given byG=(V,E),letΓu={v|(u,v)∈E,u,v∈V} andΓu-1={v|(v,u)∈E,u,v∈V}.Similarly,for any subsetX?V,ΓX=∪u∈XΓu-XandΓX-1=∪u∈XΓu-1-X.Without loss of generality,letΓu={v0,v1,v2,v3,…,vm} and for a syndromeσi,letω(u,σi)=(ω(σi:u,v0),ω(σi:u,v1),ω(σi:u,v2),…,ω(σi:u,vm)).

    Lemma1For a system given byG=(V,E) and 2 different syndromesσ1andσ2,u∈V,ifω(u,σ1),ω(u,σ2),thenuis a faulty node.

    ProofSuppose that,to the contrary,uis fault-free.Sinceω(u,σ1),ω(u,σ1),there exists someω(σ1:u,vk) such thatω(σ1:u,vk),ω(σ2:u,vk).Without loss of generality,letω(σ1:u,v0)=1 andω(σ2:u,v0)=0.ω(σ1:u,v0)=1 impliesv0is faulty.On the other hand,ω(σ2:u,v0)=0 impliesv0is fault-free,a contradiction complete the proof.

    Now,Double-Syndrome diagnostic (Algorithm 1) is introduced as follows.

    Algorithm1Double-SyndromediagnosticRequire: AsystemgivenbyG=(V,E)withnnodesand2dif-ferentsyndromesσ1andσ2.Ensure: Asetoffaultynodes. 1)Foreachnodevi∈V(0≤i≤n-1),ifω(vi,σ1)=ω(vi,σ2),continuetheDouble-Syndromediagnostic,otherwise,markviwithfaultandcontinuetheDouble-Syn-dromediagnostic. 2)Outputthenodesmarkedwithfault.

    Under the PMC model,the test result of one faulty node testing the other nodes is unreliable[15,16].In other words,the value ofω(u,v) is stochastic whereuis a faulty node.For convenience,the possibility of test result 1(or 0) of each faulty node testing other nodes is equivalent and letP(u,v:1)=α(P(u,v:0)=1-α) be the possibility of test result 1(0) of one faulty nodeutesting another nodev(vcan be faulty or fault-free).

    Definition1LetAbe a event andP(A)be the possibility of the eventAhappened.

    Property1For a system given byG=(V,E),suppose thatu∈Vis a faulty node with |Γu|=m.For any 2 stochastic syndromesσ1andσ2,letP(u) be the possibility thatuis not marked with fault by Double-Syndrome diagnostic.ThenP(u)=P(ω(u,σ1)=ω(u,σ2))=αl×(1-α)kwithl+k=m.Without loss of generality,letα≥0.5,thenP(u)≤αm.

    Definition2A regular graph is a graph,in which each vertex has the same number of neighbors.LetD(G) be the number of neighbors of each vertex inG=(V,E).

    Property3For a system given byG=(V,E) withnnodes andtfaulty nodes.IfG=(V,E) is a regular graph,thenE(G)=t(1-p(v)),wherev∈Vis a faulty node.

    The lower bounds ofE(G) under then-dimensional hypercube with a differentαare shown in Table 1.Here,tdenotes the exact faulty number in the system.

    Table 1 The changes of E(G) of n-dimensional hypercube

    For a system given byG=(V,E),averageE(G) faulty nodes can be identified by Double-Syndrome diagnostic correctly.For given 2 syndromesσ1andσ2,there may exist some faulty nodes which cannot be identified by Double-Syndrome diagnostic.In next section,another diagnosable method is proposed to deal with these unidentified faulty nodes.

    2 Two-step (k,t)-diagnosable system

    For a system given byG=(V,E),under the assumption thatk-faulty nodes have been identified,it is a very interesting problem to recognize the remaining faulty nodes as much as possible.It is worth noting that with the different distribution of thek-identified nodes,the number of remaining faulty nodes which can be identified may be different[17].

    Definition3A system is one-stept-diagnosable if all faulty nodes can be recognized without replacement provided the number of faulty nodes does not exceedt[3].

    Definition4Given a system byG=(V,E) and a syndromeσ,a setX?Vis called an allowable fault set (AFS) of the system for syndromeσif for any 2 nodesi,jsuch that (i,j)∈E,the following conditions hold:ifi,j∈V-Xthenω(σ:i,j)=0,and ifi∈V-Xandj∈Xthenω(σ:i,j)=118.

    It is worth noting that given a system byG=(V,E),a syndromeσand a fault setF,then there must exist an allowable fault setF′,such thatF?F′.In other words,there must exist a subsetS?Vsuch thatF∪Sis an allowable fault set for syndromeσ.

    Definition5A system is two-step (k,t)-diagnosable if under the condition thatkfaulty nodes have been already recognized,the all remaining faulty nodes can be identified provided the number of faulty nodes in the system does not exceedk+t.

    It is worth noting that according to Definition 3 and Definition 5,a one-step (k+t)-diagnosable system must be two-step (k,t)-diagnosable system,but the inverse is not true.Now an example is given which is two-step (k,t)-diagnosable but not one-step (k+t)-diagnosable.

    Consider a systemG=(V,E) shown in Fig.1,it is a two-step (2,1)-diagnosable system.In fact,for any given syndromeσproduced by the system in the presence of the fault setFwith |F|≤3,if |F|≤2,then the conclusion is true according to the definition.We shall show it is also true when |F|=3.Now we only need to consider following 3 cases due to the symmetry of the system.LetFc?Fbe the possible identified faults set.

    Fig.1 An example of a two-step (2,1)-diagnosable system

    Case1Fc={v1,v2}.

    There is only one faulty node in {v3,v4,v5,v6} and subgraph induced by {v3,v4,v5,v6} is connected.For the given syndromeσ,there always exist 2 adjacent nodesu,v∈{v3,v4,v5,v6} such that at least one ofω(σ:u,v) andω(σ:u,v) is 1.Then the faulty node belongs to {u,v} and {v3,v4,v5,v6}-{u,v}are all fault-free.Therefore,the remaining faulty node can be identified by the test results of their neighbors testing them.

    Case2Fc={v1,v3}.

    For any 2 adjacent nodesu,v∈{v4,v5,v6},ifω(σ:u,v)=0,thenv5is the remaining faulty node.Otherwise,v5is fault-free andv5can be identified correctly.Furthermore,v4,v6can also be identified correctly.

    Case3Fc={v1,v4}.

    Note that the subgraph induced by {v2,v3,v5,v6} is isomorphic to the subgraph induced by {v3,v4,v5,v6}.A similar argument of Case 1 can be used.

    Above all,the system shown in Fig.1 is a two-step (2,1)-diagnosable system.However,it is not a one-step 3-diagnosable system due to the fact that |V|=6<2×3+1.

    With the definition of the two-step (k,t)-diagnosable system,the characterization of this kind of system is presented.

    Theorem1A system given byG=(V,E) is two-step (k,t)-diagnosable if and only if for each subsetFc?Vwith |Fc|=kand any 2 distinct subsets |S1|≤t,|S2|≤twith |S1|≤t,|S2|≤t,there exists an edge fromV-S1-S2-Fcto (S1-S2)∪(S2-S1).

    ProofNecessity:suppose that a system is two-step (k,t)-diagnosable,there exist someFc?Vwith |Fc|=kand some pair of subsetsS1,S2?V-FcwithS1≠S2,|S1|≤t,|S2|≤tsuch that there are no edges fromV-S1-S2-Fcto (S1-S2)∪(S2-S1).Consider a syndrome σ such that for each (i,j)∈E:ifi,j∈V-S1-S2-Fc,thenω(σ:i,j)=0,ifi∈V-S1-S2-Fcandj∈Fc∪S1∪S2,thenω(σ:i,j)=1,other possible test results can be arbitrary.

    For such syndromeσand the identified fault setFc,bothFc∪S1andFc∪S2are all allowable fault sets of cardinality at mostt+k,which is a contradiction to the hypothesis.

    Sufficiency:suppose that,to the contrary,the system is not two-step (k,t)-diagnosable,implying that there exists a syndromeσby which ak-node fault setFccan be identified,and that there exist 2 distinct subsetsS1,S2?V-Fcof cardinality at mosttsuch thatFc∪S1andFc∪S2are allowable fault sets.Noting that there exists an edge fromV-S1-S2-Fcto (S1-S2)∪(S2-S1).Without loss of generality,leti∈V-S1-S2-Fc,j∈(S1-S2) with (i,j)∈E.Ifω(σ:i,j)=1,thenFc∪S2is not an allowable fault set.Ifω(σ:i,j)=0,Fc∪S1is not an allowable fault set.This is a contradiction.

    Note that two-step (k,t)-diagnosable system can be considered to be a generalization oft-diagnosable system,since ifk=0,two-step (k,t)-diagnosable system corresponds directly tot-diagnosable system.

    Corollary1If a system is two-step (k,t)-diagnosable,then the system is also two-step (k,t-1)-diagnosable.

    ProofAccording to Theorem 1,the result is true.

    Corollary2If a system given byG=(V,E) is two-step (k,t)-diagnosable,then the system is also two-step (k-1,t)-diagnosable.

    Corollary3If a system given byG=(V,E) is two-step (k,t)-diagnosable (k>2,t>1),then the system is also two-step (k-2,t+1)-diagnosable.

    ProofAssume that,to the contrary,the system is not two-step (k-2,t+1)-diagnosable,thus,there exist a subsetFc?Vwith |Fc|=k-2 and a pair of subsetsS1,S2?V-FcwithS1≠S2,|S1|≤t+1,|S2|≤t+1,such that there are no edges fromV-S1-S2-Fcto (S1-S2)∪(S2-S1).According to Lemma 1,the system is two-step (k-2,t)-diagnosable,implying that either |S1|≤t+1 or |S2|≤t+1.Consider the following cases.

    Case4|S1|=t+1 and |S2|=t+1.

    Case5|S1|≤tand |S2|=t+1.

    Case6|S1|=t+1 and |S2|≤t.

    A similar argument of Case 6 can be used.

    3 Two-step (k,t/t)-diagnosable system

    In the previous section,the generalization oft-diagnosable system is discussed,namely the two-step (k,t)-diagnosable system.Next we shall consider the generalization oft/t-diagnosable system,namely the two-step (k,t/t)-diagnosable.

    Definition6A systemSist/t-diagnosable if given any syndrome and a positive integert,the faulty nodes can be isolated within a set of at mosttnodes provided the number of faulty nodes does not exceedt[19].

    Definition7A system is two-step (k,t/t)-diagnosable if and only if given any syndrome and a pair positive integerst,k,under the condition thatkfaulty nodes have been already identified correctly,all the remaining faulty nodes can be isolated within a set of size at mosttin the presence of at mostt+kfaulty nodes in all.With the definition of the two-step (k,t/t)-diagnosable system,we shall present the characterization of this kind of system.

    Theorem2For a systemSgiven byG=(V,E),the following 3 statements are equivalent.

    1)Sis two-step (k,t/t)-diagnosable.

    2) For each subsetFc?Vwith |Fc|=kand for any 2 distinct subsetsS1,S2?V-Fcwith |S1|=|S2|=t,there exists an edge fromV-S1-S2-Fcto (S1-S2)∪(S2-S1).

    3) For each subsetFc?Vwith |Fc|=kand for any 2 distinct subsetsS1,S2?V-FcwithS1?S2,S2?S1,|S1|≤t,|S2|≤t,there exists an edge fromV-S1-S2-Fcto (S1-S2)∪(S2-S1).

    ProofThe proof is similar to the proof of Lemma 1 in Ref.[10].

    According to Theorem 6,the following corollaries can be concluded.

    Corollary4If a system given byG=(V,E) is two-step (k,t/t)-diagnosable,then the system is also two-step (k,t-1/t-1)-diagnosable.

    Corollary5If a system given byG=(V,E) is two-step (k,t/t)-diagnosable,then the system is also two-step (k-1,t/t)-diagnosable.

    Corollary6If a system given byG=(V,E) is two-step (k,t/t)-diagnosable,then the system is also two-step (k-2,t+1/t+1)-diagnosable.

    Next section will analysis the specific situation by using the theories of two-step (k,t)-diagnosable system and two-step (k,t/t)-diagnosable system.

    4 Combine to the Double-Syndrome diagnostic

    For a system given byG=(V,E) and a fault setFcidentified by Double-Syndrome diagnostic with |Fc|=k,if there exists a nodev∈Vsuch thatΓv-1?Fc,then the nodevcannot be judged as faulty or fault-free.Therefore,whether all the remaining faulty nodes can be identified or not depends on the distribution ofFc.Next it will be discussed that with the changes of distribution ofFc,how many remaining faulty nodes can be identified.

    Definition8For a two-step (k,t)-diagnosable systemSand a fault setFcidentified by Double-Syndrome diagnostic or other methods,the diagnosability of the two-step (k,t)-diagnosable based onFc,denoted byT(S,Fc),is the maximum number of nodes which is guaranteed to be identified as faulty correctly.To facilitate the discussion,the following theorem is equivalent to Theorem 1.

    Theorem3For a system given byG=(V,E) and a fault setFc?Vwith |Fc|=k,then all the remaining faulty nodes at mosttcan be identified if and only if for any 2 subsetsS1,S2?VwithS1≠S2,|S1|≤t,|S2|≤tsuch thatΓ(S1-S2)-1?Fc∪S2orΓ(S2-S1)-1?Fc∪S1.

    Corollary7For a system given byG=(V,E) and a fault setFcwith |Fc|=k,if for each subsetU?V-Fcwith |U|≤2t,there exists no such subsetX?Usuch thatΓX-1?Fc∪(U-X),then all the remaining faulty nodes can be identified provided the number of remaining faulty does not exceedt.

    ProofFor any distinct subsetsS1,S2?Vwith |S1|≤t,|S2|≤t,letU=S1∪S2andX=(S2-S1)∪(S1-S2).ifΓX-1?(Fc∪(U-X)),then it is easily seen that the condition of the Theorem 1 is satisfied.

    The following theorem is equivalent to Theorem 2.

    Theorem4For a system given byG=(V,E) and a fault setFcwith |Fc|=k,all remaining faulty nodes at mosttcan be isolated within a set of size at mosttif and only if for any 2 subsetsS1,S2?V-FcwithS1?S2,S2?S1,|S1|≤t,|S2|≤t,such thatΓ(S1-S2)-1?Fc∪S2orΓ(S2-S1)-1?Fc∪S1.

    Corollary8For a system given byG=(V,E) and a fault setFcwith |Fc|=k,if for each subsetS?Vwith |S|≤2t,there exists no such a subsetX?Ssuch thatΓX-1?Fc∪(S-X),then all remaining faulty nodes can be isolated within a set of size at mosttprovided the number of remaining faulty does not exceedt.

    A similar proof of Corollary 7 can be used.

    Observe above theorems and corollaries,when the neighbors of some nodes are all faulty,it cannot be correctly identified such a node.Therefore the following conclusion.

    Theorem5For a systemSgiven byG=(V,E),ifSist′-diagnosable(but nott′+1-diagnosable) and also two-step (k,t)-diagnosable(but neither two-step (k,t+1)-diagnosable nor two-step (k+1,t)-diagnosable) (t′≥k)),then its diagnosability satisfies the following inequality:T(S,Fc)≥t′ whereFc?Vand |Fc|=k.

    ProofAccording to Definition 4 and Definition 8,for any given fault setFc?Vwith |Fc|=k,T(S,Fc)≥t+k.Next,it can be shown thatt+k≥t′.Otherwise,t+kt′,this is a contradiction.

    Note that the number of fault-free neighbors of each node is related to the diagnosability of kinds of diagnosable systems[20,21].Ref.[20] considered the situation that each node has at least one fault-free neighbor in the system and proposed the concept of conditional diagnosability.The next section will extend the concept of conditional diagnosability to two-step (k,t)-diagnosable ((k,t/t)-diagnosable) system and present the characterizations of conditional two-step (k,t)-diagnosable (((k,t/t)-diagnosable) systems.

    5 Conditional two-step (k-t)-diagnosable and two-step (k,t/t)-diagnosable

    The hypercube structure is a well-known network model for multi-processor systems.Fault-tolerant computing forn-dimensional hypercube has been of interest to many researchers[17-19,21].In this subsection,the conditionalt/t-diagnosability ofn-dimensional hypercube is studied.

    Definition9For a system given byG=(V,E),a subsetS?Vis called a conditional subset if there exists no such a nodev∈Vsuch thatΓv-1?S.

    Lemma2A system given byG=(V,E) is conditionallyt-diagnosable if and only if for any 2 conditional subsetsS1,S2?VwithS1≠S2,|S1|≤t,|S2|≤t,there exists an edge fromV-S1-S2to (S1-S2)∪(S2-S1)[22].

    Definition10A system is conditionally two-step (k,t)-diagnosable under the condition thatkfaulty nodes have been already recognized,and all the remaining faulty nodes can be identified provided the number of faulty nodes in the system does not exceedk+tand each node of the system has at least one fault-free neighbor.

    Theorem6A system given byG=(V,E) is conditional two-step (k,t)-diagnosable if and only if for any conditional subsetFcwith |Fc|=kand any 2 conditional subsetsS1,S2?V-FcwithS1≠S2,|S1|≤t,|S2|≤t,Fc∪S1andFc∪S2are conditional subsets,there exists an edge fromV-S1-S2-Fcto (S1-S2)∪(S2-S1).

    ProofNecessity:suppose that a system is conditional two-step (k,t)-diagnosable and for some conditional subsetFcwith |Fc|=kand 2 conditional subsetsS1,S2?V-FcwithS1≠S2,|S1|≤t,|S2|≤t,Fc∪S1andFc∪S2are conditional subsets,there exists no edge fromV-S1-S2-Fcto (S1-S2)∪(S2-S1).Consider a syndromeσsatisfying the following conditions for all nodesi,jsuch that (i,j)∈E.Ifi,j∈V-S1-S2-Fc,thenω(σ:i,j)=0.Ifi∈V-S1-S2-Fcandj∈S1∪S2,thenω(σ:i,j)=1.Ifi∈(S1-S2)∪(S2-S1) andj∈Fc∪(S1∩S2),thenω(σ:i,j)=1.Other possible test results can be arbitrary.

    According to Definition 3,thatS1andS2are all allowable fault sets.Therefore,it cannot be identified that which one is the real fault set which is a contradiction to the hypothesis.

    SufficiencySuppose that,to the contrary,the system is not conditional two-step (k,t)-diagnosable.Thus,there exist a conditional subsetFc?Vwith |Fc|=kand 2 conditional subsetsS1,S2?VwithS1≠S2,|S1|≤t,|S2|≤t,andFc∪S1andFc∪S2are conditional subsets,such thatFc∪S1andFc∪S2are all allowable fault sets.Noting that there exists an edge fromV-S1-S2-Fcto (S1-S2)∪(S2-S1).Without loss of generality,leti∈V-S1-S2-Fc,j∈(S1-S2) with (i,j)∈E.For a syndromeσ,ifω(σ:i,j)=1,thenS2is not an allowable fault set,otherwise,S1is not an allowable fault set which is a contradiction to the hypothesis.Similarly,j∈(S1-S2) also leads to a contradiction to the hypothesis.

    Definition11For a conditionally two-step (k,t)-diagnosable systemSand a fault setFcidentified by Double-Syndrome diagnostic or other methods,the diagnosability of the conditionally two-step (k,t)-diagnosable systems based onFc,denoted byTc(S,Fc),is the maximum number of nodes that are guaranteed to be identified as faulty correctly.

    Theorem7For a systemSgiven byG=(V,E),ifSis conditionallyt′-diagnosable(but not conditionallyt′+1-diagnosable) and also conditionally two-step (k,t)-diagnosable(but neither conditionally two-step (k,t+1)-diagnosable nor conditionally two-step (k+1,t)-diagnosable) (t′≥k)),then its diagnosability satisfies following inequality:Tc(S,Fc)≥twhereFc?Vand |Fc|=k.

    ProofA similar argument of Theorem 5 can be used.

    Lemma3Suppose that an undirected graphG=(V,E) denotes a system and that each node inG=(V,E) has at least one fault-free neighbor.For any setS?Vwith |S|≤3,ifN(S) are all faulty nodes,then each node ofScan be identified correctly.

    ProofLet |S|=mandS={vi:1≤i≤m}.Now discuss the following cases:

    Case7m=2.

    It is obvious that ifv1(v2) is faulty,thenN(v2)(N(v1)) is all faulty nodes which is a contradiction to the condition.Therefore,v1,v2are all fault-free.

    Case8m=3 andScan form a cycle.

    There is at most 1 faulty node inS.Otherwise,there are at least 2 faulty nodes inS,without loss of generality,assume thatv1,v2are faulty nodes,thenN(v3) are all faulty nodes which contradict the assumption.It is easy to judge the state(faulty or fault-free) of each node by observing the syndrome.

    Case9m=3 andScannot form a cycle.

    Since each node has at least one fault-free neighbor andN(S) are all faulty nodes,Sis connected.The middle nodev2ofSis fault-free,otherwise,N(v1) andN(v3) are all faulty nodes,which is a contradiction to the assumption.Furthermore,the other 2 nodes can be identified correctly.

    5.1 n-dimensional hypercube

    Lemma5n-dimensional (n≥5) hypercube is conditional [4(n-2)+1]-diagnosable[20].

    Next,then-dimensional (n≥5) hypercube given byG=(V,E) is not conditional [4(n-2)+1]-diagnosable.LetS={v0,v1,v2,v3} whereScan form a cycle andS1=N(S)∪{v0,v1},S2=N(S)∪{v2,v3}.Note that |N(S)|=4(n-2) andS1=S2=4(n-2)+2.For subsetsS1,S2,there exists no such a nodevthatN(v)?S1orN(v)?S2.And for subsetsS1,S2,there exists no edge fromV-S1-S2to (S1-S2)∪(S2-S1).Therefore,the system is not conditional [4(n-2)+2]-diagnosable.

    Note that if a system ist-diagnosable,then such system must bet/t-diagnosable[23].Therefore,n-dimensional (n≥5) hypercube given byG=(V,E) is conditional (4n-7)/(4n-7)-diagnosable[24].Furthermore,then-dimensional (n≥5) hypercube given byG=(V,E) is not conditional (4n-6)/(4n-6)-diagnosable.

    Theorem8n-dimensional (n≥5) hypercube is not conditional (4n-6)/(4n-6)-diagnosable.

    ProofLetS={v0,v1,v2,v3} whereScan form a cycle andS1=N(S)∪{v0,v1},S2=N(S)∪{v2,v3}.Note that |N(S)|=4(n-2) andS1=S2=4(n-2)+2.Now consider following syndromeσunder the condition that all nodes ofN(S) are faulty.

    1) The test results fromStoN(S) are 1.

    2)ω(σ:v0,v1)=0,ω(σ:v1,v0)=0,ω(σ:v2,v3)=0,ω(σ:v3,v2)=0,ω(σ:v1,v2)=1,ω(σ:v2,v1)=1,ω(σ:v0,v3)=1,ω(σ:v3,v0)=1.

    3) The other possible test results are arbitrary.

    For above syndromeσ,the system cannot isolate all faulty nodes within a set of size at most 4n-6.Therefore,then-dimensional (n≥5) hypercube is not conditional (4n-6)/(4n-6)-diagnosable.

    5.2 Permutation star graph

    Lemma6LetG=(V,E) be the graph of a star graph ofn(n≥4) dimension andX?Vwith |X|=8 andXcan form an 8-node ring,then |N(X)|=8n-24.

    ProofAccording to the symmetry of star graph,each 8-node ring inn(n≥4) dimensional star graph is equivalent.Therefore,consider following case as Fig.2,the 1234A representsn-bit position ofv1andAis a (n-4)-bit position which consists of 5,6,…,n.Letadd(v,i,j) be the address of nodevfrom numberibit to numberjbit.Note that in Fig.2,add(vi,2,4)≠add(vj,2,4) wherei,j∈[1,2…,7] andi≠j.Therefore,for each node of Fig.2,it has (n-4) private neighbors.Note that each node ofn-dimensional star graph has (n-1) adjacent nodes and for each node of an 8-node ring,for example,v1has 2 adjacent nodes in the ring andn-4 private neighbors outside the ring.Then the address of the last neighbor ofv1is 2134A which shows that last neighbor ofv1is also the private neighbor ofv1.Similarly,the last neighbor of nodev2(v3…v8) is also their private neighbors.Thus,each node of an 8-node ring hasn-3 private neighbors and letXbe an 8-node ring,then |N(X)|=8n-24.

    Fig.2 An 8-node ring of n-dimensional star graph

    Lemma7In ann-dimensional star graph,there are no odd cycles and there are even cycles with lengthlwherel≥6,l≤n[25].

    Lemma8In ann-dimensional star graph,letube a node and letu1,u2…un-1ben-1 neighbors of it[22].Then every pairui,ujand nodeuform a loop with 3 other nodes which are unique.

    Lemma9n-dimensional (n≥5) star graph given byG=(V,E) is conditional [8(n-3)+3]-diagnosable[26].Secondly,then-dimensional (n≥5) star graph given byG=(V,E) is not conditional (8n-20)-diagnosable.

    Theorem9n-dimensional (n≥5) star graph given byG=(V,E) is not conditional (8n-20)-diagnosable.

    ProofLetS={v1,v2,v3,v4,v5,v6,v7,v8} whereScan form a cycle in the clockwise andS1=N(S)∪{v1,v2,v5,v6},S2=N(S)∪{v3,v4,v7,v8}.Note that according to Lemma 9,|N(S)|=8n-24 and |S1|=|S2|=8n-20.For subsetsS1,S2,there exists no such a nodevthatN(v)?S1orN(v)?S1.And for subsetsS1,S2,there exists no edge fromV-S1-S2to (S1-S2)∪(S2-S1).Therefore,the system is not conditional (8n-20)-diagnosable.

    Theorem10n-dimensional (n≥5) star graph given byG=(V,E) is not conditional (8n-20/8n-20)-diagnosable.

    ProofLetS={v1,v2,v3,v4,v5,v6,v7,v8} whereScan form a cycle in the clockwise andS1=N(S)∪{v1,v2,v5,v6},S2=N(S)∪{v3,v4,v7,v8}.Note that according to Lemma 9,|N(S)|=8n-24 and |S1|=|S2|=8n-20.Now consider following syndromeσunder the condition that all nodes ofN(S) are faulty.

    1) The test results fromStoN(S) are 1.

    2)ω(σ:v1,v2)=0,ω(σ:v2,v1)=0,ω(σ:v3,v4)=0,ω(σ:v4,v3)=0,ω(σ:v5,v6)=0,ω(σ:v6,v5)=0,ω(σ:v7,v8)=0,ω(σ:v8,v7)=0,ω(σ:v2,v3)=1,ω(σ:v3,v2)=1,ω(σ:v4,v5)=1,ω(σ:v5,v4)=1,ω(σ:v6,v7)=1,ω(σ:v7,v6)=1,ω(σ:v1,v8)=1,ω(σ:v8,v1)=1.

    3) The other possible test results are arbitrary.

    For above syndromeσ,the system cannot isolate all faulty nodes within a set of size at most 8n-20.Therefore,then-dimensional (n≥5) star graph is not conditional (8n-20/8n-20)-diagnosable.The following is shown as Algorithm 2 and Algorithm 3.

    Algorithm2Double-Syndromeconditionaldiagnosis: part1Algorithm:majorneighbor:Require: AsystembyundirectedgraphG=(V,E)withNnodesdenotedby{u1,u2,…,uN}andasubsetFc?Vwith|Fc|=kandai=0(1≤i≤n).Ensure: AsetNFc. 1)Foreachnodevi∈V(0≤i≤k-1),ifuj∈N(vi)(1≤j≤n),thenaj=aj+1. 2)LetNFc={ui|ai≥ajwhere1≤j≤n}. 3)OutputthesetNFc.Algorithm:depth-firstsearch:Require: AsystemgivenbyundirectedgraphG=(V,E)withNnodesandanodev∈V.LetS={v}.Ensure: SeveralnodesetsMi(1≤i≤N). 1)DFS(v): Foreachu∈N(v) Ifw(u,v)=w(v,u)=0. S=S∪{u}andDFS(u). 2)OutputthenodessetS.Algorithm:testneighbor:Require: AsystemgivenbyundirectedgraphG=(V,E)withNnodesandasubsetX?VandthreesetsT,FcandM.LetS={v}.Ensure: ThesetT,FcandM. 1)Test(X,T,Fc,M) Foreachnodeofu∈N(X) IfthetestresultfromutoN(X)is0,thenT=T∪{u}andtest({u},T,Fc).OtherwiseFc=Fc∪{u}andM=M-{u}. 2)OutputthesetsT,FcandM.Algorithm:testcomponent:Require: AsystemgivenbyundirectedgraphG=(V,E)withNnodesandthreesetsT,FcandM.Ensure: ThesetT,Fc.

    Testcomponent(T,Fc,M): 1)Foreachnodew∈M,ifthereexistsanodex∈MsuchthatN(x)∩M={w},thenT=T∪{w}andTest({w},T,Fc,M). 2)Ifthereexist3nodesu,v,w∈Msuchthatthetestresultsofthemareall0,thenT=T∪{u,v,w}andTest({u,v,w},T,Fc,M). 3)Ifthereexist2pairadjacentnodes{u,v},{w,x}∈Msuchthatthetestresultsofu,v(andw,x)areall0,thenT=T∪{u,v,w,x}andtest({u,v,w,x},T,Fc,M). 4)Repeatstep1)tostep3),untilV=T∪Fc.OutputthesetT,Fc.

    Algorithm3Double-Syndromeconditionaldiagnosis:part2Require: AsystemgivenbyundirectedgraphG=(V,E)withNnodesandafaultnodesetFc?Vwith|Fc|=kobtainedfromDouble-Syndromediagnosticorothermethods.Andafaultboundt(thatthesystemisconditionalt-diagnosable).Ensure: AfaultynodesetFcandafault-freenodessetT(T∪Fc=V). 1)NFc=majorneighbor(G,Fc). 2)Foreachnodeui∈V-∪ij=1Sj-Fc(ui∈NFcisapriority). DoDFS(ui). Si=DFS(ui) If|Sj|≥t-|Fc|+1,where1≤j≤i. T=T∪SjandFc=Fc∪N(T). 3)IfV=T∪Fc,thenoutputthefault-freenodesetTandfaultynodessetFc.Otherwisegotostep4). 4)LetM=V-T-FcandM={Ci|CiisacomponentofM}. Testcomponent(T,Fc,M). Outputthefault-freenodessetTandthefaultynodessetFc.

    5.3 Algorithms for conditional two-step (k,t)-diagnosable systems

    In the following,a diagnosis algorithm is proposed called Double-Syndrome conditional diagnosis(DSCD) which combines Double-Syndrome diagnostic and the theories of conditional two-step (k,t)-diagnosable system.

    Consider step 4) in Algorithm 3,the neighbors of the nodes of setMare all faulty.Note that inn-dimensional hypercube,|M|≤4 with at most one faulty node,inn-dimensional star graph,|M|≤8 with at most 3 faulty nodes.A similar argument of Lemma 3 can prove the rightness of step 4) in Algorithm 3.

    Theorem11The algorithm DSCD has a time complexityO(Nlog2N),whereNis the number of the nodes of the system.

    ProofIn Algorithm 3,step 1) costsO(kn) time.Step 2) costsO(Nlog2N)+O(N) time.Step 3) and 4) costsO(1) time.Hence the total time isO(Nlog2N).

    Now the performance of the algorithm by computer simulation is shown below.Run the algorithm 1 000 times and the faulty nodes are randomly distributed in the system.Table 2 and Table 3 show the performance of this algorithm applied ton-dimensional hypercubes and star graphs.

    Table 2 The number of faulty nodes identified by the algorithm under the n-dimensional hypercube

    Table 3 The number of faulty nodes identified by the algorithm under the n-dimensional star graph

    6 Conclusions

    Under PMC model,a new method is proposed,which is called Double-Syndrome diagnostic to diagnosis the faulty nodes by comparing the 2 syndromes.In general,the average number of faulty nodes which can be identified by Double-Syndrome diagnostic is much larger than other methods.Furthermore,for a given faulty node setFc,in order to deal with the remaining faulty nodes in the system,two-step (k,t)-diagnosable strategy and two-step (k,t/t)-diagnosable strategy are proposed.For a givent′-diagnosable system,its two-step (k,t)-diagnosability has a minimum value which is equal tot′.Meanwhile,with the purpose of increasing the diagnosability,the concept of conditional two-step (k,t)-diagnosable system and the concept of conditional two-step (k,t/t)-diagnosable system are proposed.Similarly,for a given conditionallyt′-diagnosable system,the conditional two-step (k,t/t)-diagnosability has a minimum value which is equal tot′.

    猜你喜歡
    梁家
    走進(jìn)梁家河
    梁家河歲月
    北方音樂(2018年18期)2018-11-30 00:41:30
    不忘初心 砥礪前行——讀《梁家河》有感
    梁家河
    追尋領(lǐng)袖足跡 奮力追趕超越——學(xué)習(xí)《梁家河》
    探求梁家河蘊(yùn)含的大學(xué)問樹立正確的價(jià)值坐標(biāo)
    梁家河:新時(shí)代的寶貴精神財(cái)富
    從梁家河寶貴精神財(cái)富中不斷汲取追趕超越的力量
    從梁家河大學(xué)問汲取力量——全省《梁家河》熱再升溫
    梁家河
    三级毛片av免费| 真人做人爱边吃奶动态| a在线观看视频网站| 精品久久久久久久毛片微露脸 | 99国产综合亚洲精品| 精品人妻熟女毛片av久久网站| 日韩欧美一区二区三区在线观看 | 国产又色又爽无遮挡免| 三上悠亚av全集在线观看| 女性被躁到高潮视频| 窝窝影院91人妻| 法律面前人人平等表现在哪些方面 | 这个男人来自地球电影免费观看| 成在线人永久免费视频| 成年动漫av网址| 丰满饥渴人妻一区二区三| 热re99久久精品国产66热6| 建设人人有责人人尽责人人享有的| 午夜两性在线视频| av线在线观看网站| 精品人妻在线不人妻| 日本精品一区二区三区蜜桃| 国产三级黄色录像| 国产亚洲精品久久久久5区| 老司机影院毛片| 国产三级黄色录像| 成在线人永久免费视频| 精品福利永久在线观看| 亚洲激情五月婷婷啪啪| 亚洲人成电影观看| 亚洲五月婷婷丁香| 欧美亚洲 丝袜 人妻 在线| 热99re8久久精品国产| 性少妇av在线| 777米奇影视久久| 亚洲欧洲精品一区二区精品久久久| 久久久久久亚洲精品国产蜜桃av| 免费不卡黄色视频| 国产成人av教育| 男人操女人黄网站| 18在线观看网站| 精品福利永久在线观看| 国产免费福利视频在线观看| 最近最新中文字幕大全免费视频| 天天添夜夜摸| 在线观看免费视频网站a站| 三上悠亚av全集在线观看| 曰老女人黄片| 午夜免费鲁丝| av网站在线播放免费| 美女主播在线视频| 亚洲欧美一区二区三区黑人| 精品久久久久久久毛片微露脸 | 国产精品一区二区免费欧美 | 亚洲熟女毛片儿| 亚洲av电影在线观看一区二区三区| 精品免费久久久久久久清纯 | 免费在线观看完整版高清| 在线观看人妻少妇| 999精品在线视频| 91九色精品人成在线观看| 50天的宝宝边吃奶边哭怎么回事| 久久久久视频综合| 久久香蕉激情| 大型av网站在线播放| 丝袜美腿诱惑在线| 在线看a的网站| 久9热在线精品视频| 亚洲伊人久久精品综合| 丰满人妻熟妇乱又伦精品不卡| 亚洲色图综合在线观看| 久久国产亚洲av麻豆专区| 免费在线观看视频国产中文字幕亚洲 | 丝袜在线中文字幕| 午夜免费观看性视频| 国产在线免费精品| 亚洲九九香蕉| 精品免费久久久久久久清纯 | 成人av一区二区三区在线看 | 亚洲国产av新网站| 国产97色在线日韩免费| 国产高清videossex| 看免费av毛片| 99九九在线精品视频| 午夜激情av网站| 在线观看www视频免费| 丁香六月天网| 亚洲国产精品999| 日韩大码丰满熟妇| 丝袜脚勾引网站| 97在线人人人人妻| 美女大奶头黄色视频| 高清av免费在线| 9热在线视频观看99| 日韩电影二区| 亚洲五月婷婷丁香| 久久国产亚洲av麻豆专区| 天天躁夜夜躁狠狠躁躁| 国产有黄有色有爽视频| 亚洲综合色网址| 曰老女人黄片| 欧美黄色片欧美黄色片| 国产欧美日韩综合在线一区二区| 热re99久久国产66热| 91字幕亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 精品国产一区二区三区久久久樱花| 国产成人一区二区三区免费视频网站| 女人爽到高潮嗷嗷叫在线视频| 精品亚洲成a人片在线观看| av有码第一页| 三级毛片av免费| netflix在线观看网站| 日本91视频免费播放| 最近中文字幕2019免费版| 日韩大片免费观看网站| 久久久久国产精品人妻一区二区| 亚洲男人天堂网一区| 欧美日韩视频精品一区| 国产成人精品久久二区二区免费| 99久久人妻综合| 久久精品人人爽人人爽视色| 老司机午夜福利在线观看视频 | 欧美激情久久久久久爽电影 | 大陆偷拍与自拍| 老司机午夜十八禁免费视频| 亚洲午夜精品一区,二区,三区| 男女无遮挡免费网站观看| 精品福利永久在线观看| 黄色怎么调成土黄色| 免费在线观看影片大全网站| 99国产综合亚洲精品| 最新在线观看一区二区三区| 啦啦啦在线免费观看视频4| 午夜两性在线视频| 亚洲av日韩精品久久久久久密| 极品人妻少妇av视频| 天天躁日日躁夜夜躁夜夜| 日韩欧美国产一区二区入口| kizo精华| 19禁男女啪啪无遮挡网站| 满18在线观看网站| 亚洲熟女精品中文字幕| 老司机午夜十八禁免费视频| 欧美大码av| 国产免费一区二区三区四区乱码| 一边摸一边做爽爽视频免费| 免费黄频网站在线观看国产| 日本精品一区二区三区蜜桃| 一级片免费观看大全| 免费不卡黄色视频| 精品高清国产在线一区| 午夜两性在线视频| 国产主播在线观看一区二区| 成在线人永久免费视频| 操出白浆在线播放| 9色porny在线观看| 一边摸一边抽搐一进一出视频| 国产精品久久久久久精品古装| 女人被躁到高潮嗷嗷叫费观| 午夜福利一区二区在线看| 狠狠婷婷综合久久久久久88av| 两性夫妻黄色片| 午夜成年电影在线免费观看| 欧美国产精品va在线观看不卡| 嫩草影视91久久| 十八禁网站免费在线| 嫁个100分男人电影在线观看| 亚洲国产欧美在线一区| 黑人操中国人逼视频| 久久久久久人人人人人| 岛国毛片在线播放| 在线av久久热| 美女视频免费永久观看网站| 肉色欧美久久久久久久蜜桃| 看免费av毛片| 在线观看免费视频网站a站| 久久性视频一级片| 在线 av 中文字幕| 国产精品二区激情视频| 少妇的丰满在线观看| 午夜激情av网站| 日本黄色日本黄色录像| 成人国产av品久久久| 美女视频免费永久观看网站| 国产成人精品无人区| 91大片在线观看| 欧美 日韩 精品 国产| 中文字幕人妻丝袜制服| 99久久国产精品久久久| 久久99热这里只频精品6学生| 精品国产国语对白av| 97精品久久久久久久久久精品| 人人妻,人人澡人人爽秒播| 亚洲成人国产一区在线观看| 国产精品 国内视频| 日韩中文字幕视频在线看片| 色播在线永久视频| 12—13女人毛片做爰片一| 热99久久久久精品小说推荐| 精品福利永久在线观看| 色综合欧美亚洲国产小说| 日韩免费高清中文字幕av| 久久精品国产a三级三级三级| 国产亚洲欧美在线一区二区| 国产欧美日韩一区二区精品| 久久国产精品人妻蜜桃| 婷婷成人精品国产| 性色av乱码一区二区三区2| 制服人妻中文乱码| 精品亚洲乱码少妇综合久久| 国产一区二区三区av在线| 亚洲欧美清纯卡通| 少妇被粗大的猛进出69影院| 啦啦啦免费观看视频1| 亚洲人成电影观看| 女性被躁到高潮视频| 人妻一区二区av| 免费不卡黄色视频| 每晚都被弄得嗷嗷叫到高潮| 老鸭窝网址在线观看| 国产免费视频播放在线视频| 热99久久久久精品小说推荐| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美精品综合一区二区三区| 国产男女超爽视频在线观看| 国产精品一区二区免费欧美 | 成人三级做爰电影| 亚洲精品国产av蜜桃| av网站免费在线观看视频| av国产精品久久久久影院| av在线老鸭窝| 精品熟女少妇八av免费久了| 亚洲精品一卡2卡三卡4卡5卡 | 久久午夜综合久久蜜桃| 男人添女人高潮全过程视频| 菩萨蛮人人尽说江南好唐韦庄| 水蜜桃什么品种好| 欧美日韩亚洲综合一区二区三区_| 高清av免费在线| 国产欧美日韩一区二区三区在线| 嫁个100分男人电影在线观看| 精品久久久精品久久久| 岛国毛片在线播放| 亚洲国产精品一区三区| 久久亚洲精品不卡| 国产97色在线日韩免费| 啦啦啦啦在线视频资源| 中亚洲国语对白在线视频| 男男h啪啪无遮挡| 亚洲视频免费观看视频| 精品欧美一区二区三区在线| 丝瓜视频免费看黄片| 中亚洲国语对白在线视频| netflix在线观看网站| 久久av网站| 老司机午夜福利在线观看视频 | tube8黄色片| 欧美精品一区二区免费开放| 午夜激情av网站| 黑丝袜美女国产一区| 黑人欧美特级aaaaaa片| 亚洲精品久久成人aⅴ小说| 99热国产这里只有精品6| 丝袜脚勾引网站| 国产一区二区三区在线臀色熟女 | 大香蕉久久网| 久久人人爽av亚洲精品天堂| 国产av一区二区精品久久| 精品一区二区三区四区五区乱码| 成人av一区二区三区在线看 | 国产欧美日韩一区二区三区在线| 成人手机av| 欧美激情久久久久久爽电影 | 精品一区二区三区四区五区乱码| 黄色 视频免费看| 永久免费av网站大全| 窝窝影院91人妻| 国产精品国产av在线观看| 色婷婷av一区二区三区视频| 成人国产一区最新在线观看| 如日韩欧美国产精品一区二区三区| 亚洲午夜精品一区,二区,三区| 久久女婷五月综合色啪小说| 日本av手机在线免费观看| 日韩欧美一区视频在线观看| 亚洲精品乱久久久久久| 亚洲精品一区蜜桃| 国产成人av教育| 亚洲精品在线美女| 超色免费av| 美女国产高潮福利片在线看| 国产精品一区二区在线观看99| 国产精品一区二区免费欧美 | 黄色怎么调成土黄色| 久久精品aⅴ一区二区三区四区| 精品国产一区二区久久| 12—13女人毛片做爰片一| 男女边摸边吃奶| 一本综合久久免费| 大陆偷拍与自拍| 国产av国产精品国产| 国产免费av片在线观看野外av| 久久久久视频综合| 波多野结衣av一区二区av| 欧美人与性动交α欧美精品济南到| 亚洲精品成人av观看孕妇| 免费女性裸体啪啪无遮挡网站| 我的亚洲天堂| 91成人精品电影| 精品免费久久久久久久清纯 | 精品亚洲乱码少妇综合久久| 精品免费久久久久久久清纯 | 最近中文字幕2019免费版| 国产男女内射视频| 又紧又爽又黄一区二区| 一本一本久久a久久精品综合妖精| 国产熟女午夜一区二区三区| 亚洲成人手机| 日韩视频在线欧美| 嫁个100分男人电影在线观看| 美女福利国产在线| 无遮挡黄片免费观看| 色精品久久人妻99蜜桃| 精品少妇久久久久久888优播| 天天影视国产精品| 国产麻豆69| 久久久久久久大尺度免费视频| 欧美日韩成人在线一区二区| 777久久人妻少妇嫩草av网站| 久久中文字幕一级| 黑人操中国人逼视频| 亚洲精品国产精品久久久不卡| 黑人欧美特级aaaaaa片| 国产免费av片在线观看野外av| 久久久久国产一级毛片高清牌| 乱人伦中国视频| 欧美人与性动交α欧美精品济南到| 亚洲欧美激情在线| 欧美亚洲 丝袜 人妻 在线| 97人妻天天添夜夜摸| 国产免费福利视频在线观看| 午夜91福利影院| 美女高潮到喷水免费观看| 久久久久久久久免费视频了| 日本精品一区二区三区蜜桃| 高潮久久久久久久久久久不卡| 日韩欧美一区二区三区在线观看 | cao死你这个sao货| www日本在线高清视频| 精品国产一区二区三区久久久樱花| 美女福利国产在线| 免费高清在线观看日韩| 亚洲av成人一区二区三| 美女脱内裤让男人舔精品视频| 99久久99久久久精品蜜桃| 视频区欧美日本亚洲| 国产99久久九九免费精品| 亚洲国产精品999| 欧美大码av| 国产不卡av网站在线观看| 精品欧美一区二区三区在线| 久久狼人影院| 欧美另类一区| 国产一卡二卡三卡精品| 91老司机精品| 亚洲精品美女久久久久99蜜臀| 黄片播放在线免费| 18禁国产床啪视频网站| 夫妻午夜视频| 国产亚洲精品第一综合不卡| 欧美精品一区二区大全| 欧美少妇被猛烈插入视频| 亚洲国产欧美日韩在线播放| 黄色视频不卡| 欧美黄色淫秽网站| 丰满饥渴人妻一区二区三| 亚洲精品久久久久久婷婷小说| 一级黄色大片毛片| 嫁个100分男人电影在线观看| 秋霞在线观看毛片| 香蕉国产在线看| 建设人人有责人人尽责人人享有的| 18在线观看网站| 亚洲精品成人av观看孕妇| 亚洲精品日韩在线中文字幕| 久久久精品区二区三区| 久9热在线精品视频| 悠悠久久av| 亚洲国产欧美一区二区综合| 日日摸夜夜添夜夜添小说| 久久久精品免费免费高清| av片东京热男人的天堂| 老司机亚洲免费影院| 久久中文看片网| 成年女人毛片免费观看观看9 | 少妇裸体淫交视频免费看高清 | 亚洲中文av在线| 多毛熟女@视频| 亚洲精品一区蜜桃| 黄片大片在线免费观看| 无限看片的www在线观看| 国产欧美日韩精品亚洲av| 各种免费的搞黄视频| 亚洲国产欧美日韩在线播放| 亚洲黑人精品在线| 午夜福利视频精品| 国产精品久久久人人做人人爽| 桃花免费在线播放| 黄色 视频免费看| 天天操日日干夜夜撸| 国产成人免费无遮挡视频| 欧美午夜高清在线| 成人国产av品久久久| 亚洲一区中文字幕在线| 精品免费久久久久久久清纯 | 午夜福利视频精品| 精品国产乱码久久久久久男人| 欧美性长视频在线观看| 啪啪无遮挡十八禁网站| 久久久精品区二区三区| 久久精品久久久久久噜噜老黄| 狠狠精品人妻久久久久久综合| 亚洲欧美成人综合另类久久久| 亚洲少妇的诱惑av| 欧美日韩亚洲国产一区二区在线观看 | 免费久久久久久久精品成人欧美视频| 久久久欧美国产精品| 久久午夜综合久久蜜桃| 久久久水蜜桃国产精品网| 免费一级毛片在线播放高清视频 | 亚洲伊人久久精品综合| 欧美在线黄色| 久久ye,这里只有精品| 99精品欧美一区二区三区四区| 99九九在线精品视频| avwww免费| 操美女的视频在线观看| 国产亚洲av高清不卡| 亚洲国产精品一区二区三区在线| 丁香六月欧美| 国产精品国产av在线观看| 一本—道久久a久久精品蜜桃钙片| 老司机靠b影院| 一级,二级,三级黄色视频| 9191精品国产免费久久| 男女床上黄色一级片免费看| 日本猛色少妇xxxxx猛交久久| 嫩草影视91久久| 欧美日韩成人在线一区二区| 不卡av一区二区三区| 日韩熟女老妇一区二区性免费视频| 久久国产精品人妻蜜桃| 日韩 欧美 亚洲 中文字幕| 精品久久久久久电影网| 日韩中文字幕欧美一区二区| 国产免费福利视频在线观看| 国产成人a∨麻豆精品| 欧美激情 高清一区二区三区| 高清av免费在线| 丝袜喷水一区| 可以免费在线观看a视频的电影网站| 亚洲精品一区蜜桃| 99热国产这里只有精品6| 啦啦啦啦在线视频资源| 久久精品成人免费网站| 老熟妇乱子伦视频在线观看 | 99久久精品国产亚洲精品| 亚洲欧美激情在线| 国产成人精品久久二区二区91| 99久久综合免费| 久久久久精品人妻al黑| 久久国产精品人妻蜜桃| 日韩视频在线欧美| 日韩一卡2卡3卡4卡2021年| 热re99久久精品国产66热6| 肉色欧美久久久久久久蜜桃| 啦啦啦中文免费视频观看日本| 国产91精品成人一区二区三区 | 亚洲情色 制服丝袜| 两个人免费观看高清视频| 大码成人一级视频| 女人高潮潮喷娇喘18禁视频| 国产极品粉嫩免费观看在线| 日韩制服丝袜自拍偷拍| 大片电影免费在线观看免费| 国产精品二区激情视频| 人妻人人澡人人爽人人| 久久精品成人免费网站| 天天躁夜夜躁狠狠躁躁| 国产亚洲欧美精品永久| 91精品三级在线观看| 女人爽到高潮嗷嗷叫在线视频| 欧美精品人与动牲交sv欧美| 12—13女人毛片做爰片一| 日韩大片免费观看网站| 国产91精品成人一区二区三区 | av线在线观看网站| 2018国产大陆天天弄谢| 精品人妻熟女毛片av久久网站| 国产亚洲精品一区二区www | 天堂中文最新版在线下载| 秋霞在线观看毛片| 日韩制服骚丝袜av| h视频一区二区三区| 看免费av毛片| 性色av乱码一区二区三区2| 亚洲欧美激情在线| 性少妇av在线| 欧美午夜高清在线| 亚洲av成人一区二区三| 1024视频免费在线观看| 成人国产一区最新在线观看| 2018国产大陆天天弄谢| 成年人免费黄色播放视频| 一本综合久久免费| 黄片大片在线免费观看| 男女午夜视频在线观看| 欧美另类一区| 90打野战视频偷拍视频| 一二三四在线观看免费中文在| 操出白浆在线播放| 精品一品国产午夜福利视频| 精品少妇久久久久久888优播| 欧美激情高清一区二区三区| 黄网站色视频无遮挡免费观看| 极品人妻少妇av视频| 欧美变态另类bdsm刘玥| 热re99久久国产66热| 电影成人av| 亚洲精品国产av蜜桃| 中文精品一卡2卡3卡4更新| 午夜福利乱码中文字幕| 久久99热这里只频精品6学生| 天堂中文最新版在线下载| 啦啦啦啦在线视频资源| 日韩中文字幕视频在线看片| 亚洲精品美女久久久久99蜜臀| 亚洲自偷自拍图片 自拍| 在线观看免费日韩欧美大片| 精品亚洲乱码少妇综合久久| 中文字幕最新亚洲高清| 国产精品av久久久久免费| 国产精品国产三级国产专区5o| 日本vs欧美在线观看视频| 亚洲视频免费观看视频| 女人爽到高潮嗷嗷叫在线视频| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美亚洲二区| 中国国产av一级| 亚洲九九香蕉| 欧美日韩黄片免| 成年女人毛片免费观看观看9 | 国产视频一区二区在线看| 老司机午夜十八禁免费视频| 91麻豆精品激情在线观看国产 | 电影成人av| 韩国精品一区二区三区| 男女国产视频网站| 最近中文字幕2019免费版| 国产视频一区二区在线看| 亚洲av男天堂| 99精品欧美一区二区三区四区| av不卡在线播放| 久9热在线精品视频| 国产淫语在线视频| 91精品伊人久久大香线蕉| 国产精品 国内视频| 国产精品影院久久| 丰满迷人的少妇在线观看| 男女之事视频高清在线观看| 亚洲成人免费电影在线观看| 99久久精品国产亚洲精品| 久久亚洲国产成人精品v| 一本久久精品| 汤姆久久久久久久影院中文字幕| 免费黄频网站在线观看国产| 亚洲情色 制服丝袜| 亚洲七黄色美女视频| 亚洲精品国产av蜜桃| 男女高潮啪啪啪动态图| 大陆偷拍与自拍| 999久久久精品免费观看国产| 午夜激情久久久久久久| 视频区欧美日本亚洲| 国产日韩欧美视频二区| 成年女人毛片免费观看观看9 | 亚洲精品中文字幕在线视频| 99热网站在线观看| 免费在线观看完整版高清| www日本在线高清视频| 国产欧美日韩综合在线一区二区| 少妇被粗大的猛进出69影院| 精品久久久精品久久久| 香蕉国产在线看| 国产日韩欧美在线精品| 91老司机精品| 亚洲黑人精品在线| 日本五十路高清| 午夜免费鲁丝| 国产精品 国内视频| videos熟女内射| 欧美精品av麻豆av| 大香蕉久久网| 天天躁日日躁夜夜躁夜夜| 久久99一区二区三区| 日韩 亚洲 欧美在线| 91国产中文字幕| 精品福利观看| 欧美xxⅹ黑人| 手机成人av网站| 国产色视频综合| 悠悠久久av| 亚洲第一欧美日韩一区二区三区 | 捣出白浆h1v1|