• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polyurea coating for foamed concrete panel:An efficient way to resist explosion

    2020-04-09 18:40:00YishunChenBoWngBeiZhngQingZhengJinnnZhouFengninJinHulinFn
    Defence Technology 2020年1期

    Yi-shun Chen ,Bo Wng ,Bei Zhng ,Qing Zheng ,Jin-nn Zhou ,Feng-nin Jin ,Hu-lin Fn ,c,*

    a State Key Laboratory for Disaster Prevention&Mitigation of Explosion&Impact,Army Engineering University of PLA,Nanjing 210007,China

    b Research Center of Lightweight Structures and Intelligent Manufacturing,State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    c State Key Laboratory of Disaster Reduction in Civil Engineering,Tongji University,Shanghai 200092,China

    Keywords:Autoclaved aerated concrete Polyurea Explosion Failure

    ABSTRACT Autoclaved aerated concrete(AAC)panels have ultra-light weight,excellent thermal insulation and energy absorption,so it is an ideal building material for protective structures.To improve the blast resistance of the AAC panels,three schemes are applied to strengthen the AAC panels through spraying 4 mm thick polyurea coating from top,bottom and double-sides.In three-point bending tests,the polyurea-coated AAC panels have much higher ultimate loads than the un-coated panels,but slightly lower than those strengthened by the carbon fiber reinforced plastics(CFRPs).Close-in explosion experiments reveal the dynamic strengthening effect of the polyurea coating.Critical scaled distances of the strengthened AAC panels are acquired,which are valuable for the engineering application of the AAC panels in the extreme loading conditions.Polyurea coatings efficiently enhance the blast resistance of the bottom and double-sided polyurea-coated AAC panels.It is interesting that the polyurea-coated AAC panels have much more excellent blast resistance than the CFRP reinforced AAC panels,although the latter have better static mechanical properties.?2020 China Ordnance Society.Production and hosting by Elsevier B.V.on behalf of KeAi Communications Co.This is an open access article under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Nowadays,blast resistant ability of constructions has been widely concerned due to growing terrorist attacks.Autoclaved aerated concrete(AAC)is a kind of lightweight,multi-functional and environment-friendly building material[1-3].How ever,AAC panels usually have low impact or blast resistance and must be strengthened under explosion[4,5].Fiber reinforced plastics(FRPs)have been used to strengthen the AAC panels[6-10],which can also reduce secondary injury through restricting spalling and fragments produced by the explosion.Wang et al.[11]applied carbon fiber reinforced plastics(CFRPs)to retro fit the AAC panels.

    Polyurea is a new type of elastic polymer.Compared with the CFRP,it has advantages of high construction efficiency,firm cohesiveness with concrete and good environmental adaptability.Researchers found that the polyurea also displayed excellent protective performance in impact and explosion.Parniani and Toutanji[12]investigated fatigue performance of RC beams retrofitted by polyurea coating.Toutanji et al.[13]applied polyurea coating to high-performance organic cementitious materials.Through experiments,Ha et al.[14]studied strengthening effect of hybrid CFRP-PU on RC panels under blast loading.

    Spraying polyurea material on aerated concrete block wall can effectively improve the anti-explosion performance[15].Under explosion,the polyurea layer can reduce the structural flexure,and turn the global collapse of unreinforced wall into local damage and cracks in the walls.How ever,increasing the thickness of the polyurea coating does not seem to contribute significantly to further reduction of the displacement when compared to the thinner coating[16].It is also noticed that a polyurea coating on the nonblast-facing face tends to be more effective in terms of displacement control[16].

    In this paper,the AAC panels were strengthened by polyurea coatings,and the dynamic strengthening effects were investigated by close-in explosion tests and compared with those of the CFRP strengthened panels.

    The AAC panels used in this research are produced by Nanjing Asahi New Building Materials Co.,Ltd.,with density of 525 kg/m3.The cellular structure,with pore diameter smaller than 1 mm,is shown in Fig.1(a).The AAC is brittle and its physical and mechanical properties are listed in Table 1.The polyurea has quite large deformation and its modulus increases with the strain,as shown in Fig.1(b).Combination of these two materials could create structures with excellent energy absorption.

    In this research, each AAC panel is 1200 mm×600 mm×100 mm,with weight of about 50 kg.These panels are reinforced by double-layer steel rebars,and each layer contains 9 steel rebars with diameter of 5 mm,as shown in Fig.2.The physical and mechanical properties of the polyurea are listed in Table 2.

    The polyurea is sprayed onto the surface of the foamed concrete panel layer by layer.The spraying thickness of each layer is about 0.3 mm.After spraying one layer,the sprayed mass of the polyurea can be read from the machine.The polyurea coating for the foamed concrete panels is 4 mm thick,which will be controlled from the total mass of the sprayed polyurea.

    In this research,three kinds of polyurea-coated AACpanels are designed:(a)top coating,(b)bottom coating and(c)double-sided coating,as shown in Fig.3.CFRP strengthened AAC panels are also tested for comparison,as shown in Fig.4.

    2.Quasi-static three-point bending testing

    Quasi-static three-point bending test is carried out on MTS(material testing system)machine at a loading rate of 1.2 mm/min,with span of 1000 mm.The load-displacement curves and failure modes of the un-strengthened,the CFRP strengthened and the bottom polyurea-coated AAC panels are as shown in Fig.5.

    Through the flexure curve,the flexural rigidity,B,of the panel can be calculated by

    where F,δ,and l denote the applied force,the mid-span flexure and the span,respectively.For the three panels,the flexural rigidities are 55 k N·m2,109 k N·m2and 96 k N·m2,respectively.It is clear that the strengthened AAC panels have much greater rigidity.As the CFRP is stiffer than the polyurea coating,the CFRP strengthened panel has the greatest rigidity.The peak loads of the three panels are 10.65 k N,19.32 k N and 16.78 k N,respectively.Therefore,both the CFRP and the polyurea coating can enhance the load capacity of the AAC panels,but the improvement from the CFRP is a little better.For the un-strengthened AAC panel,the crack appears suddenly in the shear zone,extends obliquely and penetrates the panel from the support to the mid-span,leading to brittle shear failure.The CFRP strengthened and the bottom polyurea-coated AAC panels fail suddenly due to bending-shearing crack,which initiates at the lower surface and then extends diagonally across the mid-span cross section.

    Fig.1.Structure and mechanical properties of AAC:(a)cellular structure,(b)complete and(c)initial compression curves and(d)failure mode compared with polyurea.

    Table 1 Physical and mechanical properties of AAC.

    Fig.2.Reinforcements of the AAC panels:(a)cross section and(b)top view[11].

    3.Blast responses of AAC panels

    3.1.Experimental schemes

    Seven explosion experiments are performed to investigate the dynamic properties of the polyurea-coated AAC panels under various scaled distances,as listed in Table 3.As shown in Fig.6,the panel is placed on a steel frame with dimensions of 1150 mm×1100 mm×500 mm and constrained by steel rollers.The span of the panel is 1000 mm.The charge is suspended above the central of the panel with standoff distance of 0.8 m with mass varying from 0.1 kg to 0.3 kg.The corresponding scaled distance ranges from 1.195 m/kg1/3to 1.723 m/kg1/3.The reflected wave pressure on the plate surface is measured by the pressure sensor at the mid-span and 1/4 of the width away from the side.The free field pressure is measured by the PCB free field pressure sensor,which is 3 m away from the charge horizontally.The mid-span flexure is measured by a Linear Variable Displacement Transducer(LVDT),whose maximum range is 100 mm with 10 k Hz sampling rate.The strain of the polyurea coating is measured by three strain gauges at the bottom of the panel,w hose maximum range is 10000με.

    3.2.Pressure analysis

    The pressure curves measured by the PCB free field pressure sensor and the pressure sensor on the AAC panel with scaled distances of 1.723 m/kg1/3,1.368 m/kg1/3and 1.195 m/kg1/3are displayed in Fig.7.

    To compare the difference between the experimental and calculated values[17],the experimental error is evaluated and listed in Table 4,where Piand Prrepresent the peak pressures of the free field and the reflection,and can be calculated by Ref.[17].

    Fig.3.Schematic diagrams for the polyurea strengthened methods of(a)top coating,(b)bottom coating and(c)double-sided coating.

    where C is the weight of TNT,h is the distance from the measure point to the TNT.

    The reflected peak pressure Pr,is determined by

    where the reflective coefficient,r,can be determined by the incident peak pressure Piand the incident angle α through Fig.8.The experimental errors of Pimeasured by PCB are relatively small.The errors of the reflected pressures measured by the pressure sensors on the surface of the panel are also acceptable.Information about the measured pressures is limited.As the calculation is consistent with the experiment,the detailed distribution of the reflected pressure can be calculated by Eq.(1)and Eq.(2).

    3.3.Blast-resistant ability

    Three explosion experiments with scaled distances of 1.723 m/kg1/3,1.368 m/kg1/3and 1.195 m/kg1/3are carried out on the bottom polyurea-coated AAC panels(B-1,B-2 and B-3)respectively,as shown in Fig.9.

    There is no damage found in B-1 after explosion,as shown in Fig.9(a),and its permanent deflection is zero,which means the panel has no plastic deformation during explosion.For B-2 panel,small cracks appear on its upper surface,with directions parallel to the long side of the panel,as shown in Fig.9(b).Seen from displacement-time curve,B-2 has no permanent deformation either,indicating that the explosion causes no destructive damage to the panel,and the polyurea on the lower surface plays an important role in strengthening.The damage of B-3 in explosion has showed obvious characteristics of bending-shear failure,with transverse cracks perpendicular to the long side on the upper surface,as shown in Fig.9(c).From the flexure curve,the permanent deflection is 2.71 mm,which means that B-3 has been severely damaged.How ever,scattered fragments are hardly seen after destruction,indicating that bottom polyurea coating can effectively control the splashing of the fragments.

    Tw o explosions with scaled distances of 1.368 m/kg1/3and 1.195 m/kg1/3are conducted on the double-sided polyurea-coated AAC panels(D-1 and D-2),as shown in Fig.10.There was no damage found in D-1 after explosion.Bending-shearing coupling failure occurs in D-2.No cracks are observed on the upper and lower surfaces of D-2,but there are some slanting cracks on the side.The flexure curve shows that it produces permanent deflection of 5.28 mm and overall destruction has occurred.

    Two explosions with scaled distances of 1.723 m/kg1/3and 1.368 m/kg1/3are performed on the top-polyurea-coated AAC panels(T-1 and T-2),as shown in Fig.11.No cracks are observed on the surface of T-1,but its permanent deflection is 1.03 mm,indicating the panel has been damaged inside.A slanting crack appears on the side of T-2 with obvious characteristics of bending-shearing coupling failure.With much more severe damage than T-1,T-2 has a permanent deflection of 4.32 mm.

    Fig.4.(a)Un-coated,(b)polyurea-coated,and(c)CFRPstrengthened AAC panels.

    Fig.5.Failure modes and load-displacement curves of(a)un-strengthened AAC panel,(b)unidirectional CFRP strengthened AAC panel[11]and(c)bottom polyurea-coated AAC panel.

    Table 3 Explosion schemes.

    Fig.6.Explosion experiment setup(Unit:mm).

    Failure styles of the bottom,the double-sided and the top polyurea-coated and the CFRP reinforced AAC panels[11]with scaled distance of 1.368 m/kg1/3are compared,as shown in Fig.9(b),10(a),11(b)and Fig.12.It can be seen that the damage degree of the polyurea-coated AAC panels is much smaller,and that of the CFRP reinforced AAC panels[11]under scaled distance of 1.368 m/kg1/3is comparable to that of the double-sided polyureacoated AAC panel under scaled distance of 1.195 m/kg1/3.

    3.4.Deflection analysis

    Table 5 and Table 6 list the maximum deflection and permanent deflection of the panels.In general,with the decrease of the scaled distance,the maximum deflection of the polyurea-coated AAC panels increases.The magnitude of the permanent deflection indicates the damage degree of the panels.

    Table 4 Pressure error analysis.

    Fig.8.The reflective coefficient[17].

    Figs.9(a)and Fig.10(a)show the response curves of the undamaged panels,w hose permanent deflections are zero.The curves include narrow troughs and wide peaks,caused by the forced downward vibration of the shock wave and the free vibration of the panel,respectively.For undamaged panels,the amplitudes of the wave peak and trough have little differences.Fig.9(c)and Fig.10(b)show the response curves of the damaged panels.They have much greater maximum and permanent deflections.The amplitude of the wave peak is obviously smaller than that of the trough for the seriously damaged panels.These panels have irreversible permanent deflections.

    3.5.Strain analysis

    The charge is suspended above the central of the panel.The strains are larger at the mid-span and smaller on the sides,and increase with decrease of the scaled distance.Fig.13 shows the strain gauge positions and strain-time curves of B-1,which is undamaged in explosion.All these curves have a sharp wave and decay rapidly out of the blast duration.The maximum strain at the central point is larger than 0.01 and finally decays to zero,indicating that there is almost no residual and plastic deformation.

    4.Structural damage evaluations

    4.1.Damage evaluation method

    To evaluate the damage of the panel,a structural damage factor,D is defined by Ref.[11].

    where PIand PDare the ultimate loads of the panel before and after explosion.The structural damage factor can also be defined by

    where BIand BDare the bending rigidities of the panel before and after explosion.

    4.2.Residual flexural performance and damage evaluation

    The undamaged bottom polyurea-coated AAC panel under 1.368 m/kg1/3is bended to obtain its residual load capacity.Wang et al.[11]revealed the load capacities of un-strengthened AAC panels and CFRP strengthened AAC panels before and after explosion.The test results of bottom polyurea-coated AAC panels are compared with them.Fig.14 shows the flexural curves and failure modes of un-strengthened,CFRP strengthened and bottom polyurea-coated AAC panels after explosion.The structural damage is evaluated by Eq.(3)and listed in Table 7.The original load capacity of the bottom polyurea-coated AAC panel is 16.78 k N,higher than that of the un-strengthened AAC panel,10.65 k N,but lower than that of the unidirectional CFRP strengthened AAC panel,19.32 k N.How ever,the residual load capacity of the bottom polyurea-coated AAC panel is the highest.Therefore,the structural damage factor of the bottom polyurea-coated AAC panel is smaller than that of the CFRP strengthened AACpanel,indicating that the former has better blast-resistant ability.

    According to the flexural curves,the residual bending rigidity of the CFRP strengthened panel is 38.8 k N·m2,while that of the polyurea-coated AAC panel is 72.1 k N·m2.The exploded panels become much more flexible.The structural damage can also be evaluated by Eq.(4),as listed in Table 8.The structural damage factor of the bottom polyurea-coated panel is much smaller than that of the CFRP strengthened panel even from the perspective of deformation,indicating that the polyurea-coated panel has better blastresistance.This result is consistent with the residual load capacity.

    4.3.Critical scaled distance

    According to seven groups of explosion experiments,critical scaled distances of polyurea-coated AAC panels with different strengthened methods are listed in Table 9.

    When the scaled distance is less than the critical value,the AAC panel will produce serious damage after the explosion;otherwise,the AAC panel will continue to work safely after the explosion.Therefore,its critical value has great importance in engineering applications of AAC panel under extreme loading conditions.The critical scaled distance of un-strengthened AAC panes is 1.723-1.506 m/kg1/3,while that of CFRP strengthened AAC panel[11]is reduced to 1.506-1.368 m/kg1/3,indicating an improvement in blast resistance.The critical scaled distance of top polyureacoated AAC panels is 1.723-1.368 m/kg1/3.Compared with AAC panels,top polyurea coating enhances the blast ability of AAC panels,but the strengthening effect is not ideal.Bottom polyureacoated and double-sided polyurea-coated AAC panels have the same scaled distance of 1.368-1.195 m/kg1/3,even much smaller than that of CFRP strengthen AAC panels,indicating that bottom polyurea coating and double-sided polyurea coating are more efficient in strengthening than CFRP strengthening technique and can bear more intense blast loading,as shown in Fig.15.

    Fig.9.Failure styles and flexure curves of AAC panels:(a)B-1,(b)B-2 and(c)B-3.

    Fig.10.Failure styles and flexure curves of AAC panels:(a)D-1,(b)D-2.

    Fig.11.Failure styles and flexure curves of AAC panels:(a)T-1,(b)T-2.

    5.Discussions

    Restricted by the low strength of the AAC,strength of the strengthening material CFRP cannot be fully utilized,and the panel will fail at AAC shear or tensile failure,or debonding.Therefore,polyurea coated AAC panels have better dynamic performance than CFRP strengthened AAC panels.The advantages of polyurea in dynamic strengthening can be explained in the following aspects.

    Firstly,the adhesive strength between the polyurea and the AAC is much stronger.Debonding occurs in blast-loaded CFRP strengthened AAC panels,reducing its strengthening effect.However,in polyurea coated AAC panels,the debonding is not observed and cracks usually form and develop in the AAC.

    Fig.12.Failure style of CFRP reinforced AAC panel[11]under explosion with scaled distance of 1.368 m/kg1/3.

    Secondly,the equivalent static load,Ps,is always applied toevaluate the blast resistance of beams.

    Table 5 Displacements of polyurea-coated AAC panels.

    Table 6 Displacements of CFRP strengthened AAC panels[11].

    Fig.13.Strain gauges position(a)and strain-time curves of(b)left strain,(c)middle strain and(d)right strain.

    Fig.14.Quasi-static flexural curves and failure modes of(a)CFRP strengthened AAC panel UCRAP-2[11]and(b)bottom polyurea-coated AAC panel B-2 after explosion.

    Table 7 Structural damage evaluation through residual load capacity.

    Table 8 Structural damage evaluation through residual bending rigidity.

    Table 9 Critical scaled distances of AAC panels with different strengthened methods.

    where Pmis the uniform peak pressure,P0is the maximum peak pressure of the shock wave,κ is a distribution factor of blast wave,and k is the dynamic coefficient.For ordinary chemistry explosion,the shock duration,T,is usually within 1 ms.The pressure contour on the panel is shown in Fig.16,where the peak pressure is calculated by CONWEP.The distribution factor is also suggested in Table 10.

    Fig.15.Peak pressure sustained by AAC panels with different strengthening scheme.

    Fig.16.Peak reflective pressures on the front surface of the panel under explosion with scaled distance of(a)1.723 m/kg1/3,(b)1.368 m/kg1/3 and(c)1.195 m/kg1/3.

    Table 10 Constants of blast wave calculated by CONWEP.

    Fig.17.Dynamic coefficient varying with ω T.

    The dynamic coefficient is related to ω T as

    where T is the blast wave duration,and ω is the fundamental frequency of the structure and given by Ref.[17].

    where l is the span,m is the mass per unit length,B is the bending rigidity and Ω=9.87 for simply-supported beam.As shown in Fig.17,when ωT is large enough,the dynamic load acts as quasistatic load and the dynamic coefficient tends to 1.0.When ωT is small,the dynamic load acts as a pulse and the dynamic coefficient is very small,even smaller than 0.1.

    The flexural rigidities of the three panels are different,inducing different ω.Smaller k is acquired from smaller ω T according to Eq.(7).The dynamic coefficient is smaller than 0.1,as listed in Table 11 and compared in Fig.18(a).With smaller elastic modulus than the AAC,polyurea coating has little influence to the flexural rigidity of the AAC panel,while CFRP layer can obviously enhance the rigidity,thus improving the fundamental frequency of the panel and leading to much larger dynamic coefficient k.Therefore,although the equivalent static load-bearing capacity of the CFRP strengthenedAAC panel is much better,as shown in Fig.18(b),its anti-blast ability is poorer than that of the polyurea-coated panel,w hose dynamic coefficient is much smaller.

    Table 11 Dynamic coefficients and equivalent static loads.

    The mid-span deflection of the blast-loaded panels can be predicted by

    where b is the width of the panel.The predictions are compared with the tested data in Fig.18(c).The tested deflection of the polyurea-coated panel under scaled distance of 1.368 m/kg1/3,3.91 mm,has great difference with the theoretical prediction,which is most likely caused by measurement mistakes.Other errors of the predictions for the polyurea-coated panels are acceptable.The prediction results are a little smaller,which may be induced by the underestimated bending rigidity got from the flexure curves.

    6.Conclusions

    By analyzing the results of close-in explosion experiments and quasi-static three-point bending tests,the following conclusions can be reached:

    1)The polyurea coating efficiently enhances the mechanical properties of the AAC panels.The original load capacity of the bottom polyurea-coated AAC panel is higher than that of the unstrengthened AAC panel,but lower than that of the unidirectional CFRP strengthened AAC panel.

    2)The blast-resistant ability of the top polyurea-coated AAC panel is not obviously enhanced,weaker than the bottom and doubleside polyurea-coated AAC panels.

    3)Compared with the bottom polyurea-coated AAC panel,the blast-resistant ability of the double-side polyurea-coated AAC panel is not enhanced obviously.Therefore,the blast-resistant ability of the polyurea-coated AAC panel mainly depends on the bottom coating.

    4)Critical scaled distances of the polyurea-coated AAC panels with different strengthened methods have been acquired.These data are of great importance for promoting engineering applications of the AAC panel in extreme loading conditions.

    5)From the perspective of structural damage factors and critical scaled distances,the blast-resistant ability of the bottom and double-sided polyurea-coated AAC panels are stronger than that of the CFRP strengthened AAC panel.Excellent adhesion and ductility make polyurea coating an alternative to existed strengthening techniques in protective structures against explosion.

    Fig.18.(a)Dynamic coefficients and(b)equivalent static loads of AAC panels and(c)predicted mid-span deflections by equivalent static load method.

    Acknowledgments

    Supports from the National Natural Science Foundation of China(11672130,51508567,51478465,and 51308544),the State Key Laboratory of Mechanics and Control of Mechanical Structures(MCMS-0217G03)and the State Key Laboratory for Disaster Reduction in Civil Engineering(SLDRCE16-01)are gratefully acknowledged.

    在线观看免费午夜福利视频| 一区二区三区精品91| 精品国产一区二区三区四区第35| 国产老妇伦熟女老妇高清| 欧美中文综合在线视频| 18在线观看网站| 亚洲精品美女久久av网站| 亚洲专区中文字幕在线 | 999久久久国产精品视频| 精品少妇内射三级| 十八禁人妻一区二区| 国产精品蜜桃在线观看| 大香蕉久久成人网| 99热全是精品| av福利片在线| 男女午夜视频在线观看| 在线观看三级黄色| 国产又色又爽无遮挡免| 男女边吃奶边做爰视频| 亚洲精品久久成人aⅴ小说| 日本vs欧美在线观看视频| 久久久久久人人人人人| 亚洲精品自拍成人| 国产欧美日韩一区二区三区在线| 777米奇影视久久| 波野结衣二区三区在线| 黄网站色视频无遮挡免费观看| 中国国产av一级| 一级毛片 在线播放| 一区二区三区精品91| 国产免费福利视频在线观看| 91精品三级在线观看| 天天影视国产精品| 亚洲三区欧美一区| 欧美日韩国产mv在线观看视频| 国产男人的电影天堂91| 免费观看a级毛片全部| 亚洲欧美一区二区三区黑人| kizo精华| 在线观看人妻少妇| 免费看av在线观看网站| 一级毛片我不卡| 久久国产亚洲av麻豆专区| 中文精品一卡2卡3卡4更新| 十八禁人妻一区二区| 叶爱在线成人免费视频播放| 久久国产精品男人的天堂亚洲| 老司机亚洲免费影院| av国产精品久久久久影院| 美女扒开内裤让男人捅视频| 日韩伦理黄色片| 久久久久久久久久久久大奶| 亚洲av电影在线进入| 国产伦理片在线播放av一区| 精品一区二区三卡| 在线观看人妻少妇| 18禁动态无遮挡网站| 不卡av一区二区三区| 丁香六月欧美| 国产亚洲午夜精品一区二区久久| 国产极品粉嫩免费观看在线| 久久99精品国语久久久| 国产精品一区二区在线观看99| 久久天堂一区二区三区四区| 丝袜喷水一区| 一区二区日韩欧美中文字幕| 日韩制服丝袜自拍偷拍| 最近2019中文字幕mv第一页| 亚洲婷婷狠狠爱综合网| 人人妻人人添人人爽欧美一区卜| 777米奇影视久久| 精品久久久久久电影网| 街头女战士在线观看网站| 日韩人妻精品一区2区三区| 成人亚洲精品一区在线观看| 国产精品国产av在线观看| 久久精品国产a三级三级三级| 国产精品一区二区精品视频观看| 国产成人a∨麻豆精品| 久久久久精品国产欧美久久久 | 国产 一区精品| 午夜福利免费观看在线| 成人午夜精彩视频在线观看| 极品少妇高潮喷水抽搐| 国产无遮挡羞羞视频在线观看| 精品少妇内射三级| 两个人看的免费小视频| 在线观看三级黄色| 亚洲熟女精品中文字幕| 精品福利永久在线观看| 国产免费现黄频在线看| 国产不卡av网站在线观看| 天天影视国产精品| 韩国精品一区二区三区| 老司机影院毛片| 久久精品熟女亚洲av麻豆精品| 日韩,欧美,国产一区二区三区| 叶爱在线成人免费视频播放| 国产不卡av网站在线观看| 精品国产一区二区三区四区第35| 欧美 日韩 精品 国产| 国产日韩欧美视频二区| 一本大道久久a久久精品| 久久97久久精品| 精品一区二区三区av网在线观看 | 国产野战对白在线观看| 婷婷色av中文字幕| 一级黄片播放器| 2021少妇久久久久久久久久久| 亚洲精品av麻豆狂野| 在线观看国产h片| 狂野欧美激情性xxxx| 精品国产一区二区久久| 最黄视频免费看| 色精品久久人妻99蜜桃| 亚洲第一区二区三区不卡| 看十八女毛片水多多多| 黄片小视频在线播放| 999精品在线视频| 亚洲欧洲精品一区二区精品久久久 | 免费高清在线观看视频在线观看| 丁香六月天网| 国产成人a∨麻豆精品| 青草久久国产| 人妻 亚洲 视频| 欧美人与性动交α欧美软件| 亚洲天堂av无毛| 精品视频人人做人人爽| 9191精品国产免费久久| 久久精品亚洲av国产电影网| 在线观看一区二区三区激情| 男男h啪啪无遮挡| 在线观看免费午夜福利视频| 丝袜美腿诱惑在线| 热99久久久久精品小说推荐| av线在线观看网站| 男女免费视频国产| 欧美日韩一区二区视频在线观看视频在线| 成年美女黄网站色视频大全免费| 老司机影院毛片| 伦理电影大哥的女人| 大香蕉久久网| 国产欧美亚洲国产| 欧美日本中文国产一区发布| 亚洲,欧美,日韩| 尾随美女入室| 日韩欧美一区视频在线观看| av在线老鸭窝| 欧美av亚洲av综合av国产av | 亚洲av电影在线进入| 日韩熟女老妇一区二区性免费视频| 亚洲精品美女久久av网站| a级片在线免费高清观看视频| 考比视频在线观看| 国产精品国产av在线观看| 国产午夜精品一二区理论片| 国产日韩欧美在线精品| 考比视频在线观看| 亚洲精品一二三| 熟女av电影| 亚洲男人天堂网一区| 国产成人一区二区在线| 蜜桃在线观看..| 亚洲七黄色美女视频| 亚洲成av片中文字幕在线观看| 宅男免费午夜| 午夜福利,免费看| 欧美激情 高清一区二区三区| 欧美激情 高清一区二区三区| 熟女av电影| 蜜桃在线观看..| 国产成人一区二区在线| 人人妻人人爽人人添夜夜欢视频| 久久亚洲国产成人精品v| 高清视频免费观看一区二区| 亚洲精品美女久久av网站| 日本黄色日本黄色录像| 国产又爽黄色视频| 韩国精品一区二区三区| 国产精品久久久久久久久免| 欧美 亚洲 国产 日韩一| 久久久久人妻精品一区果冻| 亚洲国产av影院在线观看| 青草久久国产| 看非洲黑人一级黄片| 亚洲美女视频黄频| 十分钟在线观看高清视频www| 欧美另类一区| 校园人妻丝袜中文字幕| 卡戴珊不雅视频在线播放| 咕卡用的链子| 一边摸一边抽搐一进一出视频| 最近2019中文字幕mv第一页| 日韩中文字幕欧美一区二区 | 超碰成人久久| 久久精品亚洲熟妇少妇任你| 99九九在线精品视频| 日韩免费高清中文字幕av| 久久精品久久久久久久性| 亚洲精品中文字幕在线视频| 日韩制服丝袜自拍偷拍| 亚洲人成网站在线观看播放| 女人久久www免费人成看片| 人体艺术视频欧美日本| 亚洲七黄色美女视频| 亚洲激情五月婷婷啪啪| 日本色播在线视频| 欧美人与性动交α欧美精品济南到| 别揉我奶头~嗯~啊~动态视频 | 亚洲欧美激情在线| 亚洲av综合色区一区| 久久久久久人妻| 巨乳人妻的诱惑在线观看| 亚洲精品一二三| 国产伦理片在线播放av一区| 老汉色av国产亚洲站长工具| 亚洲成色77777| 国产成人精品久久二区二区91 | 中文字幕色久视频| 国产视频首页在线观看| 人人妻人人添人人爽欧美一区卜| 91精品国产国语对白视频| 国产片特级美女逼逼视频| 亚洲欧美激情在线| 亚洲av成人不卡在线观看播放网 | 亚洲美女视频黄频| 亚洲精品久久午夜乱码| 欧美国产精品va在线观看不卡| 日韩 亚洲 欧美在线| 18禁动态无遮挡网站| 日韩视频在线欧美| 91精品三级在线观看| 精品国产乱码久久久久久男人| 国产黄频视频在线观看| 国产97色在线日韩免费| 青春草亚洲视频在线观看| 嫩草影院入口| 欧美成人午夜精品| 搡老岳熟女国产| 国产av码专区亚洲av| 这个男人来自地球电影免费观看 | 一区二区三区激情视频| 秋霞在线观看毛片| 国产黄色视频一区二区在线观看| 国产成人欧美| 午夜免费观看性视频| 搡老岳熟女国产| 亚洲美女搞黄在线观看| 亚洲五月色婷婷综合| 女人爽到高潮嗷嗷叫在线视频| 91老司机精品| 国产亚洲午夜精品一区二区久久| 国产一区亚洲一区在线观看| 少妇被粗大猛烈的视频| 一级片免费观看大全| 久久人妻熟女aⅴ| 成年人免费黄色播放视频| 国产午夜精品一二区理论片| 波多野结衣av一区二区av| 丝袜美足系列| av国产久精品久网站免费入址| 国产野战对白在线观看| 日韩人妻精品一区2区三区| 国产99久久九九免费精品| 日韩制服丝袜自拍偷拍| 天堂中文最新版在线下载| 国产精品 欧美亚洲| 美女视频免费永久观看网站| 叶爱在线成人免费视频播放| 夫妻午夜视频| 中文字幕亚洲精品专区| 亚洲国产精品一区二区三区在线| 国产亚洲最大av| 免费黄网站久久成人精品| 在线看a的网站| 亚洲国产欧美在线一区| 国产99久久九九免费精品| 国产精品久久久久久精品电影小说| 国产爽快片一区二区三区| 久久毛片免费看一区二区三区| 国产伦人伦偷精品视频| 七月丁香在线播放| 日本猛色少妇xxxxx猛交久久| 日韩免费高清中文字幕av| 中文字幕制服av| 午夜免费观看性视频| videosex国产| 亚洲精品久久久久久婷婷小说| 在线观看免费午夜福利视频| 久久久精品94久久精品| 美国免费a级毛片| 黄色 视频免费看| 两个人免费观看高清视频| 国产av精品麻豆| 亚洲天堂av无毛| 国产精品免费大片| 亚洲婷婷狠狠爱综合网| 亚洲三区欧美一区| 国产精品香港三级国产av潘金莲 | 一本一本久久a久久精品综合妖精| 欧美日韩一区二区视频在线观看视频在线| 婷婷色综合大香蕉| 激情五月婷婷亚洲| 无限看片的www在线观看| 狠狠精品人妻久久久久久综合| 久久天堂一区二区三区四区| 51午夜福利影视在线观看| 亚洲欧洲国产日韩| 久久人人爽av亚洲精品天堂| 97人妻天天添夜夜摸| tube8黄色片| 国产av精品麻豆| av福利片在线| 两个人看的免费小视频| 欧美日韩精品网址| 丝袜喷水一区| 国产精品.久久久| 十八禁人妻一区二区| 高清av免费在线| 一级毛片我不卡| 999久久久国产精品视频| 高清视频免费观看一区二区| 日韩av在线免费看完整版不卡| xxx大片免费视频| 天天躁日日躁夜夜躁夜夜| 国产深夜福利视频在线观看| 捣出白浆h1v1| 亚洲精品,欧美精品| 欧美国产精品一级二级三级| 老司机深夜福利视频在线观看 | av福利片在线| 欧美日韩视频高清一区二区三区二| 久久久久国产精品人妻一区二区| 久久婷婷青草| 亚洲第一区二区三区不卡| 国产成人91sexporn| 一二三四中文在线观看免费高清| 亚洲婷婷狠狠爱综合网| 亚洲国产毛片av蜜桃av| 男女边摸边吃奶| 熟女少妇亚洲综合色aaa.| 免费在线观看视频国产中文字幕亚洲 | 97在线人人人人妻| 岛国毛片在线播放| 日本av免费视频播放| 久久人人爽av亚洲精品天堂| 建设人人有责人人尽责人人享有的| 人妻 亚洲 视频| 欧美精品人与动牲交sv欧美| 女人精品久久久久毛片| 久久精品国产综合久久久| 黑人巨大精品欧美一区二区蜜桃| 美女高潮到喷水免费观看| 两性夫妻黄色片| 人人澡人人妻人| 国产又爽黄色视频| 黄片无遮挡物在线观看| 久久热在线av| 激情视频va一区二区三区| 亚洲,欧美精品.| av在线观看视频网站免费| 国产成人啪精品午夜网站| 女人爽到高潮嗷嗷叫在线视频| 18禁观看日本| 午夜福利免费观看在线| 菩萨蛮人人尽说江南好唐韦庄| 天天躁日日躁夜夜躁夜夜| 国产色婷婷99| 天天躁夜夜躁狠狠久久av| www.精华液| 一二三四在线观看免费中文在| 考比视频在线观看| 国产精品成人在线| 成人漫画全彩无遮挡| 亚洲精品在线美女| 国产在线视频一区二区| 中文字幕人妻熟女乱码| 久久 成人 亚洲| 男女午夜视频在线观看| 亚洲人成77777在线视频| 久久国产精品男人的天堂亚洲| 亚洲成人av在线免费| 成人国语在线视频| 亚洲自偷自拍图片 自拍| 国产xxxxx性猛交| 交换朋友夫妻互换小说| av一本久久久久| 日韩一区二区三区影片| 高清视频免费观看一区二区| 午夜av观看不卡| 啦啦啦在线免费观看视频4| 嫩草影视91久久| 最近中文字幕2019免费版| 久久久久视频综合| 丝袜脚勾引网站| 亚洲精华国产精华液的使用体验| 91国产中文字幕| 高清不卡的av网站| 韩国精品一区二区三区| 免费观看人在逋| 多毛熟女@视频| 日韩中文字幕欧美一区二区 | 亚洲国产毛片av蜜桃av| 成人毛片60女人毛片免费| www.熟女人妻精品国产| 亚洲精品在线美女| 国产成人精品福利久久| 日日撸夜夜添| 丝袜脚勾引网站| 国产伦理片在线播放av一区| 婷婷色综合大香蕉| 国产免费一区二区三区四区乱码| 国产精品麻豆人妻色哟哟久久| 天天操日日干夜夜撸| 制服人妻中文乱码| 亚洲国产欧美日韩在线播放| 亚洲中文av在线| 最近最新中文字幕免费大全7| www日本在线高清视频| 国产成人午夜福利电影在线观看| 国产精品无大码| 嫩草影院入口| 天天影视国产精品| 亚洲精品久久久久久婷婷小说| xxxhd国产人妻xxx| 极品少妇高潮喷水抽搐| 欧美在线一区亚洲| 亚洲情色 制服丝袜| 国产爽快片一区二区三区| 丝袜美腿诱惑在线| 免费av中文字幕在线| 黄色 视频免费看| 黑丝袜美女国产一区| 成人三级做爰电影| 久久久久久免费高清国产稀缺| 国产成人精品在线电影| 色综合欧美亚洲国产小说| 一级a爱视频在线免费观看| 亚洲成av片中文字幕在线观看| 亚洲av男天堂| 亚洲欧美中文字幕日韩二区| 欧美黄色片欧美黄色片| bbb黄色大片| 五月天丁香电影| 国产成人一区二区在线| 亚洲国产av新网站| 久久久久精品性色| 欧美黑人欧美精品刺激| 色婷婷av一区二区三区视频| 老司机在亚洲福利影院| 国产一区二区三区综合在线观看| 性少妇av在线| 一级黄片播放器| 日韩熟女老妇一区二区性免费视频| 成年女人毛片免费观看观看9 | 赤兔流量卡办理| 欧美人与性动交α欧美精品济南到| 日本猛色少妇xxxxx猛交久久| 五月天丁香电影| 国产在线视频一区二区| 可以免费在线观看a视频的电影网站 | 日韩 欧美 亚洲 中文字幕| 成人黄色视频免费在线看| 亚洲自偷自拍图片 自拍| 99re6热这里在线精品视频| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美日韩另类电影网站| videosex国产| 搡老乐熟女国产| videos熟女内射| 国产精品成人在线| 高清欧美精品videossex| 午夜福利,免费看| 国产精品亚洲av一区麻豆 | 天堂中文最新版在线下载| 黄片播放在线免费| 巨乳人妻的诱惑在线观看| 成人黄色视频免费在线看| 我要看黄色一级片免费的| 欧美激情 高清一区二区三区| 亚洲成国产人片在线观看| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 亚洲精品一区蜜桃| 亚洲美女视频黄频| 国产深夜福利视频在线观看| 久久精品久久久久久噜噜老黄| 飞空精品影院首页| 婷婷色综合大香蕉| 最近2019中文字幕mv第一页| 久久精品人人爽人人爽视色| 国产人伦9x9x在线观看| 国产日韩欧美亚洲二区| 亚洲美女黄色视频免费看| 久久久久网色| 看十八女毛片水多多多| 精品一区在线观看国产| 无遮挡黄片免费观看| 日本色播在线视频| 下体分泌物呈黄色| 国产成人精品在线电影| 国产一区二区 视频在线| 亚洲欧美色中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机在亚洲福利影院| 国产高清不卡午夜福利| 9色porny在线观看| 欧美在线黄色| 亚洲欧洲国产日韩| 麻豆乱淫一区二区| 亚洲欧美精品自产自拍| 一二三四中文在线观看免费高清| 热99久久久久精品小说推荐| 中国三级夫妇交换| 熟妇人妻不卡中文字幕| 在线观看免费日韩欧美大片| 曰老女人黄片| 乱人伦中国视频| 91国产中文字幕| 国产 精品1| 中文字幕另类日韩欧美亚洲嫩草| 亚洲色图综合在线观看| 午夜免费男女啪啪视频观看| 亚洲精品乱久久久久久| 熟妇人妻不卡中文字幕| 久久99精品国语久久久| 亚洲一区中文字幕在线| 国产高清不卡午夜福利| 久久精品久久精品一区二区三区| 另类亚洲欧美激情| 成人三级做爰电影| 午夜福利视频在线观看免费| 欧美人与性动交α欧美精品济南到| 亚洲欧美一区二区三区国产| 精品免费久久久久久久清纯 | 久久精品国产亚洲av涩爱| 男女边吃奶边做爰视频| 久久久国产欧美日韩av| 国产欧美日韩综合在线一区二区| 亚洲熟女毛片儿| 亚洲国产欧美一区二区综合| 夜夜骑夜夜射夜夜干| 90打野战视频偷拍视频| 观看美女的网站| 国产不卡av网站在线观看| 国产成人啪精品午夜网站| 国产成人系列免费观看| 少妇人妻久久综合中文| 狠狠精品人妻久久久久久综合| 亚洲美女黄色视频免费看| 久久久久国产精品人妻一区二区| 亚洲欧美一区二区三区黑人| 美国免费a级毛片| 国产成人精品在线电影| 亚洲 欧美一区二区三区| 欧美黄色片欧美黄色片| 精品一区在线观看国产| 久久精品aⅴ一区二区三区四区| 国产一区亚洲一区在线观看| 波多野结衣av一区二区av| 操美女的视频在线观看| 久久精品国产a三级三级三级| 最黄视频免费看| 国产一级毛片在线| 亚洲美女黄色视频免费看| 国产日韩欧美视频二区| 国产精品偷伦视频观看了| 国产日韩欧美视频二区| 这个男人来自地球电影免费观看 | 欧美日韩一区二区视频在线观看视频在线| 丝袜美足系列| 亚洲av电影在线进入| 9191精品国产免费久久| 欧美日韩综合久久久久久| netflix在线观看网站| 久久国产精品大桥未久av| 嫩草影院入口| 午夜福利在线免费观看网站| 一级毛片我不卡| 一级毛片黄色毛片免费观看视频| 日韩欧美精品免费久久| 一级毛片黄色毛片免费观看视频| 日韩免费高清中文字幕av| 免费女性裸体啪啪无遮挡网站| 2021少妇久久久久久久久久久| 制服丝袜香蕉在线| 成年人午夜在线观看视频| 久久99一区二区三区| a 毛片基地| 视频在线观看一区二区三区| 国产精品一二三区在线看| 久久精品亚洲av国产电影网| 婷婷成人精品国产| av福利片在线| 日日啪夜夜爽| 成人国语在线视频| 欧美97在线视频| 国产精品三级大全| 黄片小视频在线播放| 人人妻人人添人人爽欧美一区卜| 欧美人与善性xxx| 日本爱情动作片www.在线观看| 欧美日本中文国产一区发布| 久久精品久久精品一区二区三区| 久久鲁丝午夜福利片| 国产成人免费无遮挡视频| 午夜福利免费观看在线| 久久精品国产综合久久久| 国产有黄有色有爽视频| 欧美 亚洲 国产 日韩一| 亚洲一码二码三码区别大吗| 亚洲国产精品成人久久小说| 交换朋友夫妻互换小说| 国产精品99久久99久久久不卡 | 国产精品久久久久成人av|