1"/>
  • <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一類微極流體方程組強解的存在唯一性

    2020-03-30 21:56:11史偉偉

    摘 要:在二維或三維光滑有界區(qū)域中,考慮一類微極流體方程組的第一邊值問題,在外力項的某一范數(shù)適當(dāng)小的條件下,用不動點定理證明了當(dāng)指數(shù)p>1時方程組強解的存在唯一性.

    關(guān)鍵詞:微極流體方程;強解;存在唯一性

    中圖分類號:O175.2 文獻標(biāo)識碼:A 文章編號:

    參考文獻

    [1] Eringen A C. Simple microfluids[J]. International Journal of Engineering Science,1964,2(2):205-217.

    [2] M?alek J,Neˇcas J,Rokyta M,Ru˙ˇziˇcka M. Weak and measure-valued solutions to evolutionary partial differential equations[M]. Applied Mathematics and Mathematical Computation,1996.

    [3] Bellout H, Bloom F, Neˇcas J. Young measure-valued solutions for non-newtonian incompressible fluids[J]. Communications in Partial Differential Equations,1994,19(11-12):1763-1803.

    [4] Diening L,Ru˙ˇziˇcka M. Strong solutions for generalized Newtonian fluids[J]. Journal of Mathematical Fluid Mechanics,2005,7(3):413-450.

    [5] Berselli L C,Diening L,Ru˙ˇziˇcka M. Existence of strong solutions for incompressible fluids with shear dependent viscosities[J]. Journal of Mathematical Fluid Mechanics,2010,12(1):101-132.

    [6] M?alek J,Neˇcas J,Ru˙ˇziˇcka M. On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains:the casa p 2[J]. Advances in Difference Equations,2001,6(3):257-302.

    [7] Amman H. Stability of the rest state of viscous incompressible fluid[J]. Archive for Rational Me- chanics and Analysis,1994,126(3):231-242.

    [8] Bothe D,Pruss J. Lp-theory for a class of non-Newtonian fluids[J]. SIAM Journal on Mathematical Analysis,2007,39(2):379-421.

    [9] Galdi G P. An introduction to the mathematical theory of the Navier-Stokes Equations[M]. New York:Springer,1994.

    [10] Arada N. A note on the regularity of flows with shear-dependent viscosity[J]. Nonlinear Analysis:Theory,Methods & Applications,2012,75(14):5401-5415.

    [11] Kreml O, Pokorny? M. On the local strong solutions for the FENE dumbbell model[J]. Discrete Contin. Dyn. Syst. Ser. S,2010,3(2):311-324.

    [12] SUN Yongzhong,WANG Chao,ZHANG Zhifei. A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations[J]. Journal de Math?ematiques Pures et Appliqu?ees,2011,95(1):36-47.

    作者簡介;史偉偉(1994~),女,漢族:碩士研究生,從事偏微分方程的研究。

    建宁县| 资溪县| 威信县| 洛扎县| 永济市| 蒙阴县| 梅河口市| 兴宁市| 张家川| 梁平县| 平塘县| 南通市| 航空| 社旗县| 含山县| 普兰县| 泗洪县| 曲麻莱县| 新干县| 大石桥市| 麻阳| 安康市| 陇西县| 延川县| 灵石县| 五指山市| 兴山县| 左云县| 张家港市| 宜都市| 屯门区| 沁阳市| 靖江市| 广河县| 梅州市| 利辛县| 丽水市| 江西省| 天津市| 巫山县| 蕉岭县|