• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prolonged simulation of near-free surface underwater explosion based on Eulerian finite element method

    2020-03-27 03:43:20MingHeManZhangYunLongLiu

    Ming He, A-Man Zhang*, Yun-Long Liu

    College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

    Keywords:Bubble dynamics Underwater explosion Free surface Eulerian finite element method

    ABSTRACT In the area of naval architecture and ocean engineering, the research about the underwater explosion problem is of great significance. To achieve prolonged simulation of near-free surface underwater explosion, the underwater explosion transient numerical model is established in this paper based on compressible Eulerian finite element method (EFEM). Compared with Geers-Hunter formula, EFEM is availably validated by simulating the free-field underwater explosion case. Then, the bubble pulsation and flow field dynamic characteristics of the cases with different underwater explosive depth are compared in this work. Lastly, the height of the water hump and the pressure of flow flied are analyzed quantitatively through the simulation results.

    Bubble dynamics is a critically vital research topic in a great deal of fields [1-4], especially in underwater explosion field [5-7].In modern naval battles, the underwater explosion of weapons in the water such as torpedoes and mines is one of the important reasons for the damage of ships [8]. The shock wave generated by the explosion causes transient damage to the structures,and then the pulsating bubble will continuously affect the vitality of the ships for a long time. At the same time, the water hump produced by the near-free surface explosion will also alter the movement characteristics of the ships [9]. Therefore, studying and mastering the physical mechanism of the full-cycle underwater explosion process is of great engineering significance.

    As early as the last century, Rayleigh, Plesset and other scientists established the Rayleigh-Plesset equation to describe the bubble dynamics problem [10]. For the whole process of real and complex underwater explosion problem, accurate analytical solutions are difficult to obtain. Experimental research is one of the reliable tools for researching underwater explosion problem.The countries with strong military strength such as the United States conducted underwater explosion tests on several occasions. In addition, some scientists used the scale model experiments to explore the mechanism of this problem [5, 11-13].However, factors such as experimental cost and period limit its wide range of engineering application. In contrast, numerical simulation has extremely significant advantages [6, 14-17]. Numerical simulation can save costs and simulate a large number of different cases in real time. At present, there are many works to study the underwater explosion problem by numerical simulation.

    Aiming at the current research status and the important research significance of underwater explosion problem, the underwater explosion transient numerical model is established in this work on account of compressible EFEM. The near-free surface underwater explosion problem is mainly studied in detail. The schematic diagram of near-free surface underwater explosion is shown in Fig. 1. Firstly, the numerical model is validated by simulating the free-field underwater explosion case. Then, the bubble pulsation and flow field dynamic characteristics of the cases with different underwater explosive depth are compared.Lastly, the height of the water hump and the pressure of fluid flied are analyzed quantitatively through the simulation results.

    The compressible EFEM has obvious advantages in disposing of transient large deformation problems [18-21]. For the sake of studying the mechanization of underwater explosion problem, the physical model is simplified into an axisymmetric model, which is relative mature for grid methods. This treatment improves the solution efficiency of the problem while ensuring the accuracy of the result. The governing equation of each element in this model is as follows

    where einisthe specific internalenergyper unit mass, ρisthe densityofthematerial, u={ur,uz}isspeed vector and gisthe gravitationalacceleration. Wemust payattention tothatwhere the subscript, i indicates the partial derivative with respect to the coordinate in the orientationi. The above equation is established in cylindrical coordinate system,where z and r are the axial and radial coordinates respectively.Equation (1) is separately the mass, momentum and energy equations, which can be written in a uniform format to solve the governing equations systematically, namely,

    where φ is unknown variable, and S is source item. Based on operator separation method, Eq. (2) can be divided into Eulerian and Lagrangian steps, which is the core idea of EFEM. The schematic diagram of EFEM is shown in Fig. 2.

    Fig. 1. Schematic diagram of near-free surface underwater explosion.

    Adopting the explicit finite element method, Eq. (2) is solved in the Lagrangian step firstly where the source item is ignored.The Galerkin formula used for solving the momentum conservation in cylindrical coordinate system could be derived from the Gauss-Green formula and the integration by part, namely,

    where Ω is the dispersed two-dimensional orthogonal computationregion, niistheunitarynormalvectordirectingthe outside of region in theithorientation,Γistheboundaryofthe Ω , and φ is the computational shape function. Equation (3) can besolvedbydispersing.Afterwardsthevelocity uiand displacementxoffluid nodeare renewedwiththe high-order explicit integral format and the mesh advances with the fluid parameter, namely,

    where δt is the time increment, a is the acceleration obtained by Eq. (3) and the superscript denotes the increment count. Then,thenewfluiddensityandthe specific internalenergyeinare renewedwiththe massandenergy conservingequation,namely,

    At this time, the Eulerian step begins which is demanded to move back the deformed mesh to its initial position after the Lagrangian step. It is worth mentioning that the volume of fluid method (VOF) is used to capture the fluid interface in Eulerian step and the monotonic upwind scheme for conservation laws can improve calculation accuracy [9]. After the Eulerian step, the pressure p is renewed with the material equation of state for the next increment. So far, the operation of a time step is over.

    The equation of state is important for numerical model which is related to the pressure, internal energy and density together. In this model, the equation of state of the water and air is chosen as the Tammann equation [22], namely,

    Fig. 2. Schematic diagram of EFEM.

    where Pwis the reference, γ is the specific value of heat. The equation of state of the explosive products are solved by Jones-Wilkens-Lee (JWL) equation [22], namely,

    where A,B, R1, R2and w are the specific constants for material,ρ0and ρ are respectively the densities of the explosive and the explosive products. And the fluid constants for equation of state is shown in Table 1.

    For free-field underwater explosion condition, the current model is relatively reliable. In this work, the correctness of the numerical model is availably validated by comparison with the Geers-Hunter model [23, 24]. Based on the underwater explosion problem studied in this paper, the large equivalent (110 kg)explosive underwater 100 m explosion case is simulated. Among them, the calculation domain is 50 m×50 m, the number of grids is 160000, the pressure measuring point is located 25 m away from the initial explosive position and the calculation boundary is a non-reflection boundary [25]. The bubble equivalent radius R and bubble migration distance Z curves of the two models areshown in Fig. 3. And the pressure comparison curve of the two models is shown in Fig. 4.

    Table 1 Specific material constants for equation of state [22].

    It can be drawn a conclusion from the Fig. 3 that the numerical model of the free-field explosion established in this paper agrees well with the Geers-Hunter model. In the bubble expansion stage, the bubble equivalent radius and the bubble migration distance curve are substantially identical. Since the Grees-Hunter model is based on the spherical bubble system and the no-spherical motion is considered in EFEM model under buoyancy, there are differences between the two models at the stage of bubble collapsing and jet generation. When the underwater explosion bubble reaches a certain volume, the bubble movement especially the pulsation cycle will change due to buoyancy.In addition, the pressure change trend and the second pulsation pressure peak of the two models are consistent as shown in Fig. 4. And the numerical viscosity reduces the peak value of the shock wave in numerical simulation. In summary, the numerical model established in this work has enough calculation accuracy.

    Fig. 3. Bubble equivalent radius and bubble migration distance curves of the two models (G-H model means Geers-Hunter model)

    Fig. 4. Pressure comparison curve of the Geers-Hunter model and EFEM.

    In this work, the underwater explosion of which the explosive depth is less than twice the maximum diameter of the bubble is defined as the near-free surface underwater explosion. In order to study the mechanization of underwater explosion problem, this work selects three cases (650 kg explosive under the conditions of 5 m, 10 m, and 20 m explosive depth) for comparative analysis. And the three cases are named case 1, case 2 and case 3. Among them, the calculation domain is 50 m×200 m, the grid size is 0.5 m, the calculation boundary is also a non-reflection boundary, and the pressure measuring point is located 40 m away from the initial explosive position and 50 m away from the free surface. Figures 5 and 6 show the changes of free surface and flow field pressure for case 1 and case 3. In addition, d represents the distance between the detonation and the free surface in the following paper.

    Fig. 5. Changes of free surface and flow field pressure for case 1 (650 kg explosive under the condition of 5 m explosive depth), surface crushing is shown in a, jet penetrates is shown in b, soaring water hump is shown in c and d, water hump falling is shown in e and surface calm is shown in f. Black line indicates interface outline.

    There are significant differences in flow field characteristics for underwater explosion with different explosive depth. It can be seen from Fig. 5 that when the distance d is smaller than the maximum radius of the bubble, the free surface breaking and reclosing will emerge in the bubble expansion stage. Moreover, the subsequent bubble pulsation at the free surface causes sharp splash of the free surface. The water hump is simulated vividly and its evolution is divided into three stages including production, soaring and falling. At the same time, the height of the water hump at the free surface can reach the order of 100 m as shown in Fig. 7, which is called the soaring water hump. The reason for the phenomenon is that a large amount of energy generated by the bubble can be transmitted to the free surface under this case, which causes vigorous movement of the fluid. At the moment of the explosion, the free surface fluid gained a larger speed and soared upward. What's more, the fluid can reach a higher height under the induction of inertial force. We must mention that this case is difficult to simulate by traditional numerical methods.

    As shown in Fig. 6, when the distance d is bigger, the bubble will firstly expand in form of spherical bubble and then rise under the effect of buoyancy. When the bubble rise to the free surface, it will also induce the production of water hump. At this time, the height of the water hump is lower, which is called mound water hump in this work. Compared with the case in Fig. 5, the free surface movement of this case is relatively stable.In addition, as the energy continues to dissipate, the free surface tends to calm after the underwater explosion for the two cases as shown in Figs. 5(f) and 6(f), which means the end of the underwater explosion. In a word, it can be seen from Figs. 5 and 6 that this paper can vividly and effectively simulate the full-cycle nearfree surface underwater explosion problem. And these two cases are typical and of great significance.

    Fig. 6. Changes of free surface and flow field pressure for case 3 (650 kg explosive under the condition of 20 m explosive depth), bubble expansion is shown in a, bubble rising is shown in b, mound water hump is shown in d and surface calm is shown in f. Black line indicates interface outline.

    The water hump is an iconic phenomenon for near-free surface underwater explosion. The water plume height is considered to be the distance between the highest water element and the free surface in this paper. As shown in Fig. 7, there are obvious differences in the change trend of water hump height for different explosive depth. When d=5 m, the water hump climbs directly up to 100 m. At this time, the free surface obtains more energy produced by bubble movement. When d equals 10 m and 20 m respectively, the height of water hump is lower at the stage of bubble expansion and reaches its peak value at the stage of bubble pulsation. We can also make a conclusion that when the explosive position reaches a certain depth, the peak of water hump is similar which is resolved by the total energy of system.For different explosive depth cases, there is the phenomenon of water hump pulsation in the later stage. This is caused by the unstable flow and involving the mutual transformation of kinetic energy and potential energy. When t=15 s, the free surface almost restores calm. In other word, the full cycle of the 650 kg TNT underwater explosion process is about 15 s from numerical simulation result. Due to the complexity of the real sea conditions, the cycle in reality may be longer.

    Pressure load is an important parameter for underwater explosion problem. It can be seen from the Fig. 8 that when d=20 m, the moment for the bubble to generate the jet is obviously advanced. Since when the explosion bubble is far away from the free surface, the buoyancy effect will be obvious. Under the action of buoyancy, the bubble will generate an upward jet. When d=5 m, the bubble generates a smaller secondary pulsation load due to the free surface breaking in the bubble expansion stage and part of the energy generated by the bubble is directly diffused into the air. When d=10 m, the secondary pulsation load generated by the bubble is the largest, so the damage effect of the underwater explosion is not linearly related with the distance d. The peak value of the bubble pulsation load is related to the minimum volume of the bubble. The more obvious the nonspherical motion, the greater the kinetic energy of the external flow field at the minimum volume, the smaller the internal energy of the bubble, and the smaller the pulsating pressure of the radiation. The free surface induce bubble to create a downward jet and the buoyancy induce bubble to create an upward jet.When d =10 m the bubble shape is closer to the sphere due to the offset effect of free surface and buoyancy, the pulsating pressure is bigger. In addition, through the local pulsation phenomenon of the pressure change curve, the reflection effect of the free surface on the shock wave can be seen.

    The underwater explosion transient numerical model is established in this paper on account of compressible Eulerian finite element method to achieve the prolonged simulation of near-free surface underwater explosion. Compared with the existing model, the results fully verify the correctness of the numerical model. Then, the analysis of three cases with different explosive depth are carried out. This paper concludes that when the distance d is smaller, free surface breaking and reclosing will emerge in the bubble expansion stage, and the movement of the surrounding flow field is very intense. When the distance d is bigger, the bubble will expand firstly and then collapse, and the movement of the surrounding flow field is relatively stable. It can be seen from the pressure change curve that the damage effect of the underwater explosion is not linearly related with the distance d. The free surface induce bubble to create a downward jet and the buoyancy induce bubble to create an upward jet. When the bubble is closer to the spherical motion because of the offset of free surface and buoyancy, the pulsating pressure is bigger.

    Fig. 7. Water hump height change curves for different explosive depth cases.

    Fig. 8. Comparison of pressure change curves for different explosive depth cases.

    Acknowledgements

    The authors would like to acknowledge the support of the National Natural Science Foundation of China (Grant 11672081)and the Industrial Technology Development Program (Grants JCKY2018604C010 and JCKY2017604C002). Finally, Thanks for the help of Zu-Hui Li during writing the paper.

    久久中文字幕一级| 久久国产亚洲av麻豆专区| 国产精品,欧美在线| 亚洲天堂国产精品一区在线| 亚洲国产欧洲综合997久久, | 精品第一国产精品| 日韩欧美三级三区| 校园春色视频在线观看| 国产一卡二卡三卡精品| 亚洲专区字幕在线| 男女之事视频高清在线观看| www.自偷自拍.com| 日韩欧美在线二视频| 国产精品av久久久久免费| 成人国产一区最新在线观看| 很黄的视频免费| 日本 欧美在线| 欧美zozozo另类| 亚洲五月色婷婷综合| 欧美中文综合在线视频| 久久精品国产清高在天天线| 老司机在亚洲福利影院| 嫁个100分男人电影在线观看| 亚洲成人精品中文字幕电影| aaaaa片日本免费| 88av欧美| 国产激情欧美一区二区| 操出白浆在线播放| 欧美激情极品国产一区二区三区| 男人舔奶头视频| 欧美最黄视频在线播放免费| 日本一区二区免费在线视频| 久久香蕉精品热| 国产区一区二久久| 美女高潮喷水抽搐中文字幕| 欧美 亚洲 国产 日韩一| 男女做爰动态图高潮gif福利片| 亚洲成a人片在线一区二区| 国产午夜精品久久久久久| netflix在线观看网站| 视频在线观看一区二区三区| 午夜福利一区二区在线看| 岛国在线观看网站| 成人亚洲精品av一区二区| 香蕉丝袜av| 欧美日本亚洲视频在线播放| 精品久久久久久成人av| 久久香蕉国产精品| 亚洲va日本ⅴa欧美va伊人久久| 亚洲avbb在线观看| 视频在线观看一区二区三区| 久久久久久久久久黄片| 免费在线观看完整版高清| 91麻豆精品激情在线观看国产| 妹子高潮喷水视频| 精品日产1卡2卡| 一区二区三区精品91| 十八禁人妻一区二区| 欧美人与性动交α欧美精品济南到| 久久婷婷人人爽人人干人人爱| 国产免费男女视频| 黄色a级毛片大全视频| 成人18禁高潮啪啪吃奶动态图| 最近最新免费中文字幕在线| 国产精品香港三级国产av潘金莲| 麻豆成人av在线观看| 日本三级黄在线观看| 亚洲五月婷婷丁香| 亚洲成av片中文字幕在线观看| 91字幕亚洲| 亚洲av五月六月丁香网| 高潮久久久久久久久久久不卡| 婷婷丁香在线五月| 精品熟女少妇八av免费久了| 性色av乱码一区二区三区2| 亚洲成人国产一区在线观看| 成人国产一区最新在线观看| 亚洲欧美精品综合一区二区三区| 9191精品国产免费久久| 成熟少妇高潮喷水视频| 女警被强在线播放| 欧美黑人巨大hd| 深夜精品福利| 色在线成人网| 欧美成人午夜精品| 亚洲专区字幕在线| 人人澡人人妻人| 日本在线视频免费播放| 日韩有码中文字幕| 午夜福利在线观看吧| or卡值多少钱| 精华霜和精华液先用哪个| 少妇粗大呻吟视频| 亚洲专区国产一区二区| 亚洲午夜理论影院| 老司机午夜十八禁免费视频| 国产av又大| 99国产精品一区二区蜜桃av| 一二三四社区在线视频社区8| 久久久国产欧美日韩av| 日本黄色视频三级网站网址| 黑人操中国人逼视频| 亚洲国产精品久久男人天堂| 老司机午夜十八禁免费视频| 18禁美女被吸乳视频| 亚洲国产精品999在线| 午夜两性在线视频| 脱女人内裤的视频| 非洲黑人性xxxx精品又粗又长| 亚洲av日韩精品久久久久久密| 国产精品香港三级国产av潘金莲| 国产99白浆流出| 最新美女视频免费是黄的| 夜夜夜夜夜久久久久| 99国产精品一区二区蜜桃av| 日韩三级视频一区二区三区| 久久久久亚洲av毛片大全| 午夜激情av网站| 国产熟女xx| 午夜久久久久精精品| 很黄的视频免费| 久久亚洲真实| 午夜亚洲福利在线播放| 精品乱码久久久久久99久播| 精品人妻1区二区| 精品国产亚洲在线| 国产亚洲精品一区二区www| 国产在线精品亚洲第一网站| 狂野欧美激情性xxxx| 日韩一卡2卡3卡4卡2021年| 人人妻人人澡人人看| 亚洲国产欧美一区二区综合| 免费在线观看完整版高清| 午夜a级毛片| 国产成人系列免费观看| 成人av一区二区三区在线看| 亚洲中文字幕日韩| 岛国在线观看网站| 国产精品野战在线观看| 日韩欧美在线二视频| 亚洲人成伊人成综合网2020| 久久精品91无色码中文字幕| videosex国产| 1024香蕉在线观看| 在线观看一区二区三区| 久久精品aⅴ一区二区三区四区| 俄罗斯特黄特色一大片| 两人在一起打扑克的视频| 欧美激情高清一区二区三区| av欧美777| 亚洲欧美日韩无卡精品| 精品国产一区二区三区四区第35| 老司机深夜福利视频在线观看| 久久久久精品国产欧美久久久| 一卡2卡三卡四卡精品乱码亚洲| 夜夜爽天天搞| 欧美日韩乱码在线| 亚洲成人久久性| 99国产精品99久久久久| 一卡2卡三卡四卡精品乱码亚洲| 人人妻人人澡人人看| 高清毛片免费观看视频网站| 一夜夜www| 亚洲av日韩精品久久久久久密| 丰满的人妻完整版| 国产精品久久久av美女十八| 999精品在线视频| 欧美日韩黄片免| 亚洲三区欧美一区| 又紧又爽又黄一区二区| 搡老熟女国产l中国老女人| 欧美一级a爱片免费观看看 | 18美女黄网站色大片免费观看| 淫秽高清视频在线观看| 亚洲精品色激情综合| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成网站在线播放欧美日韩| 欧美国产精品va在线观看不卡| 又黄又粗又硬又大视频| 国产免费男女视频| 欧美日韩精品网址| 色婷婷久久久亚洲欧美| 国产伦在线观看视频一区| 免费一级毛片在线播放高清视频| xxx96com| 国产成人啪精品午夜网站| 国产日本99.免费观看| 久久久精品国产亚洲av高清涩受| 精品无人区乱码1区二区| 非洲黑人性xxxx精品又粗又长| 男女之事视频高清在线观看| 禁无遮挡网站| 亚洲一区二区三区色噜噜| 观看免费一级毛片| 一边摸一边抽搐一进一小说| 久久香蕉国产精品| 免费高清视频大片| 亚洲中文av在线| 俄罗斯特黄特色一大片| 性色av乱码一区二区三区2| 欧美zozozo另类| 香蕉丝袜av| 欧美日韩亚洲综合一区二区三区_| 久久久水蜜桃国产精品网| 日韩精品免费视频一区二区三区| 亚洲精品中文字幕在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 色av中文字幕| 嫁个100分男人电影在线观看| 久久久久久久精品吃奶| 1024视频免费在线观看| 欧美成人一区二区免费高清观看 | 婷婷丁香在线五月| 校园春色视频在线观看| 特大巨黑吊av在线直播 | 国产爱豆传媒在线观看 | 欧美国产精品va在线观看不卡| 国产精品乱码一区二三区的特点| 国产精品乱码一区二三区的特点| 亚洲色图av天堂| 久久精品91蜜桃| 亚洲av中文字字幕乱码综合 | 久久精品国产清高在天天线| 欧美黑人欧美精品刺激| 亚洲国产欧洲综合997久久, | 1024手机看黄色片| bbb黄色大片| 国产区一区二久久| 校园春色视频在线观看| 91大片在线观看| 亚洲av成人一区二区三| 亚洲午夜理论影院| 久久国产亚洲av麻豆专区| 精品福利观看| 啦啦啦免费观看视频1| 国产欧美日韩一区二区三| 久久久水蜜桃国产精品网| 91av网站免费观看| 国产一区二区三区在线臀色熟女| 欧美性猛交╳xxx乱大交人| 免费搜索国产男女视频| 欧美成狂野欧美在线观看| 视频在线观看一区二区三区| 午夜精品在线福利| aaaaa片日本免费| 欧美中文综合在线视频| 精品久久久久久久久久免费视频| 成人精品一区二区免费| 亚洲最大成人中文| 亚洲国产欧美日韩在线播放| 人人妻人人澡欧美一区二区| 久久中文看片网| 国内毛片毛片毛片毛片毛片| 国产精华一区二区三区| 18禁黄网站禁片午夜丰满| 欧美中文日本在线观看视频| 国内久久婷婷六月综合欲色啪| 免费一级毛片在线播放高清视频| 亚洲色图av天堂| 国产高清视频在线播放一区| 亚洲第一av免费看| 亚洲熟妇中文字幕五十中出| videosex国产| а√天堂www在线а√下载| 俺也久久电影网| 国产v大片淫在线免费观看| 人妻丰满熟妇av一区二区三区| 女同久久另类99精品国产91| 久久久水蜜桃国产精品网| 99久久国产精品久久久| 久久久久精品国产欧美久久久| 亚洲av片天天在线观看| 又黄又爽又免费观看的视频| 免费在线观看影片大全网站| 欧美+亚洲+日韩+国产| 亚洲精品久久成人aⅴ小说| 啦啦啦 在线观看视频| 久久久国产精品麻豆| 国产精品av久久久久免费| 国产成人精品无人区| 国产极品粉嫩免费观看在线| 高清在线国产一区| av电影中文网址| 亚洲 欧美 日韩 在线 免费| 99久久久亚洲精品蜜臀av| 久久国产精品男人的天堂亚洲| 免费在线观看完整版高清| 久久精品国产亚洲av高清一级| 男人操女人黄网站| www国产在线视频色| 看免费av毛片| 女人爽到高潮嗷嗷叫在线视频| 精品国产超薄肉色丝袜足j| 日韩成人在线观看一区二区三区| 免费看a级黄色片| 亚洲美女黄片视频| 亚洲精品美女久久久久99蜜臀| cao死你这个sao货| 麻豆成人午夜福利视频| 性欧美人与动物交配| 久久人妻av系列| 国产免费男女视频| 国产爱豆传媒在线观看 | 搡老熟女国产l中国老女人| 在线十欧美十亚洲十日本专区| 午夜视频精品福利| 日韩欧美一区二区三区在线观看| 亚洲男人天堂网一区| 欧美激情高清一区二区三区| 亚洲五月天丁香| 在线av久久热| 精品欧美一区二区三区在线| 黄片播放在线免费| 在线十欧美十亚洲十日本专区| 日韩欧美国产一区二区入口| 久久99热这里只有精品18| 久久久久久久精品吃奶| 精品第一国产精品| 在线观看66精品国产| 午夜免费成人在线视频| 天堂动漫精品| 91av网站免费观看| 精品欧美国产一区二区三| 在线播放国产精品三级| 人人妻人人看人人澡| 动漫黄色视频在线观看| 美女午夜性视频免费| 视频区欧美日本亚洲| 给我免费播放毛片高清在线观看| 人妻久久中文字幕网| 中文字幕av电影在线播放| av免费在线观看网站| 美女大奶头视频| 俄罗斯特黄特色一大片| 免费在线观看黄色视频的| 亚洲人成网站高清观看| 久热爱精品视频在线9| 日韩欧美国产一区二区入口| 国产一区二区激情短视频| 国产精华一区二区三区| 99久久综合精品五月天人人| 亚洲精品av麻豆狂野| 精品国产超薄肉色丝袜足j| 草草在线视频免费看| 亚洲av第一区精品v没综合| 久久这里只有精品19| 欧美成人午夜精品| 999久久久国产精品视频| 国产精品一区二区三区四区久久 | 国产精品久久久久久人妻精品电影| 日韩欧美国产在线观看| 亚洲va日本ⅴa欧美va伊人久久| 神马国产精品三级电影在线观看 | 好男人电影高清在线观看| 少妇被粗大的猛进出69影院| 99久久无色码亚洲精品果冻| 亚洲成国产人片在线观看| 亚洲专区字幕在线| 精品人妻1区二区| 亚洲av日韩精品久久久久久密| 久久香蕉激情| 欧美大码av| 女同久久另类99精品国产91| 91麻豆精品激情在线观看国产| 大型av网站在线播放| 特大巨黑吊av在线直播 | 19禁男女啪啪无遮挡网站| 亚洲色图 男人天堂 中文字幕| 99精品在免费线老司机午夜| 动漫黄色视频在线观看| 国产精品免费一区二区三区在线| 麻豆av在线久日| 高清在线国产一区| 久久香蕉精品热| av有码第一页| 国产单亲对白刺激| 色老头精品视频在线观看| 无遮挡黄片免费观看| 一个人观看的视频www高清免费观看 | 可以免费在线观看a视频的电影网站| 岛国在线观看网站| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲成人精品中文字幕电影| 黄频高清免费视频| 成人亚洲精品av一区二区| 成人国产综合亚洲| 日韩欧美一区二区三区在线观看| 久久九九热精品免费| 久久青草综合色| 国产野战对白在线观看| 人成视频在线观看免费观看| 久久午夜综合久久蜜桃| 日韩欧美 国产精品| 免费高清在线观看日韩| 国产成人欧美在线观看| 黄网站色视频无遮挡免费观看| 久久香蕉国产精品| 三级毛片av免费| 亚洲最大成人中文| 香蕉av资源在线| 麻豆成人午夜福利视频| 日日爽夜夜爽网站| 国产野战对白在线观看| 欧美日韩乱码在线| 日本 欧美在线| 久久伊人香网站| 欧美性长视频在线观看| 国产爱豆传媒在线观看 | 桃红色精品国产亚洲av| 国产97色在线日韩免费| 亚洲一区二区三区不卡视频| 亚洲自拍偷在线| 最近最新免费中文字幕在线| 热re99久久国产66热| 人人妻,人人澡人人爽秒播| 亚洲国产欧洲综合997久久, | netflix在线观看网站| 精品久久久久久,| 黄频高清免费视频| 亚洲欧美激情综合另类| 99久久99久久久精品蜜桃| 日韩 欧美 亚洲 中文字幕| 满18在线观看网站| www国产在线视频色| 少妇 在线观看| 亚洲激情在线av| 中亚洲国语对白在线视频| 国产激情久久老熟女| 日韩欧美 国产精品| 国产精品 国内视频| 午夜免费鲁丝| 国产午夜福利久久久久久| 久久精品国产亚洲av香蕉五月| 国产精品九九99| 99久久综合精品五月天人人| 岛国在线观看网站| 色综合亚洲欧美另类图片| 可以在线观看的亚洲视频| 中文字幕久久专区| 一进一出抽搐gif免费好疼| 视频区欧美日本亚洲| 免费在线观看成人毛片| 国产免费男女视频| 日本一区二区免费在线视频| 一级作爱视频免费观看| 国产1区2区3区精品| 少妇粗大呻吟视频| 国产免费av片在线观看野外av| 国产精品久久久久久人妻精品电影| 国产精品亚洲av一区麻豆| 亚洲自偷自拍图片 自拍| 老熟妇仑乱视频hdxx| 88av欧美| 男人的好看免费观看在线视频 | 国产精品av久久久久免费| 韩国精品一区二区三区| 国产精品精品国产色婷婷| 久久热在线av| 白带黄色成豆腐渣| 亚洲欧美日韩无卡精品| 亚洲国产欧美一区二区综合| 国产aⅴ精品一区二区三区波| 99国产精品一区二区三区| 亚洲国产精品999在线| 免费看美女性在线毛片视频| 欧美丝袜亚洲另类 | 国产精品98久久久久久宅男小说| 韩国精品一区二区三区| 日韩视频一区二区在线观看| 99热6这里只有精品| 中文字幕av电影在线播放| 午夜福利18| 成人亚洲精品一区在线观看| 日韩有码中文字幕| 久久青草综合色| 欧美日本亚洲视频在线播放| 一个人观看的视频www高清免费观看 | 久久久久国内视频| 免费看日本二区| 午夜两性在线视频| 国产高清激情床上av| 精品熟女少妇八av免费久了| 精品国内亚洲2022精品成人| 精品少妇一区二区三区视频日本电影| 一级a爱片免费观看的视频| 免费人成视频x8x8入口观看| 级片在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久久国产精品麻豆| 女警被强在线播放| 国产熟女xx| 99re在线观看精品视频| 国产成人精品久久二区二区91| 国产精品久久电影中文字幕| 国产亚洲精品久久久久久毛片| 男女做爰动态图高潮gif福利片| 欧美黑人巨大hd| 精品久久久久久久久久免费视频| 嫩草影视91久久| 亚洲五月天丁香| 亚洲欧美日韩高清在线视频| 老熟妇仑乱视频hdxx| 久久中文字幕一级| 久久久国产成人精品二区| 在线十欧美十亚洲十日本专区| 国内揄拍国产精品人妻在线 | 国产精品精品国产色婷婷| 国产区一区二久久| 少妇熟女aⅴ在线视频| 美女免费视频网站| 久久精品91无色码中文字幕| 欧美一级a爱片免费观看看 | xxx96com| 好男人电影高清在线观看| 母亲3免费完整高清在线观看| 制服人妻中文乱码| 好男人电影高清在线观看| a在线观看视频网站| 黄片播放在线免费| 成人国产一区最新在线观看| a在线观看视频网站| 亚洲精品av麻豆狂野| 久久精品国产清高在天天线| 一进一出抽搐动态| 老司机在亚洲福利影院| 亚洲狠狠婷婷综合久久图片| svipshipincom国产片| 精品电影一区二区在线| 一级片免费观看大全| 成人一区二区视频在线观看| 国产精品影院久久| 亚洲一码二码三码区别大吗| 天堂影院成人在线观看| 丁香欧美五月| 成年人黄色毛片网站| 欧美日韩瑟瑟在线播放| 成在线人永久免费视频| 在线播放国产精品三级| 亚洲全国av大片| 91av网站免费观看| 亚洲欧美激情综合另类| 91大片在线观看| 色播在线永久视频| 波多野结衣巨乳人妻| 精品卡一卡二卡四卡免费| 夜夜躁狠狠躁天天躁| 国产激情欧美一区二区| 天天一区二区日本电影三级| 欧美午夜高清在线| 欧美人与性动交α欧美精品济南到| 一本综合久久免费| 99在线人妻在线中文字幕| 欧美成人免费av一区二区三区| 久久久久久免费高清国产稀缺| 香蕉丝袜av| 91九色精品人成在线观看| 91麻豆精品激情在线观看国产| 精品一区二区三区四区五区乱码| 国产精品一区二区精品视频观看| 欧美性猛交╳xxx乱大交人| 国产99久久九九免费精品| 啦啦啦免费观看视频1| bbb黄色大片| 一级黄色大片毛片| 听说在线观看完整版免费高清| 丁香六月欧美| 色在线成人网| 真人一进一出gif抽搐免费| 亚洲av五月六月丁香网| 免费观看人在逋| 日韩国内少妇激情av| 亚洲专区国产一区二区| 亚洲九九香蕉| 精品一区二区三区av网在线观看| 午夜a级毛片| 一卡2卡三卡四卡精品乱码亚洲| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产精品成人综合色| 丁香六月欧美| 一区二区日韩欧美中文字幕| 色av中文字幕| 亚洲av成人不卡在线观看播放网| 欧美zozozo另类| 男男h啪啪无遮挡| 中文字幕人妻丝袜一区二区| 两个人看的免费小视频| 一级a爱片免费观看的视频| 又黄又粗又硬又大视频| 亚洲av美国av| 欧美色视频一区免费| 国产高清视频在线播放一区| 国产成人精品久久二区二区91| 国产激情偷乱视频一区二区| 久久精品国产亚洲av香蕉五月| 首页视频小说图片口味搜索| 男女午夜视频在线观看| 成人午夜高清在线视频 | 老熟妇乱子伦视频在线观看| 久久久久久久久久黄片| 亚洲人成网站高清观看| 国产精品香港三级国产av潘金莲| 很黄的视频免费| 99久久久亚洲精品蜜臀av| 久久久国产成人免费| 一边摸一边做爽爽视频免费| 少妇裸体淫交视频免费看高清 | 精品人妻1区二区| 日本一区二区免费在线视频| 亚洲精品在线美女| 母亲3免费完整高清在线观看| 女性被躁到高潮视频| 精品久久久久久久毛片微露脸| 国产激情欧美一区二区| 琪琪午夜伦伦电影理论片6080| 观看免费一级毛片|