(四川旅游學院 旅游文化產業(yè)學院,四川 成都 610100)
高等數(shù)學作為應用型本科院校一門重要的學科基礎課程,其課程教學中的問題也逐漸凸顯.學生在學習高等數(shù)學的過程中,無法及時地體會到高等數(shù)學這門課程對培養(yǎng)邏輯思維和創(chuàng)造意識的重要作用,加之高等數(shù)學課程內容邏輯性較強,教學周期長,使學生逐漸產生了畏懼甚至厭惡的情緒,從而導致學生學習高等數(shù)學的效果較差[1-2].高等數(shù)學學業(yè)成就水平的高低不僅直接或間接影響著學生后續(xù)課程的學習,而且在促進學生專業(yè)素質的提高,拓展學生的綜合素質,培養(yǎng)學生的理性思維、應用意識、創(chuàng)造意識、審美意識等方面也起著至關重要的作用[3-6].因此,探討新形勢下學生高等數(shù)學學業(yè)成就的影響因素,尋求解決問題的對策,對于推進高等數(shù)學的教學改革,培養(yǎng)應用型的高素質人才具有重要的現(xiàn)實意義.
學習活動需要智力因素與非智力因素的協(xié)同作用才能完成[7].目前提高高等數(shù)學學業(yè)成就所面臨的主要問題是:(1)如何確定智力因素與非智力因素對學業(yè)成就的影響力系數(shù);(2)在非智力因素中,確定哪些因素對學業(yè)成就的影響力更大.這2個問題的有效解決,有賴于高等數(shù)學學業(yè)成就影響因素的有效度量,明確高等數(shù)學學業(yè)成就影響因素的作用機制.基于此,本文根據(jù)學生學習高等數(shù)學實際情況,將學業(yè)成就的影響因素細化為9 個維度,編制出大學生高等數(shù)學學業(yè)成就影響因素調查問卷,并運用PLS-SEM 模型,實證考察了高等數(shù)學學業(yè)成就的影響因素及這些因素之間的路徑系數(shù)及直接與間接作用機制.
結構方程模型(Structural equation modeling,簡稱SEM)整合了因素分析與路徑分析2種統(tǒng)計方法,在假設因果關系的基礎上,有效地驗證模型中的觀測變量與潛在變量之間的關系,是一種用以檢驗某一理論模型適切與否的高級統(tǒng)計技術,在科學研究領域中有著廣泛的應用[8].目前,求解結構方程模型主要有2類建模方法[9]:一是由J&o&reskog等學者提出的基于協(xié)方差結構的建模方法,即硬性模型,主要以LISREL 方法為代表;二是由Wold 提出的基于偏最小二乘路徑的建模方法,即柔性模型,主要以PLS 方法為代表.
1.2.1 測量模型 反映性指標的測量方程為
其中:x為外生顯變量構成的向量,是ζ的觀測指標;y為內生顯變量構成的向量,是η的觀測指標;λx與λy為因子負荷矩陣;εx與εy為隨機誤差項.
1.2.2 結構模型 結構模型的方程形式為
其中:η為內生潛變量;ξ為外生潛變量;B為內生潛變量的路徑系數(shù)矩陣;Γ為外生潛變量的路徑系數(shù)矩陣;ε為隨機誤差項.
首先抽樣選取四川旅游學院2017 級34 位學生進行調查問卷測試,運用PLS 信效度檢驗方法對調查問卷進行修正與完善.隨后依據(jù)修正的學業(yè)成就影響因素的調查問卷,采用整群抽樣的方法,以四川旅游學院工科類、信息技術類等同時開設高等數(shù)學課程的非數(shù)學專業(yè)2017 級、2018 級學生為研究對象,發(fā)放調查問卷.本次調查共發(fā)放問卷335 份,回收有效問卷321 份,有效回收率為95.82%.
修正后的高等數(shù)學學業(yè)成就調查問卷,共計21 個指標題項.采用李克特(Likert)五級量表,分為9個維度,分別為學習壓力、數(shù)學情感、學習動機、學習態(tài)度、數(shù)學意志、學習能力、環(huán)境調控、教學質量及學業(yè)成就.基于問卷設計的適合性確定潛在變量的指標體系(見表1).
表1 學業(yè)成就指標體系
依據(jù)潛在變量指標體系,提出研究假設:H1:學習態(tài)度對數(shù)學意志有直接的正向促進作用;H2:數(shù)學意志對學習能力有直接的正向促進作用;H3:數(shù)學意志對環(huán)境調控有直接的正向促進作用;H4:學習動機對學業(yè)成就有直接的正向促進作用;H5:學習壓力對數(shù)學情感有直接的正向促進作用;H6:數(shù)學情感對學習能力有直接的正向促進作用;H7:教學質量對數(shù)學情感有直接的正向促進作用;H8:教學質量對學業(yè)成就有直接的正向促進作用;H9:學習能力對學業(yè)成就有直接的正向促進作用.由此得到結構方程模型(見圖1).
圖1 結構方程模型
采用SmartPLS3.2.6 軟件的PLS Algorithm 算法,對學業(yè)成就影響因素進行測算,得出學業(yè)成就路徑分析圖(見圖2).
圖2 路徑分析圖
3.1.1 信度檢驗 信度檢驗分為內部一致性信度和組成信度.采用Cronbach′s Alpha 值作為衡量內部一致性信度的指標,以Composite Reliability(CR)值作為衡量組成信度的指標[10].經SmartPLS3.2.6 軟件測算(見表2),本模型潛變量的Alpha 值范圍是0.712~0.942,均超過0.7,說明本模型的測量指標具有良好信度;所選用的潛在變量的CR 均超過0.7,表明測量指標具有良好的內部一致性.
表2 信效度檢驗結果
3.1.2 區(qū)別效度檢驗 測量模型的區(qū)別效度主要用來判別變量之間的差異程度[11],判別時既要求模型具有良好的收斂效度(AVE 值超過0.5),同時需要模型的AVE 的平方根大于其它潛變量的相關系數(shù).
進行區(qū)別效度檢驗,結果見表3.可以看出,模型具有良好的區(qū)別效度.
表3 區(qū)別效度檢驗
在SmartPLS3.2.6 環(huán)境下,通過PLS Algorithm 及Bootstrap 算法得到的路徑系數(shù)與統(tǒng)計量t值來檢驗顯著性水平,從而接受或者拒絕原假設.在結構方程模型檢驗中,當t值大于1.96 時,表示路徑系數(shù)已達到α值為0.05 的顯著性水平,接受原假設,否則拒絕原假設.具體檢驗結果見表4.
表4 結構模型檢驗結果
(1)對于應用型本科院校的學生來說,學生的學習能力仍是影響學業(yè)成就的最主要因素,但不可忽視學生的學習動機與教學質量對學生學業(yè)成就的影響.
由表4 可以看出,學習能力、學習動機、教學質量這3個潛變量到學業(yè)成就變量的直接路徑系數(shù)分別為0.316(t=3.935),0.196(t=2.567),0.104(t=1.984),表明路徑系數(shù)已達到α值為0.05 的顯著性水平,故接受原假設.在路徑系數(shù)中,學習能力對高等數(shù)學學業(yè)成就的影響力較大,但也不可忽視學習動機及教學質量對學業(yè)成就的影響.在教學過程中,教師應注重從專業(yè)課入手,引入高等數(shù)學的應用價值,特別是以數(shù)學建模作為催化劑來激發(fā)學生學習動機;同時,教師應從課堂講授內容改革入手,提高高等數(shù)學教學質量,使學生得到更好的學習體驗,以此來達到學業(yè)成就的進一步提升.
(2)數(shù)學意志與數(shù)學情感是影響應用型本科院校學生學習能力的重要因素,成為了影響學生學業(yè)成就的間接因素.
由圖2 和表4 可以看出,數(shù)學意志、數(shù)學情感對學習能力的直接路徑系數(shù)分別為0.327(t=3.444),0.192(t=2.246),對學業(yè)成就的間接路徑系數(shù)分別為0.103,0.061.數(shù)學意志與數(shù)學情感是影響應用型本科院校學生學習能力的重要因素,這2 個重要因素是通過間接方式來對學生學業(yè)成就變量達到正向的促進作用.在課程的教學過程中,教師應提高課堂教學的吸引力,并且在教學過程中逐步滲透數(shù)學文化與數(shù)學思想,加入數(shù)學家艱苦卓絕的科學研究過程,強調數(shù)學意志力對于學習高等數(shù)學課程的重要性;同時,注重培養(yǎng)學生的數(shù)學情感,激發(fā)數(shù)學學習的熱情.通過這些形式,可以對學生學習能力及學業(yè)成就的提高達到較大的正向促進作用.
(3)學習態(tài)度是影響應用型本科院校學生數(shù)學意志的直接因素,應在教學活動中適時培養(yǎng)學生積極努力的學習態(tài)度.
由于高等數(shù)學教學周期長,教學內容較難學習與把控,對于學生的數(shù)學意志是一種考驗.由表4 可以看出,學習態(tài)度對數(shù)學意志變量的直接路徑系數(shù)為0.381(t=6.755),路徑系數(shù)達到α值為0.05 的顯著性水平,接受原假設.由此表明,在較難學習的課程教學過程中,應注重組織優(yōu)秀學生分享高等數(shù)學學習經驗,培養(yǎng)學生端正自我的學習態(tài)度,從而可以更好地投入到高等數(shù)學課程的學習中.
(4)學習壓力與教學質量是影響應用型本科院校學生數(shù)學情感的重要因素,應重視學習壓力與教學質量對學生學業(yè)成就的間接影響.
由表4 可以看出,學習壓力與教學質量對數(shù)學情感變量的路徑系數(shù)分別為0.412(t=5.807),0.168(t=2.647),路徑系數(shù)達到α值為0.05 的顯著性水平,接受原假設.可以看出,在較難學習的課程教學過程中,應適當提高課程的難度,讓學生產生“夠一夠”才能達到的程度,適當?shù)膶W習壓力對學業(yè)成就會產生間接的促進作用;同時,教師應改進上課方式方法,使學生喜歡教師,進而將情感轉化為喜歡上一門課程,提高學生學習能力,進而達到高等數(shù)學學業(yè)成就的提升與進步.
4.2.1 注重激發(fā)學生學習的動機 從影響學生學業(yè)成就的主要因素出發(fā),注重激發(fā)學生學習的動機.雖然學習能力是影響學生學習成就的最重要因素,但是在教師的教學層面上,可以通過激發(fā)學生學習興趣、提高學生自信心等措施來激發(fā)學生的學習動機,通過學習動力的正確引導來實現(xiàn)高等數(shù)學學業(yè)成就的進一步提升.以高等數(shù)學教學為例,在教學過程中,基于弗賴登塔爾的“現(xiàn)實、數(shù)學化、再創(chuàng)造”的教學理念[12],采取問題驅動教學法,與學生所學專業(yè)相結合.如在講解函數(shù)連續(xù)性概念時,針對烹飪、食品專業(yè)的學生,以“油溫升高的連續(xù)性過程”等生活中的實際問題為導向.針對工業(yè)設計專業(yè)的學生,以“空調溫度升高的連續(xù)性過程”等生活中的實際問題為導向,設置懸念,激發(fā)學生的求知欲;在分析解決問題的過程中,將復雜的問題逐步分解成若干個小問題,通過解決小問題,幫助學生獲得成功體驗,提高學習的自信心;在問題解決后,設置“對函數(shù)連續(xù)性、微積分基本公式的理解及其現(xiàn)實意義”等一系列問題,引導學生反思學習過程,進行問題的再創(chuàng)造,達到舉一反三的目的;同時設置討論環(huán)節(jié),引導學生分享學習經驗,在交流中相互學習,相互促進.
4.2.2 注重滲透數(shù)學思想與數(shù)學文化 教學中應穿插數(shù)學的思想與數(shù)學文化,讓學生的學習態(tài)度與數(shù)學意志成為提高學業(yè)成就的參考因素.在課程的教學過程中,教師在教學中可以穿插微積分的發(fā)展史,介紹牛頓、萊布尼茲、柯西等多位數(shù)學巨匠的科學研究過程,逐步滲透數(shù)學文化與數(shù)學思想,帶領學生領略數(shù)學家追求真理的精神、艱苦卓絕的科學研究過程,由此使學生體會到學習高等數(shù)學的知識需要加入足夠的意志力支撐,一蹴而就在高等數(shù)學學習過程中是行不通的,從而端正學生的學習態(tài)度,激發(fā)學生學習數(shù)學的熱情.
4.2.3 注重培養(yǎng)學生的意志力 意志力是影響學業(yè)成就的次要因素,不可忽視學生意志力的培養(yǎng).在應用型本科院校的課程設置中,高等數(shù)學是學生在進入大學后所遇到的第1門課程,學生在學習高等數(shù)學課程過程中,大多未及時調整自我,未及時掌握大學課程的學習方法.在教學過程中,教師可以通過幫助學生樹立學習目標和學習計劃,及時有效教學反饋,注重榜樣教育等措施來提高學生的意志力.在學期開始時,教師可以鼓勵、幫助學生堅定數(shù)學的學習目標,制定每周的學習計劃,引導學生階段性總結學習成果,從而提高學生的學習意志力,也可以組建數(shù)學學習互助小組,通過學生的“一對一”或“一對多”幫扶潛移默化增強學習的自覺性.在教學過程中,教師應當引導學生獨立思考問題,鼓勵學生敢于思考,不要畏懼失敗,同時教師要對學生的數(shù)學學習給予及時中肯的評價,有效的教學反饋也有助于提高學生的意志力;同時,教師可以對學生進行榜樣教育,讓學生意志力受到潛移默化的熏陶.
4.2.4 注重培養(yǎng)學生的課堂感知力 教學質量可在一定程度上給學生帶來數(shù)學情感的不同體驗,應重視應用型本科院校學生的課堂感知力.學生對于一門課程的喜愛和興趣,首先是來自于對任課教師的好感與良好的師生關系,任課教師應隨時站在學生的角度,給自身設置疑難問題,以設問的方式引領學生進入學習情境,盡最大努力去創(chuàng)造民主的師生關系與輕松積極的課堂氛圍.在講解函數(shù)間斷點有關知識過程中,學生在判斷是否為可去間斷點時,將可去間斷點的類型僅局限在“趨近于某點的極限不等于該點的函數(shù)值”,而未考慮到函數(shù)可能會出現(xiàn)無定義的類型.這時,教師就要加強與學生之間的溝通,了解到底是何種原因造成的困擾,如果是前者,教師可以幫助學生重新梳理函數(shù)連續(xù)性概念;若是后者,教師可以重新講解可去間斷點的判定法則以達到概念的強化理解;同時,教師應以飽滿的熱情進行課堂的教學,營造活躍、樂觀的教學氛圍,讓學生對數(shù)學產生濃厚的興趣,鼓勵學生大膽想象,積極探究,進而實現(xiàn)高等數(shù)學教學質量的提升.