• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gerber-Shiu Analysis for a Discrete Risk Model with Delayed Claims and Random Incomes

    2020-03-07 02:01:50HUANGYaLIUJuanZHOUJiemingDENGYingchun

    HUANG Ya, LIU Juan, ZHOU Jie-ming, DENG Ying-chun,

    (1- School of Business, Hunan Normal University, Changsha 410081;2- Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education),School of Mathematics and Statistics, Hunan Normal University, Changsha 410081)

    Abstract: Ruin theory is the mainly contents of insurance mathematics,as it can supply a very useful early-warning measure for the risk of the insurance company.In this paper,we study a risk model with potentially delayed claims and random premium incomes within the framework of the compound binomial model.Using the technique of generating functions, we derive a recursive formula for the Gerber-Shiu expected discounted penalty function.Specifically, an explicit formula is obtained for the discount-free case.As applications, we derive some useful insurance quantities,including the ruin probability, the density of the deficit at ruin, the joint density of the surplus immediately before ruin and the deficit at ruin, and the density of the claim causing ruin.

    Keywords: compound binomial risk model; Gerber-Shiu expected discounted penalty function; delayed claims; random premium; recursive formula

    1 Introduction

    The classical compound binomial risk model with independent and identically distributed claims has been studied by a lot of literature, such as Gerber[1], Shiu[2],Willmot[3], Dickson[4], Cheng et al[5]and so on.Based on the classical compound binomial risk model, various extensions have been made by many scholars, for example,Reinhard and Snoussi[6]studied the ruin probabilities in a discrete-time semi-Markov risk model which is assumed that the claims are influenced by a homogeneous, irreducible and aperiodic Markov chain with finite state space.As a promotion, Chen et al[7]considered the dividend problems for a discrete semi-Markov risk model and obtained explicit expressions for the total expected discounted dividends until ruin.Cossette et al[8]presented a compound Markov binomial model which introduces the dependency between claim occurrences by a Markov Bernoulli process.Combined with Markov process, such as the Markov modulated risk model and the Markov arrival process (MAP) risk model are introduced in actuarial risk models, related works can be found in Yang et al[9], Li et al[10,11], and Liu et al[12]etc.

    In reality, claims may be time-correlated for various reasons, and it is important to study risk model which is able to depict this phenomenon.Indeed, a frame work of delayed claims is built by introducing two kinds of individual claims, namely main claims and by-claims, and allowing possible delay of the occurrence of the by-claims.Among others,in the case of compound binomial model,Yuen and Guo[13]considered a specific dependence structure between the main claim and the by-claim, and obtained the recursive formulas for the finite time ruin probability.Further, based on the same model, Xiao and Guo[14]derived a recursive formula for the joint distribution of the surplus immediately prior to ruin and the deficit at ruin.Li and Wu[15]obtained a recursive formula of the Gerber-Shiu discounted penalty function for the compound binomial risk model with delayed claims.Motivated by the idea of randomized decisions on paying dividends were studied in Tan and Yang[16], Liu and Zhang[17]considered a discrete risk model with delayed claims and randomized dividend strategy.Therefore,the compound binomial risk models with delayed claims in insurance risk theory have attracted a lot of attention in the past few years, and a significant amount of works have been done on this topic.See, for example, Xie and Zou[18], Bao and Liu[19], Wu and Li[20],Yuen et al[21],Zhou et al[22],Xie et al[23]etc.Besides mentioned above,there are some other dependent structures,we can refer to Cossette et al[24],Huang and Li[25],Liu et al[26], Liu and Bao[27,28], Wu et al[29]and so on.

    To reflect the cash flows of the insurance company more realistically, we note that since Boucherie et al[30]described the stochastic incomes by adding a compound Poisson process with positive jumps to the classical risk model,risk model with random premium incomes have been one of the major interests in insurance risk theory,recently.Such as,Zhao[31]extended the compound binomial model to the case where the premium income process is a binomial process.Bao and Liu[19]studied a compound binomial model with delayed claims and random premium incomes.Other risk model involving random premium incomes were investigated by Bao[32], Bao and Ye[33], Dong et al[34],Yang and Zhang[35], Yu[36], Zhu et al[37]and the references therein.

    In this paper, we aim at the Gerber-Shiu discounted penalty function of a compound binomial risk model with potentially delayed claims and random premiums incomes.This risk model generalizes the model of Li and Wu[15]who also considered a compound binomial risk model with delayed claims in which the main claim induces the by-claim, while we assume the main claim causes a by-claim with a certain probability.In addition,we extend the deterministic premiums incomes in the classical compound binomial risk model to the binomial process.When the main claim produces a by-claim with probability 1 and a certainly premium of 1 is received at the beginning of each time period, the results in this paper will reduce to Li and Wu[15].Hence, this paper generalizes the model of Li and Wu[15].

    The remainder of this paper is organized as follows.In section 2, we introduce the compound binomial risk model with delayed claims and random premium incomes.In section 3,we obtain a recursive formula for the Gerber-Shiu discounted penalty function as well as an explicit formula in the discount-free case.In section 4, we study some useful insurance quantities using the explicit formula obtained in section 3.Section 5 concludes this paper.

    2 Model

    The discrete-time risk model considered in this paper is

    where

    Here, the nonnegative integers u and t denote the initial surplus and the time period respectively.For every i ∈ N+, ηi, ξi,andare all Bernoulli random variables.P(ηi=1)=p0and P(ηi=0)=1 ? p0=q0describe whether or not a premium of 1 is received at the beginning of the ith period, P(ξi= 1) = p and P(ξi= 0) = 1 ? p = q describe whether or not a main claim occurs at the end of the ith period,and=1 ? θ1describe whether or not the ith main claim causes a by-claim,= 1 ? θ2describe that if there is a by-claim at time i,then it may occur simultaneously with its corresponding main claim with probability θ2or delay to the next time period with probability 1?θ2.Additionally,we denote the main claims and the by-claims respectively by {X,Xi;i ∈ N+} and {Y,Yi;i ∈ N+},which are two sequences of i.i.d.positive integer-valued random variables with P(X =k) = fk, EX = μXand P(Y = k) = gk, EY = μYfor every k = 1,2,···.Further assume thatand{Yi;i ∈ N+} are mutually independent.As usual, we setand assume that the positive safety loading condition p0? p(μX+ θ1μY) > 0 holds to guarantee that the ruin does not occur with probability 1.

    Let τ = inf{t ∈ N+: U(t) < 0} be the ruin time of model (1), with τ = ∞if ruin does not occur.Then, given τ < ∞, let Uτ?denote the surplus immediately before ruin, and let |Uτ| denote the deficit at ruin.For any nonnegative bounded function ω(υ1,υ2) : N × N+→ N, specially, we set ω(0,υ2) = 0 and any discount factor 0 < υ ≤ 1, the Gerber-Shiu discounted penalty function of model (1) is defined as

    Particularly, when υ =1, (3) reduces to the following discount-free form

    3 Formulas for the Gerber-Shiu function

    As in Yuen and Guo[13], we define an auxiliary process

    where Y′has the same probability density as Y.Denote byandthe corresponding Gerber-Shiu functions of the process U′(t).

    Considering model (1), there are several different cases at time 1 according to whether or not a premium of 1 is received,whether or not a main claim occurs,whether or not a by-claim is occurs, whether the by-claim occurs simultaneously or occurs at the next period, and whether or not the ruin occurs.Taking into account all these cases comprehensively and using the law of total probability, we have

    Similarly, for model (5),

    We write

    Hereafter, we use the function with a tilde to denote the corresponding generating function, i.e.,

    and so on.Multiply (12) and (13) by zu+1(0 < z ≤ 1) and sum over u from 0 to ∞.Then, after some rearrangements and let α(z)=p0+q0z, we obtain

    Solving the above two equations with respect towe obtain

    For simplicity, let

    and

    then for every 0

    where the last inequality holds because of 0 < υ ≤ 1 and the positive safety loading condition.Moreover, it is obvious that β(υp0q) < 0 and β(1) ≥ 0.Hence, there is a unique root rυ∈ (υp0q,1]to the equation β(z)=0, i.e., we have

    Substituting z =rυinto(16)and noting(19),we can solve mυ(0)from(16)and obtain that

    Particularly, when υ =1 then r1=1, and

    On the other hand, by comparing the coefficients of zu+1on both sides of (16), we have

    The above result gives us a recursive formula for mυ(u) with the initial value provided in (20).Next, we shall derive the explicit formula for m(u) when υ =1.

    In what follows, we use capital letters to denote the corresponding distribution functions, and use capital letters with a bar to denote the corresponding survival functions, such as

    and so on.For υ =1 and any t ≥ 0,summing over u from t to ∞ in(22)and rearranging lead to

    Substituting u for t in (25) gives

    Equation (27) with respect to m(u) can be solved explicitly by the means of generating function.To this purpose, we denote the density functions of the equilibrium distributions of X and X +Y by ρX(j) and ρ(j) respectively, i.e.,

    Then, from equation (27), we can obtain

    Therefore,

    On the other hand, notice that

    is the generating function of the function σ(·) defined as

    where

    This fact, together with (30), yields

    which implies

    Theorem 1For each u=1,2,···, we have:

    (i) The Gerber-Shiu discounted penalty function mυ(u)for model(1)satisfies the recursive formula (22) with initial value given in (20);

    (ii) For the discount-free case (υ = 1), m(0) is given by (21) and m(u) has an explicit expression (34).

    Remark 1If p0= 1, θ1= 1 and θ2= θ, all of the above results coincide with the relevant results in [15].

    4 Applications

    In this section,we shall apply the explicit formula(34)to derive some useful insurance quantities,all of which are special cases of m(u)with different choices on function ω(υ1,υ2).

    We first consider the ruin probability ψ(u) defined by

    From (4), we know that m(u) reduces to ψ(u) if ω(υ1,υ2) = 1.In this case, recalling(8)–(11), for u ≥ 1, we have

    where

    For simplicity, we further define

    Thus

    Similarly, we can obtain

    and so on.Then, yields

    In addition, given (36), (21) becomes

    As a result, concluding the above analysis and recalling Theorem 1(ii), we have the following corollary.

    Corollary 1For risk model (1) with u=1,2,···, the ruin probability is

    where σ(j), Ψ(0) and A1(u) are given by (31), (44) and (43), respectively.

    Remark 2If p0=1, θ1=1 and θ2= θ, relation (44) coincides with (15) of [14](note that a main claim occurs with probability q rather than p in their paper).

    We next consider the density function of the deficit at ruin ?(y|u) defined by

    From (4), we know that m(u) reduces to ?(y|u) if ω(υ1,υ2) = 1(υ2=y).In this case,repeating the above procedure, we have:

    Corollary 2For risk model (1) with u = 1,2,···, the density function of the deficit at ruin is

    where σ(j) is defined in (31),

    where

    and

    Remark 3If p0= 1, θ1= 1 and θ2= θ, relation (48) and (49) are respectively equivalent to (4.13) and (4.14) in [15].

    Now, we consider the joint density function of the surplus immediately before ruin and the deficit at ruin ?(x,y|u) defined by

    From (4), we know that m(u) reduces to ?(x,y|u) if ω(υ1,υ2) = 1(υ1=x,υ2=y).Correspondingly, we have:

    Corollary 3For risk model (1) with u = 1,2,···, the joint density function of the surplus immediately before ruin and the deficit at ruin is

    where σ(j) is defined in (31),

    where

    and

    Remark 4If p0=1, θ1=1 and θ2= θ, relation (53) is equivalent to (14) in [14](note that they considered Uτ?1=Uτ??1 in their paper).

    Furthermore, we consider the density function of the claim causing ruin ??(s|u)defined by

    From (4), we know that m(u) reduces to ??(s|u) if ω(υ1,υ2) = 1(υ1+υ2=s).Then, we have:

    Corollary 4For risk model (1) with u = 1,2,···, the density function of the claim causing ruin is

    where σ(j) is defined in (31),

    where

    and

    Remark 5If p0= 1, θ1= 1 and θ2= 1 in relation (57) then ??(s|0) = p(s ?1)hs/q, which is equivalent to the last relation in [38].

    5 Conclusion

    We aim mainly at the Gerber-Shiu discounted expected penalty function of the extensive compound binomial risk model.One of the extension points is supposing that the premium incomes are stochastic which is different than the linear hypothesis.Another extension point is generalizing the original assumption that each main claim induce a by-claim to each main claim produce a by-claim with a certain probability.A recursive formula of the Gerber-Shiu discounted penalty function is obtained.For the discount-free case, an explicit formula is given.Utilizing such an explicit expression,we derive some useful insurance quantities, including the ruin probability, the density of the deficit at ruin, the joint density of the surplus immediately before ruin and the deficit at ruin, and the density of the claim causing ruin.

    AcknowledgementsThe authors would like to thank anonymous referees for their helpful comments and suggestions,which improved an earlier version of the paper.

    欧美bdsm另类| av在线观看视频网站免费| 香蕉国产在线看| 中国三级夫妇交换| 丝袜美足系列| 天天躁夜夜躁狠狠躁躁| 成人免费观看视频高清| 精品国产乱码久久久久久小说| 91久久精品国产一区二区三区| av卡一久久| 免费黄色在线免费观看| 精品一区二区三卡| 亚洲精品aⅴ在线观看| 国产精品秋霞免费鲁丝片| 又粗又硬又长又爽又黄的视频| 精品久久久久久电影网| 国产成人一区二区在线| 天堂8中文在线网| 五月玫瑰六月丁香| 国产成人91sexporn| 日本wwww免费看| 午夜激情久久久久久久| 亚洲内射少妇av| 日本av手机在线免费观看| 少妇高潮的动态图| 日韩在线高清观看一区二区三区| 91国产中文字幕| 亚洲人成77777在线视频| 国产精品一区二区在线观看99| 亚洲经典国产精华液单| 午夜福利在线观看免费完整高清在| av网站免费在线观看视频| 国产一区二区在线观看av| 美女xxoo啪啪120秒动态图| 亚洲精品日本国产第一区| 九九爱精品视频在线观看| 高清视频免费观看一区二区| 91国产中文字幕| 免费久久久久久久精品成人欧美视频 | 在线精品无人区一区二区三| 国产精品 国内视频| 女人精品久久久久毛片| 丰满少妇做爰视频| 极品少妇高潮喷水抽搐| 九九在线视频观看精品| www.色视频.com| 91在线精品国自产拍蜜月| 美国免费a级毛片| 欧美3d第一页| 久久鲁丝午夜福利片| 男女啪啪激烈高潮av片| 九色成人免费人妻av| 又黄又粗又硬又大视频| 丝袜喷水一区| 亚洲欧美一区二区三区黑人 | 久久人人爽人人爽人人片va| av女优亚洲男人天堂| 免费黄频网站在线观看国产| 亚洲国产精品一区二区三区在线| 亚洲国产av新网站| 午夜91福利影院| 热re99久久精品国产66热6| 日韩欧美一区视频在线观看| 你懂的网址亚洲精品在线观看| 最近最新中文字幕免费大全7| 午夜91福利影院| 日日啪夜夜爽| 精品国产露脸久久av麻豆| 亚洲欧洲国产日韩| 黑人猛操日本美女一级片| 精品久久久久久电影网| 18+在线观看网站| 51国产日韩欧美| 国产成人aa在线观看| 欧美激情 高清一区二区三区| 啦啦啦在线观看免费高清www| 国产极品粉嫩免费观看在线| 丰满饥渴人妻一区二区三| 性色avwww在线观看| 九草在线视频观看| 国产精品人妻久久久久久| 男女午夜视频在线观看 | 成人影院久久| 亚洲综合色网址| 亚洲国产av新网站| av片东京热男人的天堂| 国产激情久久老熟女| 91在线精品国自产拍蜜月| 欧美 亚洲 国产 日韩一| 久久久久久久大尺度免费视频| 国产精品麻豆人妻色哟哟久久| 免费在线观看完整版高清| 香蕉国产在线看| av在线播放精品| 欧美成人午夜免费资源| 最近最新中文字幕大全免费视频 | 久久婷婷青草| 蜜臀久久99精品久久宅男| 观看美女的网站| 久久精品国产综合久久久 | 大码成人一级视频| 国产日韩欧美视频二区| 国产在线免费精品| 国产男人的电影天堂91| 三级国产精品片| 亚洲久久久国产精品| 婷婷色综合大香蕉| 午夜福利影视在线免费观看| 久久国产精品男人的天堂亚洲 | 国产成人欧美| 全区人妻精品视频| 伦理电影免费视频| 亚洲国产欧美日韩在线播放| 永久网站在线| 天堂8中文在线网| 精品99又大又爽又粗少妇毛片| 欧美最新免费一区二区三区| 亚洲内射少妇av| 亚洲精品成人av观看孕妇| 色5月婷婷丁香| 男人操女人黄网站| 夜夜骑夜夜射夜夜干| 午夜影院在线不卡| 如日韩欧美国产精品一区二区三区| 亚洲精品久久午夜乱码| 老女人水多毛片| 高清黄色对白视频在线免费看| 免费av中文字幕在线| 国产亚洲一区二区精品| 精品国产一区二区三区久久久樱花| 国产精品人妻久久久影院| 熟女人妻精品中文字幕| 免费大片黄手机在线观看| 国产一区二区在线观看av| 在现免费观看毛片| 深夜精品福利| 中国三级夫妇交换| 国产 精品1| 欧美激情 高清一区二区三区| 欧美日韩av久久| 男女边吃奶边做爰视频| 看免费av毛片| 桃花免费在线播放| 国产男女内射视频| 纵有疾风起免费观看全集完整版| 一区二区日韩欧美中文字幕 | 久久久久久人妻| 国产激情久久老熟女| 少妇的逼好多水| 日本av手机在线免费观看| 国产精品久久久久久av不卡| 男女国产视频网站| 久久影院123| 黑人欧美特级aaaaaa片| 黑人猛操日本美女一级片| 国产成人a∨麻豆精品| 尾随美女入室| 亚洲第一av免费看| 交换朋友夫妻互换小说| 日韩一区二区视频免费看| 日本欧美视频一区| 人妻一区二区av| 90打野战视频偷拍视频| 精品福利永久在线观看| 香蕉国产在线看| 一级毛片 在线播放| 交换朋友夫妻互换小说| 成年人免费黄色播放视频| 精品午夜福利在线看| 91aial.com中文字幕在线观看| 国产成人91sexporn| 美女主播在线视频| 国产日韩欧美在线精品| 精品国产一区二区三区四区第35| 最新中文字幕久久久久| 大片电影免费在线观看免费| 午夜老司机福利剧场| 狠狠精品人妻久久久久久综合| kizo精华| 久久99一区二区三区| 精品久久蜜臀av无| av国产久精品久网站免费入址| 性色av一级| 90打野战视频偷拍视频| 免费久久久久久久精品成人欧美视频 | 国产精品一二三区在线看| av有码第一页| 一边亲一边摸免费视频| 韩国精品一区二区三区 | 免费看av在线观看网站| 女人久久www免费人成看片| 我的女老师完整版在线观看| 美女视频免费永久观看网站| 天天躁夜夜躁狠狠久久av| 精品少妇久久久久久888优播| 久久久国产欧美日韩av| 国产精品成人在线| 99久久精品国产国产毛片| 日韩成人伦理影院| 国产亚洲欧美精品永久| 精品99又大又爽又粗少妇毛片| 在线看a的网站| 两个人看的免费小视频| 日本欧美视频一区| 午夜av观看不卡| 亚洲精品国产av成人精品| 亚洲欧美成人精品一区二区| 亚洲伊人久久精品综合| 国产精品一二三区在线看| 在线天堂中文资源库| 26uuu在线亚洲综合色| 午夜91福利影院| 久久久欧美国产精品| 美女主播在线视频| 99久久综合免费| 王馨瑶露胸无遮挡在线观看| 精品一区二区三区四区五区乱码 | 亚洲第一av免费看| 日韩成人av中文字幕在线观看| av天堂久久9| 午夜老司机福利剧场| 久热久热在线精品观看| 久久久精品免费免费高清| 大陆偷拍与自拍| 国产在视频线精品| 精品卡一卡二卡四卡免费| 欧美成人午夜精品| 少妇被粗大的猛进出69影院 | www.av在线官网国产| av不卡在线播放| 日韩 亚洲 欧美在线| 精品亚洲成a人片在线观看| 免费大片黄手机在线观看| 免费观看a级毛片全部| 天美传媒精品一区二区| 另类精品久久| 亚洲伊人色综图| 在线天堂中文资源库| 国产精品成人在线| 久久国产亚洲av麻豆专区| 亚洲国产欧美日韩在线播放| 亚洲av电影在线进入| 最新中文字幕久久久久| 亚洲精品国产av成人精品| 精品亚洲成a人片在线观看| 老司机影院毛片| 成人国产麻豆网| 美女福利国产在线| 午夜福利视频在线观看免费| 欧美精品一区二区大全| 国产成人精品婷婷| 青春草国产在线视频| 日韩成人伦理影院| 中文欧美无线码| xxx大片免费视频| 亚洲精品日本国产第一区| 成年女人在线观看亚洲视频| 亚洲精品久久久久久婷婷小说| av天堂久久9| 免费少妇av软件| 国产极品粉嫩免费观看在线| 久热久热在线精品观看| 91国产中文字幕| av女优亚洲男人天堂| 亚洲av电影在线进入| 免费大片18禁| 国产不卡av网站在线观看| 国产精品人妻久久久影院| 熟妇人妻不卡中文字幕| 免费观看a级毛片全部| 欧美xxxx性猛交bbbb| 狠狠婷婷综合久久久久久88av| 亚洲精品av麻豆狂野| 另类亚洲欧美激情| 免费在线观看黄色视频的| 国产乱来视频区| 免费观看av网站的网址| 9191精品国产免费久久| 亚洲中文av在线| 中国国产av一级| 晚上一个人看的免费电影| 亚洲一区二区三区欧美精品| 老司机亚洲免费影院| 国产男女超爽视频在线观看| 国产免费视频播放在线视频| www.av在线官网国产| 亚洲国产精品一区三区| 精品人妻在线不人妻| 午夜日本视频在线| 97人妻天天添夜夜摸| 国产成人精品福利久久| 人人澡人人妻人| 一区二区日韩欧美中文字幕 | 欧美日韩av久久| 亚洲av.av天堂| 亚洲精华国产精华液的使用体验| 国产精品 国内视频| 成人国产av品久久久| 亚洲中文av在线| 九九在线视频观看精品| 亚洲美女视频黄频| 99精国产麻豆久久婷婷| 亚洲精品乱码久久久久久按摩| www.熟女人妻精品国产 | 精品少妇黑人巨大在线播放| 国产精品秋霞免费鲁丝片| 国产老妇伦熟女老妇高清| 国产午夜精品一二区理论片| 制服诱惑二区| 嫩草影院入口| 久久精品aⅴ一区二区三区四区 | 国产精品蜜桃在线观看| 色94色欧美一区二区| 九色成人免费人妻av| 国产精品久久久久久久久免| 在线天堂中文资源库| 欧美精品一区二区免费开放| 亚洲婷婷狠狠爱综合网| 老女人水多毛片| 久久鲁丝午夜福利片| 国产精品三级大全| 亚洲图色成人| 欧美精品人与动牲交sv欧美| 成人18禁高潮啪啪吃奶动态图| 成年av动漫网址| 亚洲激情五月婷婷啪啪| 99久久综合免费| 国产精品人妻久久久久久| 国产 一区精品| 成年人午夜在线观看视频| www.av在线官网国产| 中文字幕最新亚洲高清| 精品人妻一区二区三区麻豆| 天天操日日干夜夜撸| 免费大片18禁| av在线老鸭窝| 国产 一区精品| 美女国产高潮福利片在线看| 亚洲成色77777| 色哟哟·www| av线在线观看网站| 中文欧美无线码| 五月天丁香电影| 99re6热这里在线精品视频| 亚洲国产精品专区欧美| 亚洲精品第二区| 免费观看av网站的网址| 日日摸夜夜添夜夜爱| 97在线人人人人妻| 美女脱内裤让男人舔精品视频| 成人18禁高潮啪啪吃奶动态图| 少妇精品久久久久久久| 亚洲激情五月婷婷啪啪| 99九九在线精品视频| 尾随美女入室| 国产精品人妻久久久影院| 免费看av在线观看网站| 亚洲欧美一区二区三区黑人 | 国产免费一区二区三区四区乱码| h视频一区二区三区| 少妇人妻久久综合中文| 天堂俺去俺来也www色官网| 不卡视频在线观看欧美| 啦啦啦在线观看免费高清www| 国产精品久久久久久久久免| 中文天堂在线官网| 久久97久久精品| 久久毛片免费看一区二区三区| 久久久久久伊人网av| 51国产日韩欧美| 国产男女超爽视频在线观看| 激情五月婷婷亚洲| 人人澡人人妻人| 大片电影免费在线观看免费| 国产乱来视频区| 精品国产一区二区三区久久久樱花| 80岁老熟妇乱子伦牲交| 精品国产露脸久久av麻豆| 欧美精品国产亚洲| 欧美xxxx性猛交bbbb| 97超碰精品成人国产| 2022亚洲国产成人精品| 国产成人精品无人区| xxxhd国产人妻xxx| 日日啪夜夜爽| 日本午夜av视频| 国产精品99久久99久久久不卡 | 亚洲,一卡二卡三卡| 蜜桃在线观看..| 国产精品人妻久久久影院| 高清毛片免费看| 国产精品成人在线| 国产精品久久久久久精品电影小说| 国产精品.久久久| 欧美精品av麻豆av| 在线观看人妻少妇| 国产黄频视频在线观看| 日韩欧美精品免费久久| 日韩在线高清观看一区二区三区| 日本vs欧美在线观看视频| 韩国av在线不卡| 母亲3免费完整高清在线观看 | 日本av免费视频播放| 美女福利国产在线| 亚洲精品一二三| 黑人高潮一二区| 欧美成人精品欧美一级黄| 日韩一本色道免费dvd| 午夜福利影视在线免费观看| 国产欧美亚洲国产| 中文字幕最新亚洲高清| 国产色婷婷99| 日本wwww免费看| 亚洲国产成人一精品久久久| 国产福利在线免费观看视频| 热re99久久国产66热| 高清视频免费观看一区二区| 日日撸夜夜添| 亚洲内射少妇av| 午夜精品国产一区二区电影| 最新的欧美精品一区二区| 国语对白做爰xxxⅹ性视频网站| h视频一区二区三区| av网站免费在线观看视频| 自线自在国产av| 成人综合一区亚洲| 国产成人91sexporn| 欧美 日韩 精品 国产| 日产精品乱码卡一卡2卡三| 美女国产高潮福利片在线看| 狠狠婷婷综合久久久久久88av| 在线观看免费高清a一片| 人妻 亚洲 视频| 精品久久蜜臀av无| 黑人巨大精品欧美一区二区蜜桃 | 久久女婷五月综合色啪小说| 一本色道久久久久久精品综合| 下体分泌物呈黄色| 女性生殖器流出的白浆| 人人妻人人添人人爽欧美一区卜| a级毛色黄片| 免费黄色在线免费观看| 少妇被粗大的猛进出69影院 | 97在线视频观看| 中文字幕精品免费在线观看视频 | 精品一区二区三区四区五区乱码 | 亚洲欧美日韩另类电影网站| 国产av码专区亚洲av| 国产av国产精品国产| 亚洲欧美成人精品一区二区| 日韩中文字幕视频在线看片| 精品一品国产午夜福利视频| 黄片播放在线免费| 90打野战视频偷拍视频| 女性被躁到高潮视频| 日韩av在线免费看完整版不卡| 丰满饥渴人妻一区二区三| 精品国产乱码久久久久久小说| 男女午夜视频在线观看 | 精品人妻熟女毛片av久久网站| 日韩成人av中文字幕在线观看| a级片在线免费高清观看视频| 日韩制服骚丝袜av| 婷婷色综合大香蕉| 国产成人aa在线观看| 寂寞人妻少妇视频99o| 亚洲成人手机| 欧美人与善性xxx| 欧美精品av麻豆av| 国产色婷婷99| 亚洲国产av影院在线观看| 晚上一个人看的免费电影| 国产永久视频网站| 亚洲欧美一区二区三区国产| 如日韩欧美国产精品一区二区三区| 韩国精品一区二区三区 | av在线app专区| 国产激情久久老熟女| 人人妻人人爽人人添夜夜欢视频| 99九九在线精品视频| 成人毛片a级毛片在线播放| 欧美丝袜亚洲另类| 亚洲av.av天堂| 80岁老熟妇乱子伦牲交| 啦啦啦视频在线资源免费观看| 天堂中文最新版在线下载| 在线免费观看不下载黄p国产| 欧美日韩视频精品一区| tube8黄色片| 搡老乐熟女国产| 久久精品人人爽人人爽视色| a 毛片基地| 午夜av观看不卡| 久久久国产欧美日韩av| 成人18禁高潮啪啪吃奶动态图| 亚洲经典国产精华液单| 熟女人妻精品中文字幕| 日韩伦理黄色片| 国产xxxxx性猛交| 黄片播放在线免费| 国产精品久久久久久久电影| 侵犯人妻中文字幕一二三四区| 波多野结衣一区麻豆| 国产亚洲av片在线观看秒播厂| 亚洲欧洲日产国产| 女人久久www免费人成看片| 久久久久网色| 波多野结衣一区麻豆| 国产高清三级在线| 黄片播放在线免费| 肉色欧美久久久久久久蜜桃| 麻豆精品久久久久久蜜桃| 国产极品粉嫩免费观看在线| 亚洲丝袜综合中文字幕| 久久 成人 亚洲| 永久免费av网站大全| 香蕉精品网在线| 少妇的丰满在线观看| 少妇的逼水好多| av卡一久久| 久久久亚洲精品成人影院| 亚洲国产成人一精品久久久| 日韩av免费高清视频| 成年人免费黄色播放视频| www日本在线高清视频| 亚洲色图 男人天堂 中文字幕 | 看非洲黑人一级黄片| 国产爽快片一区二区三区| 久久人人爽人人爽人人片va| 岛国毛片在线播放| av女优亚洲男人天堂| 看非洲黑人一级黄片| 免费人成在线观看视频色| 亚洲欧美日韩卡通动漫| 成人毛片60女人毛片免费| 女人被躁到高潮嗷嗷叫费观| 色吧在线观看| 中国美白少妇内射xxxbb| 午夜福利影视在线免费观看| 91aial.com中文字幕在线观看| 国产精品麻豆人妻色哟哟久久| 青青草视频在线视频观看| 久久人妻熟女aⅴ| 欧美3d第一页| 亚洲国产欧美在线一区| 免费大片黄手机在线观看| 亚洲欧美中文字幕日韩二区| 亚洲欧洲国产日韩| 午夜免费男女啪啪视频观看| 性色avwww在线观看| 国产精品成人在线| 日本欧美视频一区| 中文字幕av电影在线播放| 边亲边吃奶的免费视频| 欧美成人午夜免费资源| 搡老乐熟女国产| 在线天堂最新版资源| 天堂俺去俺来也www色官网| 各种免费的搞黄视频| 亚洲性久久影院| 欧美 亚洲 国产 日韩一| 波多野结衣一区麻豆| 青春草视频在线免费观看| 国产成人免费无遮挡视频| 男女啪啪激烈高潮av片| 巨乳人妻的诱惑在线观看| www.色视频.com| 尾随美女入室| 91精品伊人久久大香线蕉| 欧美日韩一区二区视频在线观看视频在线| 热99国产精品久久久久久7| freevideosex欧美| 美女福利国产在线| 日本91视频免费播放| 如日韩欧美国产精品一区二区三区| 丰满饥渴人妻一区二区三| 五月伊人婷婷丁香| 欧美成人午夜免费资源| 亚洲国产av新网站| 久久久国产欧美日韩av| 国产成人精品婷婷| 国产精品人妻久久久久久| 日本av手机在线免费观看| 亚洲成色77777| 亚洲四区av| 婷婷色麻豆天堂久久| 成人二区视频| 免费在线观看黄色视频的| 久久久a久久爽久久v久久| 男女边吃奶边做爰视频| 日韩成人伦理影院| 日日摸夜夜添夜夜爱| 亚洲激情五月婷婷啪啪| tube8黄色片| 日日爽夜夜爽网站| 视频在线观看一区二区三区| tube8黄色片| 国产免费视频播放在线视频| 免费高清在线观看视频在线观看| 日本欧美视频一区| 精品少妇内射三级| 国产极品天堂在线| 国产色婷婷99| 亚洲婷婷狠狠爱综合网| 久久99蜜桃精品久久| 久久婷婷青草| 看免费成人av毛片| 一二三四在线观看免费中文在 | 夜夜骑夜夜射夜夜干| 免费在线观看黄色视频的| 18禁国产床啪视频网站| 2021少妇久久久久久久久久久| 久久久亚洲精品成人影院| 黄色 视频免费看| 波多野结衣一区麻豆|