• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    寄生植物鎖陽種子萌發(fā)方法及愈傷組織、初生吸器誘導(dǎo)研究

    2020-03-05 04:04:28陳貴林
    植物研究 2020年6期
    關(guān)鍵詞:內(nèi)蒙古大學(xué)鎖陽藥學(xué)院

    岳 鑫 陳貴林

    (1. 內(nèi)蒙古大學(xué)生命科學(xué)學(xué)院,呼和浩特 010021;2. 內(nèi)蒙古醫(yī)科大學(xué)藥學(xué)院,呼和浩特 010021)

    Cynomorium songaricum Rupr. is an obligate parasitic plant distributed in Mongolia,Central Asia and Northwest China[1]. C.songaricum is used to treat kidney disease,intestinal ailments and impotence.Biomedical and phytochemical evidences show that C.songaricum contains triterpenes that inhibit HIV-1 proteases and Hepatitis C(HCV)[2~4]. It also contains the high-molecular weight polymer procyanidin CSPP-A,which suppresses the growth of methicillin-resistant Staphylococcus aureus[1]. To date,studies assessing the physiology and biotechnology of C.songaricum are scarce,because of its obligate parasitism and lack of perniciousness.

    Parasitism is a lifestyle that has been repeatedly found throughout evolution. At least 4 000 plant species are parasitic and obtain some or all nutrients by directly invading other plants[5]. The interaction between an obligate root parasite and the host begins early in the life cycle(i.e.,germination). Parasitic plants sense surrounding host roots and germinate via mechanisms possibly evolving from a conserved germination system employed by non-parasitic species[6]. These plants use secondary metabolites produced by host plant roots as signal molecules to induce germination as well as developmental programs speci fi c for parasitism[7]. Such chemical molecular signals for germination stimulation have been identified,and comprise three classes,including strigolactones,dihydrosorgoleone and other molecules whose structures and activities require detailed investigation[8]. Multiple other molecules induce seed germination in Striga and Orobanche seeds in vitro,including kinetin,abscisic acid,inositol,methionine,and ethylene[9].Revealed germination inducers might affect aminocyclopropanecarboxylate(ACC)oxidase in Striga asiatica seed conditioning,converting ACC into ethylene[10]. These findings indicate many molecules could alter germination through a shared mechanism[11].

    From the germinated seed,the development of a particular multicellular organ termed haustorium represents a characteristic property of plant parasites,which help parasitic organisms invade host and generate connections[12-13].The haustorium is triggered by haustorium-inducing factors(HIFs)and redox signals[12]. Currently known HIFs are grouped into four classes,including flavonoids,p-hydroxy acids,quinones and cytokinins[8]. Haustorium signaling is induced by redox cycling of HIFs,with the inducer’s redox potential determining its activity[14].Induced the formation of papillae using a low concentration of KT(<0.1%)from Cuscuta japonica Choisy,with no primordia found[15].Added KT(10 ppm)to the medium to induce a structure similar to the haustorium of the semi-parasitic plant Rhinanthus serotirus[16].Applied BA to induce haustorium formation in Cuscuta chinensis Lam[17]. In addition,reports are available on cytokinin-induced haustorium in other parasitic plants such as Striga sp.[18],and other studies found that cytokinin(KT)plays a decisive role in haustorium formation,while auxin has the opposite function.

    The pyrene seeds of C.songaricum are especially difficult to germinate,partly because of a thick,impervious pericarp that contains large amounts of abscisic acid(ABA),which occupies half of the seed’s volume[19]. The hard seed coat has to be fractured to reverse dormancy[20].In addition,embryo development in C.songaricum tends to stop at the stage of the multicellular globular proembryo without formation of a suspensor. Release from dormancy is erratic since different stimulus thresholds are required for inducing germination of individual seeds[21].

    Studies assessing C.songaricum,with high medicinal value,have focused on improving its parasitic relationship with its hosts,facilitate artificial cultivation and increase supply. Because haustorium development is a crucial step in this process,this study used different tissue culture methods to induce callus formation from seed explants and subsequently establish Haustorium organogenesis. The present findings may subsequently help clarify the parasitic mechanisms involved in the interaction of C.songaricum with its hosts.

    So far,there is no efficient method for seed germination in C.songaricum. In addition,studies assessing the structure and function of C.songaricum,as well as the parasitic relationship between C.songaricum and its host are almost inexistent,which leads to unsuccessful cultivation of C.songaricum.The wild sources of C.songaricum are increasingly endangered by disorderly mining for use in pharmaceutical industries and product development. The World Conservation Union(IUCN)currently defines the endangered level of C.songaricum as vulnerable(VU),which is designated as a Class Ⅱprotected plant in the Washington Convention(CITES)[22].The protocol for haustorium organogenesis from the callus opens up the possibility of evaluating the processes involved in host-parasite relationships,which may help in C.songaricum protection and utilization.

    1 Materials and Methods

    1.1 Explant preparation

    C. songaricum seeds were obtained from Hangjing County,Ordos,China,and preserved in an ultra-cold freezer at -70°C. The pericarp was removed by rubbing the seed with emery paper. The seeds were then soaked in 70% ethanol. The surface was sterilized with 0.1% mercuric chloride solution(6 min),and the seeds underwent five washes with sterilized water. Then surface-sterilized seeds were cultured on B5medium.

    1.2 Callus culture medium and conditions

    B5medium with a series of concentration gradients of 2,4-dichlorophenoxyacetic acid(2,4-D),kinetin(KT)and gibberellic acid(GA3)was used to induce callus formation(Table 1),with pH adjusted to 6.0 before agar(3%)addition. Each medium was then submitted to autoclave(25 min,120°C). Sterile triangular flasks were added 60 mL of callus induction medium,followed by addition of 50 seeds. Cultures were incubated in the dark at 25±1°C. Three quintuplicate independent assays were performed.Callus induction was evaluated after 40 d of culture by counting calluses.

    1.3 Microscopy

    Seeds cultured for 0,20,30 and 40 d,respectively,were mounted on microscope slides,and embryos were examined. The embryos were obtained by crushing the seeds with another microscope slide.Then,embryos were transferred to formalin-aceto-alcohol(FAA)stationary liquid medium for 24 h and observed under a cell microscope(Axio Observer A1,ZEISS).

    1.4 Haustorium organogenesis media and conditions

    B5 medium was added 0.25 mg·L-1KT and various 2,4-D amounts(Table 2)to induce haustorium organogenesis from the callus.For all media,pH was adjusted to 6.0 before agar(3%)addition. Each medium was then submitted to autoclave(25 min,120°C). Sterile triangular flasks were filled with 60 mL haustorium differentiation medium,and five calluses were added to each flask. Incubation was carried out away from light at 25±1°C. Three independent assays consisting of five triangular flasks were performed.

    1.5 Scanning electron microscopy(SEM)

    Haustorium formed from calluses were submitted to fixation(3% glutaraldehyde)and washing.Sample dehydration was carried out with ethyl alcohol gradient(10-minute intervals)followed by critical-point drying(liquid CO;10 min). Then,the specimens were mounted on aluminum stubs with double-sided tape and underwent platinum(Pt)coating on an ion sputter apparatus(Hitachi E-1010,Japan). An accelerating voltage of 15 kV was employed for analysis by emission SEM on a Hitachi S-4300 field(S-3400N,Hitachi)at different resolutions and magnifications.

    1.6 Statistical analysis

    The seeds that developed calluses were counted,and haustorium in per callus were identified.The callus induction rate represented the number of explants that formed a callus divided by that of all inoculated explants,multiplied by 100%. The rate of haustorium formation reflected the number of explants that formed a haustorium divided by that of all inoculated callus,multiplied by 100%. The average number of haustorium formed per callus was used for analysis. The data were analyzed with the SPSS software(v19).P<0.05 indicated statistical significance.

    2 Results and analysis

    2.1 Germination conditions

    During seed imbibition,it was hypothesized that GA production occurs[23~24]. Moreover,GA supplemented exogenously decreases the minimum effective exposure time to germination for stimulants employed during conditioning,promoting seed germination in parasitic species[25]. GA3does not participate in the process of radicle breakthrough of the seed testa. Instead,it activates the transcription factor gibberellin- and abscisic acid-regulated Myb(GAMyb),promotes α -amylase synthesis and induces endosperm degradation,all of which facilitate seed germination. In this study,an adequate concentration of GA3,incombination with other plant growth regulators included in the medium,promoted embryo development and germination of C.songaricum seeds.

    The tiny embryo of C.songaricum appeared as a multicellular spherical proembryo with no germ cell differentiation,with a radicle or cotyledon found close to the micropylar end(Fig.1A). Embryo cells varied in size,with larger and smaller ones located near the chalazal and micropylar ends,respectively(Fig.1B). The cells were polyhedral in shape,tightly packed and contained large nuclei.

    During culture,the embryos initially became differentiated at two poles(Fig.1C). This was followed by unipolar development during the process of germination(Fig.1D). The level of embryonic development and differentiation of mature C.songaricum seeds was similar to that of other parasitic angiosperms. The present findings support these previous observations.

    2.2 Callus induction

    The embryo broke through the seed coat at the micropylar end after 40 d culture(Fig.2B),and the radicle continued to elongate in subsequent days(Fig.2C). The radicle’s top became intumescent(Fig.2D)and eventually formed the callus(Fig.2E),which was pure white and dense,growing rapidly from the radicle(Fig.2F). After another 20 d,it turned brown(Fig.2G),and embryogenic callus formation occurred(Fig.2H). Embryogenic cells were mostly cylindrical,with large nuclei and starch grains(Fig.2I). The rates of callus formation from C.songaricum seeds were assessed in the dark under various combinations of three hormonal plant growth regulators(Table 1). The highest callus induction rate(13.7%)after a 40 d incubation was produced by the combination of 1,0.5 and 1 mg·mL-1of 2,4-D,KT,and GA3,respectively. This rate was significantly higher than those obtained with other combinations.

    The synergistic effects of auxins(2,4-D)and cytokinins assisted C. songaricum germination and promoted callus formation. Studies assessing other holoparasitic or hemiparasitic plants have shown that combined use of auxins and cytokinins promotes callus generation. However,the same auxins or cytokinins play significantly different roles in distinct parasitic plants[26~28]. In this study,optimal callus formation from C.songaricum seeds was obtained with 1 mg·L-12,4-D and 0.5 mg·L-1KT. This study firstly reported in vitro callus generation from C.songaricum seeds.

    2.3 Haustorium organogenesis

    No haustoriuml hair was observed on the surface of the primary haustorium. Furthermore,the structure was similar to that of the primary haustorium from seed germination. The number of haustorium per callus was determined. The best results were obtained with 1.0 mg·mL-12,4-D,which yieldedsix haustorium per callus by Day 60. The callus broke through the radicle and formed root-like organs of 3 to 4 mm in length(Fig.3A). The tops of these structures were enlarged to form globular shaped organs(primary haustorium;Fig.3A-B). Scanning electron microscopy indicated that the haustoriuml top was composed of a uniform fossa surrounded by a thick ribbon like structure(Fig. 3D-E)with protrusions(Fig.3F),increasing to approximately eight on Day 60 and remaining constant thereafter(Table 2).Interestingly,some of the primary haustorium branched to form adventitious roots of 3 to 4 cm in length(Fig.3C). The tip of each adventitious root formed nascent primary haustorium,which then branched out into adventitious roots.

    Fig.1 Development of C.songaricum embryo in different periods of cultivationSeeds cultured for 0,20,30 and 40 d were examined. The embryos were obtained by crushing the seeds with another microscope slide,transferred to the formalin-aceto-alcohol(FAA)stationary liquid medium for 24 h,and observed with bright field illumination(Fig.1A,C and D).The embryo was stained with a fluorochrome and observed with a fluorescence objective lens(Fig.1B)

    Fig.2 Callus development in different periods of cultivation in C.songaricumThe embryo broke through the seed coat at the micropylar end after 40 days of culture(Fig.2B). The radicle continued to elongate in the following days(Fig. 2C). The radicle’s top became intumescent(Fig. 2D)and eventually formed a callus(Fig. 2E). The callus was pure white and dense,and grew rapidly from the radicle(Fig.2F). After another 20 d,it became brown(Fig.2G),and embryogenic callus formation occurred(Fig. 2H). Embryogenic cells were mostly cylindrical,with large nuclei and starch grains(Fig.2I)

    Table 1 Synergistic effects of 2,4-dichlorophenoxyacetic acid(2,4-D),kinesin(KT)and gibberellin(GA3)on callus induction in C.songaricum Rupr. Seeds

    With regard to morphological organogenesis of the primary haustorium,the haustorium is initiated by localized cell growth,alongside haustoriuml hair growth in multiple species.Parasitic plant species develop haustorium close to the root tip or along thestem under stimulation by specific substances produced by the respective host[29]. Haustorium have a morphology comparable to that of Rhizobium-induced determinant nodules but a different developmental ontogeny.Cell division starting in the root cortex represents an initial event in nodules’organogenetic process,and nodule primordia comprise actively dividing cells. Meanwhile,haustoriuml swelling is primarily explained by the isodiametric root cell growth. Haustorium development equally differs from lateral root expansion due to the lack of epidermal rupture in the parasite[30].

    Table 2 Effect of plant growth regulators on haustorium induction in the callus of C.songaricum seed

    Fig.3 The development of C.songaricum haustorium in different periods of cultivation

    Furthermore,facultative parasitic organisms,such as Phtheirospermum,develop lateral haustorium in the root transition and elongation regions,and a single root could generate many haustorium[12].However,obligate parasitic organisms,including

    Striga,Orobanche and Phelipanche spp. develop only one haustorium at the tip of each of the emerging radical apexes upon germination.

    3 Discussion

    The haustorium is the channel through which a parasitic plant invades its host tissue to uptake materials it needs. According to the function,the haustorium has two types,one is primary haustorium and the other is secondary haustorium. Depending on the position of the primary haustorium formed on the parasite root,primary haustorium is divided into lateral haustorium and terminal haustorium[31]. During lateral haustorium development,a branch appears in the elongation zone of the main root of the parasite,at the top of which a primary haustorium is formed,which without interference in continuous top elongation and multiple primary haustorium formations[32].On the contrary,there is only one terminal haustorium,the structure of which could terminate root growth. However,the development of haustorium in all types begins with the perception of secretions from host root nearby. The secretions,as known to trigger haustorium development,are called haustorium inducing factors(HIFs),including strigolactones,flavonoids,quinones and cytokinins. HIFs play a crucial role in the formation of primary haustorium by initiating signals leading to the accumulation of reactive oxygen species[33].

    The 2,6-dimethoxy-p-benzoquinone(DMBQ)is an efficient HIFs to initiate the formation of haustorium in many kinds of parasite plants without their host.Polyphenols secreted by the host are oxidized to quinones by the H2O2secreted by parasite plants[14,34].However,the DMBQ is not a panacea in triggering the haustorium formation in all species of parasite,which means that the function of HIFs is species-specific. The development of Phelipanche ramose L.haustorium initiated in the presence of cZ/tZ cytokinins and was prevented in the presence of cytokinin receptor[35].

    In this study,the cytokinin was considered to be the HIFs of C.songaricum,but the function of cytokinin as a HIF has not been elucidated here. A report assessing haustoriuml anatomy in Cuscuta japonica Choisy exogenously administered cytokinin showed that KT treatment promotes radial elongation in cortical cells and the formation of meristematic tissues,laying a material foundation for cell dedifferentiation and division. When endogenous cytokinin amounts are lower than the effective concentration,the dedifferentiation "switch" of cortical cells cannot be activated,which prevents the formation of the papillary or primordial primordium. At low levels of exogenous KT(<0.1%),although cortical cells may be elongated,they cannot be constituted into the primordial base. This indicates that only when exogenous cytokinin concentration reaches a certain level(the optimal KT concentration in this study was considered to be 0.25 mg·L-1),endogenous cytokinin would reach the effective concentration,activating the "switch" to dedifferentiate cortical cells to form the primordial primordium. So only one concentration of cytokinin was chose to test the cooperation effect between cytokinin and auxin on formation of the C.songaricum haustorium.

    These results indicate that auxin is very important in primary haustorium formation from C.songaricum callus in the presence of cytokinin.It was reported that Phtheirospermum japonicum sensed DMBQ and quickly activitied lots of genes to express,including gene YUC3,which involved in auxin synthesis. YUC3 activated about 18 hpis in epidermal cells near the parasitic-host contact point. After knockout of the YUC3 gene,the number of haustorium decreased significantly. The ectopic expression of YUC3 led to the formation of the haustorium-like structure and the increase of auxin. It suggested that local auxin biosynthesis mediated by YUC3 is vital for the haustorium to initiate development[36].In addition,the process of auxin transport is considered to be an essential factor in the haustorium initiation. In the study of the formation of the Triphysaria versicolor haustorium,it was found that the formation of the haustorium was inhibited by using the polar auxin transport inhibitor TIBA,while was recovered by applying exogenous auxin[30]. The above phenomena indicated that auxin transport is a necessary factor for DMBQ to trigger the formation of a haustorium.

    From this study,it could be speculated that the cooperation of exogenous auxin and cytokinin plays the most important role in the formation of primary haustorium from the callus in C.songaricum.The synergistic mechanism of cytokinin and auxin on callus differentiation into haustorium needs further study.

    All in all,seed germination and the formation of haustorium are the key to the completion of parasitic growth of C.songaricum. Exogenous signal substances can effectively promote the completion of this crucial link.Therefore,the study of exogenous signal substances is of great significance to the parasitic growth mechanism and artificial planting of C.songaricum.

    猜你喜歡
    內(nèi)蒙古大學(xué)鎖陽藥學(xué)院
    蘭州大學(xué)藥學(xué)院簡介
    男人的“不老藥”——鎖陽
    內(nèi)蒙古大學(xué)文學(xué)與新聞傳播學(xué)院
    ——高建新教授
    來自沙漠中的「不老藥」——說說鎖陽固精丸
    施旖旎作品
    鎖陽的“舍與得”
    知識窗(2016年3期)2016-05-14 09:08:24
    An Analysis of Neighbors
    What I see in The Merchant of Venice
    HSCCC-ELSD法分離純化青葙子中的皂苷
    湖北旋覆花化學(xué)成分的研究
    在线免费十八禁| 欧美日本视频| 男女免费视频国产| 精品一区二区免费观看| av在线播放精品| 人妻系列 视频| 成人一区二区视频在线观看| 欧美xxⅹ黑人| 亚洲欧洲国产日韩| 成人漫画全彩无遮挡| 国内精品宾馆在线| 精品亚洲成a人片在线观看 | 久久国产亚洲av麻豆专区| 国产精品一区www在线观看| 纯流量卡能插随身wifi吗| 欧美老熟妇乱子伦牲交| 免费人妻精品一区二区三区视频| 精品一区在线观看国产| 偷拍熟女少妇极品色| 国精品久久久久久国模美| 少妇人妻精品综合一区二区| 午夜视频国产福利| 亚洲精品日韩在线中文字幕| 舔av片在线| 丝袜脚勾引网站| 少妇精品久久久久久久| 午夜福利在线观看免费完整高清在| 久久久成人免费电影| 最近中文字幕高清免费大全6| 欧美xxxx性猛交bbbb| av在线老鸭窝| 边亲边吃奶的免费视频| 男女边吃奶边做爰视频| 亚洲精品第二区| 亚洲丝袜综合中文字幕| 两个人的视频大全免费| 一本色道久久久久久精品综合| 美女福利国产在线 | 男的添女的下面高潮视频| 大码成人一级视频| 婷婷色综合www| 97在线人人人人妻| 99精国产麻豆久久婷婷| 国产成人91sexporn| 少妇裸体淫交视频免费看高清| 日韩 亚洲 欧美在线| 联通29元200g的流量卡| 22中文网久久字幕| 日韩强制内射视频| 狂野欧美白嫩少妇大欣赏| 夜夜爽夜夜爽视频| 永久免费av网站大全| 丰满人妻一区二区三区视频av| 18禁在线无遮挡免费观看视频| 99热这里只有精品一区| 最近中文字幕2019免费版| 日本vs欧美在线观看视频 | 欧美高清性xxxxhd video| 日韩,欧美,国产一区二区三区| 国产黄频视频在线观看| 久久久久久久精品精品| 99热这里只有精品一区| 午夜福利在线观看免费完整高清在| 各种免费的搞黄视频| 日韩欧美精品免费久久| 日韩视频在线欧美| freevideosex欧美| 天堂8中文在线网| 免费看av在线观看网站| 伊人久久精品亚洲午夜| 亚洲综合色惰| 男人和女人高潮做爰伦理| 国产成人精品一,二区| 亚洲欧美一区二区三区黑人 | 亚洲精品日本国产第一区| 精品久久久噜噜| 午夜福利网站1000一区二区三区| 久久ye,这里只有精品| 99热6这里只有精品| 欧美高清成人免费视频www| 三级国产精品欧美在线观看| 亚洲欧美日韩无卡精品| 国产精品无大码| 日本午夜av视频| 亚洲精品乱久久久久久| 欧美精品亚洲一区二区| 国产精品99久久久久久久久| 国产一区二区在线观看日韩| 最后的刺客免费高清国语| 精品99又大又爽又粗少妇毛片| 日韩成人伦理影院| 国产 一区精品| 精品久久久久久电影网| 热99国产精品久久久久久7| 国产乱人偷精品视频| 亚洲中文av在线| 国产 一区精品| 激情五月婷婷亚洲| 国产无遮挡羞羞视频在线观看| 小蜜桃在线观看免费完整版高清| 日韩av不卡免费在线播放| 国产亚洲91精品色在线| 人妻少妇偷人精品九色| 国产免费又黄又爽又色| 交换朋友夫妻互换小说| 欧美性感艳星| 极品教师在线视频| 中文资源天堂在线| 欧美日韩视频精品一区| 日韩成人av中文字幕在线观看| 建设人人有责人人尽责人人享有的 | 少妇 在线观看| 青春草视频在线免费观看| 看十八女毛片水多多多| 国产午夜精品久久久久久一区二区三区| 国产亚洲欧美精品永久| 国产精品久久久久久精品电影小说 | 亚洲av二区三区四区| 男人舔奶头视频| 精品一区二区免费观看| 性色avwww在线观看| av线在线观看网站| 伦理电影大哥的女人| 亚洲真实伦在线观看| 欧美另类一区| 在线免费观看不下载黄p国产| 美女中出高潮动态图| 肉色欧美久久久久久久蜜桃| 爱豆传媒免费全集在线观看| 2021少妇久久久久久久久久久| 成人美女网站在线观看视频| 国产精品一区二区性色av| 久久久久视频综合| 亚洲欧美清纯卡通| 极品少妇高潮喷水抽搐| 午夜福利在线观看免费完整高清在| 最近最新中文字幕免费大全7| 99久久综合免费| 午夜精品国产一区二区电影| 久久女婷五月综合色啪小说| 成人国产av品久久久| 高清视频免费观看一区二区| 街头女战士在线观看网站| 成人漫画全彩无遮挡| 国产乱来视频区| 国产精品不卡视频一区二区| 久久国产乱子免费精品| 青青草视频在线视频观看| a级毛色黄片| 欧美老熟妇乱子伦牲交| 亚洲精品日韩av片在线观看| 人妻夜夜爽99麻豆av| 大话2 男鬼变身卡| 有码 亚洲区| 精品人妻熟女av久视频| 久久av网站| 只有这里有精品99| 美女福利国产在线 | 插逼视频在线观看| 亚洲av.av天堂| 最近手机中文字幕大全| 一级毛片aaaaaa免费看小| 纵有疾风起免费观看全集完整版| 午夜激情久久久久久久| 免费黄色在线免费观看| 亚洲经典国产精华液单| 99热国产这里只有精品6| 一二三四中文在线观看免费高清| 老熟女久久久| 欧美区成人在线视频| 99久久中文字幕三级久久日本| 性色avwww在线观看| 日本欧美视频一区| 亚洲真实伦在线观看| 好男人视频免费观看在线| 亚洲图色成人| 黄色日韩在线| 亚洲精品色激情综合| 2021少妇久久久久久久久久久| 国产色婷婷99| 国产女主播在线喷水免费视频网站| 一级片'在线观看视频| 麻豆成人午夜福利视频| 午夜视频国产福利| 一本—道久久a久久精品蜜桃钙片| 2021少妇久久久久久久久久久| 成年女人在线观看亚洲视频| 国产精品国产三级专区第一集| 久久综合国产亚洲精品| 亚洲精品一区蜜桃| 亚洲国产高清在线一区二区三| 97超视频在线观看视频| 在线免费十八禁| 国产成人精品一,二区| 交换朋友夫妻互换小说| 日本爱情动作片www.在线观看| 欧美 日韩 精品 国产| 成人亚洲精品一区在线观看 | 久久精品国产亚洲av天美| 一区二区三区免费毛片| 国产免费视频播放在线视频| 亚洲精品久久午夜乱码| 国产免费一区二区三区四区乱码| 99久国产av精品国产电影| 日本黄色片子视频| 狠狠精品人妻久久久久久综合| 尤物成人国产欧美一区二区三区| 国产免费又黄又爽又色| 九草在线视频观看| 女性生殖器流出的白浆| 国产毛片在线视频| 人人妻人人看人人澡| 99久久精品一区二区三区| av视频免费观看在线观看| 亚洲色图av天堂| 亚洲激情五月婷婷啪啪| 亚洲aⅴ乱码一区二区在线播放| 中文字幕人妻熟人妻熟丝袜美| 肉色欧美久久久久久久蜜桃| 欧美少妇被猛烈插入视频| 麻豆乱淫一区二区| 亚洲在久久综合| 视频区图区小说| 性色avwww在线观看| 久久精品国产亚洲av天美| 亚洲第一区二区三区不卡| 国产亚洲欧美精品永久| 妹子高潮喷水视频| 老司机影院毛片| av又黄又爽大尺度在线免费看| 国产精品久久久久久精品电影小说 | 男女无遮挡免费网站观看| 22中文网久久字幕| 国产成人a∨麻豆精品| tube8黄色片| 亚洲电影在线观看av| 最新中文字幕久久久久| 日韩欧美精品免费久久| 国产av一区二区精品久久 | 久久综合国产亚洲精品| 亚洲国产精品国产精品| 性高湖久久久久久久久免费观看| 国产精品国产三级国产av玫瑰| 国产精品熟女久久久久浪| 亚洲中文av在线| 国产亚洲欧美精品永久| 久久99热6这里只有精品| 国产精品.久久久| 亚洲一级一片aⅴ在线观看| 亚洲欧美中文字幕日韩二区| 精品少妇黑人巨大在线播放| 亚洲自偷自拍三级| 国产精品伦人一区二区| 亚洲欧美一区二区三区黑人 | 啦啦啦视频在线资源免费观看| 性色av一级| 国产淫语在线视频| 精品国产一区二区三区久久久樱花 | 伦理电影大哥的女人| 亚洲怡红院男人天堂| 人妻少妇偷人精品九色| 国产男女超爽视频在线观看| 日韩强制内射视频| 又爽又黄a免费视频| 成人毛片a级毛片在线播放| 国产精品女同一区二区软件| 一个人免费看片子| 3wmmmm亚洲av在线观看| 一本一本综合久久| 精品熟女少妇av免费看| 亚洲精品中文字幕在线视频 | 日韩欧美一区视频在线观看 | 亚洲欧美成人综合另类久久久| 中文字幕精品免费在线观看视频 | 亚洲av日韩在线播放| 久久影院123| 亚洲不卡免费看| 午夜福利网站1000一区二区三区| 日日摸夜夜添夜夜爱| 国产精品麻豆人妻色哟哟久久| av在线观看视频网站免费| 美女内射精品一级片tv| 美女中出高潮动态图| 日日撸夜夜添| 如何舔出高潮| 国产免费一级a男人的天堂| 99九九线精品视频在线观看视频| 又黄又爽又刺激的免费视频.| 亚洲一区二区三区欧美精品| 亚洲综合精品二区| 中国美白少妇内射xxxbb| 麻豆国产97在线/欧美| 午夜精品国产一区二区电影| 在线观看免费日韩欧美大片 | 久久久国产一区二区| 蜜桃亚洲精品一区二区三区| 我的老师免费观看完整版| 亚洲国产精品一区三区| 精品一区二区三卡| 国产精品av视频在线免费观看| 插阴视频在线观看视频| 99国产精品免费福利视频| 日韩中文字幕视频在线看片 | 一区在线观看完整版| 春色校园在线视频观看| 成人高潮视频无遮挡免费网站| 国产精品爽爽va在线观看网站| 亚洲精品乱码久久久v下载方式| 中文天堂在线官网| 青青草视频在线视频观看| 亚洲人成网站高清观看| 久久精品久久久久久噜噜老黄| 国产 精品1| 伦理电影大哥的女人| 欧美日韩视频高清一区二区三区二| 免费黄频网站在线观看国产| 亚洲av男天堂| 妹子高潮喷水视频| 汤姆久久久久久久影院中文字幕| 国产老妇伦熟女老妇高清| 内射极品少妇av片p| 欧美国产精品一级二级三级 | 老司机影院毛片| 亚洲欧美日韩卡通动漫| 欧美老熟妇乱子伦牲交| 18禁在线播放成人免费| 观看免费一级毛片| 亚洲成人中文字幕在线播放| 在线观看三级黄色| 日韩人妻高清精品专区| 一级a做视频免费观看| 男人和女人高潮做爰伦理| 人人妻人人爽人人添夜夜欢视频 | 亚洲av日韩在线播放| 少妇猛男粗大的猛烈进出视频| 国产成人午夜福利电影在线观看| 国产精品三级大全| 男人添女人高潮全过程视频| freevideosex欧美| 韩国av在线不卡| 永久网站在线| 亚洲欧美日韩卡通动漫| 在线观看免费视频网站a站| 国产精品一区二区在线观看99| 亚洲av中文字字幕乱码综合| 成人毛片a级毛片在线播放| 国产精品三级大全| 好男人视频免费观看在线| 国产成人精品婷婷| 一级毛片电影观看| 久久久久网色| 国产欧美日韩精品一区二区| 色网站视频免费| av播播在线观看一区| 午夜激情久久久久久久| 国产91av在线免费观看| 亚洲激情五月婷婷啪啪| 欧美zozozo另类| 直男gayav资源| av国产免费在线观看| 美女cb高潮喷水在线观看| 午夜免费观看性视频| 亚洲av国产av综合av卡| 久久97久久精品| 老女人水多毛片| 日日摸夜夜添夜夜添av毛片| 国产一区二区三区av在线| 久久综合国产亚洲精品| 又爽又黄a免费视频| 久久99精品国语久久久| 97热精品久久久久久| 欧美成人精品欧美一级黄| 欧美激情极品国产一区二区三区 | 男女边摸边吃奶| 国产亚洲最大av| 妹子高潮喷水视频| 国产高清三级在线| av免费观看日本| 天堂8中文在线网| 国产精品久久久久成人av| 久久国产精品男人的天堂亚洲 | av.在线天堂| 免费播放大片免费观看视频在线观看| 美女福利国产在线 | 欧美精品亚洲一区二区| 一个人看的www免费观看视频| 国产精品欧美亚洲77777| 纯流量卡能插随身wifi吗| 免费观看在线日韩| 91在线精品国自产拍蜜月| 精品亚洲成a人片在线观看 | 日本猛色少妇xxxxx猛交久久| 少妇人妻精品综合一区二区| 国产成人午夜福利电影在线观看| 免费观看a级毛片全部| 一区二区三区免费毛片| 久久国产亚洲av麻豆专区| 观看免费一级毛片| 十分钟在线观看高清视频www | 高清毛片免费看| 日本wwww免费看| 乱码一卡2卡4卡精品| 七月丁香在线播放| 免费少妇av软件| 久久久久久久久大av| 老师上课跳d突然被开到最大视频| 久久精品国产自在天天线| 天堂俺去俺来也www色官网| 成人黄色视频免费在线看| 99热这里只有是精品在线观看| 精品国产一区二区三区久久久樱花 | 最近2019中文字幕mv第一页| 1000部很黄的大片| 麻豆乱淫一区二区| 亚洲美女黄色视频免费看| 人妻系列 视频| 少妇人妻一区二区三区视频| 欧美丝袜亚洲另类| 精品人妻视频免费看| 在线 av 中文字幕| 在线看a的网站| 51国产日韩欧美| 成人毛片a级毛片在线播放| 99热6这里只有精品| 国产乱人视频| 日本黄色片子视频| 在线观看免费日韩欧美大片 | 亚洲av男天堂| 国产淫语在线视频| 国产亚洲午夜精品一区二区久久| 亚洲无线观看免费| 欧美日韩视频高清一区二区三区二| 免费大片黄手机在线观看| 视频中文字幕在线观看| 久久国产精品大桥未久av | 少妇人妻精品综合一区二区| 久久久久久九九精品二区国产| 久久精品国产亚洲网站| 汤姆久久久久久久影院中文字幕| 国产v大片淫在线免费观看| 精品人妻视频免费看| 国产久久久一区二区三区| 国内揄拍国产精品人妻在线| 国产精品伦人一区二区| 久久精品熟女亚洲av麻豆精品| 亚洲熟女精品中文字幕| 亚洲精品456在线播放app| 亚洲美女视频黄频| 成人二区视频| 精品人妻偷拍中文字幕| av女优亚洲男人天堂| 制服丝袜香蕉在线| 亚洲婷婷狠狠爱综合网| 网址你懂的国产日韩在线| 免费大片18禁| 尾随美女入室| 深爱激情五月婷婷| 日本黄色日本黄色录像| 少妇猛男粗大的猛烈进出视频| 久久鲁丝午夜福利片| 日韩三级伦理在线观看| 51国产日韩欧美| 亚洲国产成人一精品久久久| 80岁老熟妇乱子伦牲交| 亚洲精品日韩av片在线观看| 天天躁日日操中文字幕| 国产伦精品一区二区三区四那| 国产极品天堂在线| 能在线免费看毛片的网站| 亚洲,欧美,日韩| 国产精品一及| 久久精品夜色国产| 亚洲精品自拍成人| 精品人妻熟女av久视频| 欧美精品一区二区大全| 久久午夜福利片| 女人久久www免费人成看片| 亚洲欧洲日产国产| 新久久久久国产一级毛片| 男女下面进入的视频免费午夜| 国产精品一区www在线观看| 久久久久久久久久人人人人人人| 自拍欧美九色日韩亚洲蝌蚪91 | 精品久久久精品久久久| 91精品国产九色| 99精国产麻豆久久婷婷| 国产亚洲最大av| 日韩成人伦理影院| 欧美成人一区二区免费高清观看| 国产av精品麻豆| 性色avwww在线观看| 久久久久久久久久成人| 91久久精品国产一区二区成人| 看十八女毛片水多多多| 国语对白做爰xxxⅹ性视频网站| 午夜福利在线观看免费完整高清在| 毛片一级片免费看久久久久| 久久久久久久久久人人人人人人| 久久精品夜色国产| 91aial.com中文字幕在线观看| 中文字幕人妻熟人妻熟丝袜美| 黑人猛操日本美女一级片| 另类亚洲欧美激情| 亚洲高清免费不卡视频| 日韩人妻高清精品专区| 国产无遮挡羞羞视频在线观看| 日日撸夜夜添| 中文字幕久久专区| 午夜免费鲁丝| .国产精品久久| 美女福利国产在线 | 99久久中文字幕三级久久日本| 乱码一卡2卡4卡精品| 舔av片在线| 一个人看视频在线观看www免费| 春色校园在线视频观看| av网站免费在线观看视频| 国产精品99久久99久久久不卡 | 久久97久久精品| 久久久久网色| 精品人妻偷拍中文字幕| 亚洲精品日本国产第一区| 麻豆成人av视频| 欧美精品国产亚洲| 久久久久久久亚洲中文字幕| 一级毛片 在线播放| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产自在天天线| 国产无遮挡羞羞视频在线观看| 天天躁夜夜躁狠狠久久av| 性色avwww在线观看| 尾随美女入室| 免费观看在线日韩| 精品久久久精品久久久| 老司机影院毛片| 亚洲,一卡二卡三卡| 成人一区二区视频在线观看| 免费久久久久久久精品成人欧美视频 | av视频免费观看在线观看| 五月玫瑰六月丁香| 国产在线一区二区三区精| 亚洲精品乱码久久久久久按摩| 亚洲欧美一区二区三区黑人 | 精品酒店卫生间| 99九九线精品视频在线观看视频| 亚洲精品乱码久久久久久按摩| 毛片女人毛片| 免费av不卡在线播放| 高清不卡的av网站| 成人高潮视频无遮挡免费网站| 我要看日韩黄色一级片| 久久国产精品男人的天堂亚洲 | 欧美少妇被猛烈插入视频| 美女中出高潮动态图| 少妇人妻 视频| 国产在线一区二区三区精| 久久精品国产自在天天线| 久久久久久久国产电影| 日本与韩国留学比较| 久久精品久久久久久久性| 最新中文字幕久久久久| 在线亚洲精品国产二区图片欧美 | 91精品伊人久久大香线蕉| 欧美日本视频| 亚洲国产欧美人成| 直男gayav资源| 亚洲av成人精品一二三区| 欧美日韩精品成人综合77777| 亚洲欧美中文字幕日韩二区| 肉色欧美久久久久久久蜜桃| 免费观看性生交大片5| 18+在线观看网站| 精品久久久久久久久av| 免费少妇av软件| av免费在线看不卡| 免费黄网站久久成人精品| 深夜a级毛片| 国产视频内射| 边亲边吃奶的免费视频| 亚洲av免费高清在线观看| 伦理电影大哥的女人| 美女主播在线视频| 干丝袜人妻中文字幕| 午夜日本视频在线| 国产精品一区www在线观看| 如何舔出高潮| 天天躁夜夜躁狠狠久久av| 成人无遮挡网站| 日韩国内少妇激情av| 亚洲精品国产色婷婷电影| 亚洲人成网站在线观看播放| 高清日韩中文字幕在线| 精品视频人人做人人爽| 国产精品三级大全| 午夜免费男女啪啪视频观看| 亚洲,一卡二卡三卡| 国产av码专区亚洲av| 日本一二三区视频观看| 久久久久久九九精品二区国产| 三级国产精品片| av播播在线观看一区| 中文字幕制服av| 精品久久久久久电影网| 99热这里只有是精品50| 五月玫瑰六月丁香| 久久国产精品男人的天堂亚洲 | 人妻制服诱惑在线中文字幕| 在线观看美女被高潮喷水网站| 91狼人影院| 欧美一区二区亚洲| 欧美人与善性xxx| 丰满迷人的少妇在线观看| 久久婷婷青草| xxx大片免费视频| 美女中出高潮动态图|