康 飛,孟凡喬
基于文獻分析的北方冬麥田氨揮發(fā)特性
康 飛,孟凡喬※
(中國農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院農(nóng)田土壤污染防控與修復(fù)北京市重點實驗室,北京 100193)
中國北方地區(qū)是冬小麥-夏玉米種植體系的主要集約化農(nóng)業(yè)區(qū),過去30多年間化學(xué)氮肥投入量大和肥料利用率低的現(xiàn)象較為普遍,氨揮發(fā)等農(nóng)業(yè)面源污染嚴重,需要對冬小麥生長過程中的氨揮發(fā)規(guī)律及測定方法等進行系統(tǒng)研究。該研究對1980年至2018年的華北平原冬小麥氨揮發(fā)文獻進行研究總結(jié),采用回歸方程和T檢驗等統(tǒng)計學(xué)方法分析了不同施氮水平、施肥時期和測定方法對冬小麥氨揮發(fā)的影響。研究發(fā)現(xiàn),隨著化肥施氮量的增加,冬小麥氨揮發(fā)累積量呈現(xiàn)指數(shù)函數(shù)增加趨勢(=2.64e0.006 6x),凈氨揮發(fā)量呈現(xiàn)冪函數(shù)增加特征(=0.004 81.358 9)。不考慮激發(fā)效應(yīng)的凈氨揮發(fā)量比考慮激發(fā)效應(yīng)的高估約21.8%。冬小麥生產(chǎn)中,基追比為1∶1的情況下,基肥期氨揮發(fā)量顯著高于追肥期氨揮發(fā)量(<0.05),占整個生育期氨揮發(fā)量分別為58.7%和41.3%。在180 kg/hm2氮肥水平時,海綿吸收法與真空抽氣法測定的氨揮發(fā)數(shù)量無顯著性差異。冬小麥季的氨揮發(fā)控制,應(yīng)該重點通過優(yōu)化氮肥施用數(shù)量,主要在基肥期進行控制。田間生產(chǎn)中,采用海綿吸收法和真空抽氣法監(jiān)測氨揮發(fā)應(yīng)考慮不同施肥水平下的高估。
冬小麥;氨揮發(fā);氮肥量;施肥時期;真空抽氣法;海綿吸收法
化學(xué)合成氮肥是農(nóng)田生態(tài)系統(tǒng)的主要氮素來源,在作物產(chǎn)量和品質(zhì)形成中起著關(guān)鍵作用[1-2],但過量施用氮肥也帶來了巨大的資源環(huán)境壓力。上世紀80年代改革開放以來,中國冬小麥生產(chǎn)中氮肥投入量逐年增加,根據(jù)《2018年中國統(tǒng)計年鑒》,2017年全國小麥總產(chǎn)高達13 433萬t,氮肥施用量高達2 222萬t,分別是1980年的2.43倍和2.38倍,其中2017年北方冬小麥播種面積高達1 753萬hm2,小麥產(chǎn)量高達10 713萬t,分別占全國的71.52%和79.75%,是中國重要的冬小麥產(chǎn)區(qū)[3]。全國耕地平均氮肥施用量為240 kg/hm2,單位種植面積施氮量遠高于非洲和歐美等地區(qū),是全球氮高投入地區(qū)之一[4]。
氮肥施入土壤-植物體系后,除了被作物吸收利用以外,主要以土壤殘留、氨揮發(fā)、淋溶和硝化-反硝化等多種途徑損失到環(huán)境中[5],其中氨揮發(fā)是重要的氣態(tài)氮素損失途徑,其損失率為22%±10%[6]。在農(nóng)業(yè)源氨排放中,每年因農(nóng)田施肥導(dǎo)致的氨排放占整個農(nóng)業(yè)源氨排放總量的40%[7],2013年全國由化學(xué)氮肥引起的氨揮發(fā)累積量高達5.21 Tg NH3[8],全球范圍內(nèi),18%的氮肥投入則以氨揮發(fā)形式損失[9]。氨揮發(fā)不僅降低氮肥利用率,造成肥料的浪費,而且還引起許多環(huán)境和生態(tài)問題[10],氮肥過量施用引起的氨揮發(fā)成為大氣氨的重要來源,對于大氣污染物PM2.5形成有重要貢獻[11]。中國華北地區(qū)土壤多為中性或微堿性,鹽漬土多呈堿性(pH值在6.8~8.5之間)[12],與南方酸性土壤相比,施肥后華北地區(qū)土壤氨揮發(fā)的比例更高[13]。作物生產(chǎn)中,氨揮發(fā)的數(shù)量不僅受氮肥數(shù)量的影響[14],還會受灌溉量、施肥時期、耕作措施、溫度和土壤pH等人為和自然因素的影響[15]。對于華北地區(qū),由于氣候類型和土壤性質(zhì)差異較小,各地研究得到的氨揮發(fā)數(shù)量和比例差異較小,呈現(xiàn)出相似的規(guī)律。過去30多年間,盡管對華北平原氨揮發(fā)進行了大量的試驗研究,但是針對氨揮發(fā)的整合研究較為欠缺,很少研究采用不干擾自然氣象條件的微氣象學(xué)法和風(fēng)洞法[16-17]。大量文獻表明,中國大多數(shù)氨揮發(fā)試驗采用簡便易行的真空抽氣法或海綿吸收法,但尚缺乏對這兩類方法進行系統(tǒng)分析。另外,以往研究計算土壤凈氨揮發(fā)只是用氨揮發(fā)總量減去不施氮處理土壤的氨揮發(fā),忽略了激發(fā)效應(yīng)。
本研究收集了1980年以來中國北方地區(qū)冬小麥氨揮發(fā)的田間試驗,對相關(guān)數(shù)據(jù)進行了收集、錄入和整合分析,研究化肥施氮量和施肥時期對氨揮發(fā)總量、凈氨揮發(fā)量的影響,并對不同氨揮發(fā)測定方法進行比較分析,以其為該地區(qū)冬小麥氮肥合理施用和減少氨揮發(fā)損失提供科學(xué)依據(jù)。
本研究通過對中國知網(wǎng)將近40 a的有關(guān)冬小麥氨揮發(fā)的文章檢索,從中提取有關(guān)數(shù)據(jù)。文獻主要來源為中國知網(wǎng)核心期刊上發(fā)表的期刊文獻以及碩博學(xué)位論文,通過主題詞“小麥”、“氨揮發(fā)”和“氮”等關(guān)鍵字的搜索,從中進行查閱篩選,從中提取和整理本研究所需要的數(shù)據(jù)。本研究所篩選文獻和數(shù)據(jù)點應(yīng)滿足以下條件,即1)田間試驗位于北方地區(qū);2)種植作物為冬小麥;3)測定氨揮發(fā)所用方法為海綿吸收法或真空抽氣法,微氣象學(xué)法和風(fēng)洞法的文獻較少,不在本次研究范圍之內(nèi);4)田間試驗所用肥料為化學(xué)氮肥(主要包括尿素等銨態(tài)氮肥),排除施用糞肥和緩控釋肥等其他類型肥料的文獻;5)只選取農(nóng)民常規(guī)處理的數(shù)據(jù),排除特殊處理(例如肥料深施、壟作覆膜等不同農(nóng)田灌溉措施的處理);6)試驗設(shè)置3個或3個以上重復(fù)。
本研究共收集和使用文獻31篇,其中采用海綿吸收法測定氨揮發(fā)的文章有17篇,采用真空抽氣法的文章14篇。氨揮發(fā)觀測數(shù)據(jù)共120個,其中采用海綿吸收法的觀測數(shù)據(jù)為67個,采用真空抽氣法的為53個。
本次研究的北方冬小麥區(qū),定義為主要分布在秦嶺、淮河以北,長城以南的地區(qū),該區(qū)域冬小麥產(chǎn)量約占全國小麥總產(chǎn)量的79%左右[3],包括河南、河北、山東、陜西、山西等省區(qū)。這些地區(qū)地處暖溫帶季風(fēng)氣候和大陸性季風(fēng)氣候區(qū),氣候溫和,年平均氣溫、降水量、日照時長以及種植制度等方面差異不大;主要土壤類型有棕壤、褐土、潮土和風(fēng)沙土等,耕性良好,礦物養(yǎng)分豐富,因此該區(qū)冬小麥氨揮發(fā)排放規(guī)律較為一致。
不考慮激發(fā)效應(yīng)的凈氨揮發(fā)量計算公式如下
1=N?N0(1)
根據(jù)孫昭安的研究[18],每增加10 kg/hm2時的激發(fā)效應(yīng)為1%,因此考慮激發(fā)效應(yīng)的凈氨揮發(fā)量和不考慮激發(fā)效應(yīng)的凈氨揮發(fā)量的高估比例的計算公式如下
2=N?N0×(1+/1 000)(2)
3=(1?2)/2×100%(3)
式中1為不考慮激發(fā)效應(yīng)的凈氨揮發(fā)量,2為考慮激發(fā)效應(yīng)的凈氨揮發(fā)量,3為不考慮激發(fā)效應(yīng)的凈氨揮發(fā)比考慮激發(fā)效應(yīng)的高估比例,%,為化肥施氮量,N0為不施氮肥的土壤氨揮發(fā)量,N為施肥量為的土壤氨揮發(fā)量,單位均為kg/hm2。
數(shù)據(jù)采用Microsoft Excel 2016進行回歸方程的擬合和制作箱線圖,采用SPSS25軟件進行T檢驗等統(tǒng)計分析。
數(shù)據(jù)處理中對于未施氮肥的氨揮發(fā)缺失數(shù)據(jù)計算方法:先計算其他文獻試驗中所有未施肥處理的氨揮發(fā)平均值,對于高于平均值3倍和低于平均值1/3的數(shù)據(jù)剔除,然后計算平均值,作為未施氮肥處理的氨揮發(fā)值。
研究發(fā)現(xiàn),該區(qū)冬小麥常規(guī)化肥施氮量范圍在72.5~400 kg/hm2之間(=47),平均值為243±12.2 kg/hm2。常規(guī)施肥處理的氨揮發(fā)量范圍在1.01~57 kg/hm2之間,平均值為19.80±2.26 kg/hm2,而不施肥處理的氨揮發(fā)量在0.01~14.7 kg/hm2之間,平均值為4.12± 0.57 kg/hm2。隨著化肥施氮量的增加,由氨揮發(fā)造成的肥料氮損失量也在逐漸增加(圖1a),而且冬小麥全生育期的氨揮發(fā)總量與化肥施氮量關(guān)系為指數(shù)函數(shù)關(guān)系(=2.64e0.006 6x)。
凈氨揮發(fā)為從施氮肥處理的氨揮發(fā)總量中扣除土壤不施氮肥處理(背景值)的氨揮發(fā),反映了由化學(xué)氮肥引起的氨揮發(fā)量。常規(guī)施肥處理的凈氨揮發(fā)量平均值為15.2±2.14 kg/hm2,占化肥施氮量比例為6.27%±0.98%。隨著化肥施氮量的增加,凈氨揮發(fā)量呈冪函數(shù)(=0.004 81.358 9)(圖1b)。所有試驗處理的凈氨揮發(fā)量范圍在0.43~52.5 kg/hm2之間,平均值為10.6%±1.26 kg/hm2,占化肥施氮量的平均比例為5.41%±0.64%。
注:實線為趨勢擬合線,虛線為95%置信區(qū)間線,下同。
冬小麥生產(chǎn)中,基肥期常規(guī)施氮量為0~240 kg/hm2,氨揮發(fā)總量平均為6.58±0.74 kg/hm2,凈氨揮發(fā)量平均為6.35%±0.93 kg/hm2,占該期施氮量的比例為4.89%± 0.66%?;势诎睋]發(fā)累積量與化肥施氮量的回歸方程為二次型函數(shù)(=?0.000 12+0.081 4+1.89),即隨化肥施氮量的增加,氨揮發(fā)總量呈現(xiàn)先增加后降低的趨勢(圖2a)。追肥期,常規(guī)施氮量為0~240 kg/hm2,氨揮發(fā)總量為5.92±0.83 kg/hm2,凈氨揮發(fā)量平均為5.91± 1.17 kg/hm2,占該期施氮量的比例為6.09%±1.20%。追肥期氨揮發(fā)總量與化肥施氮量的回歸方程為指數(shù)函數(shù)(=1.43e0.011 3x),說明冬小麥在追肥時期隨化肥施氮量的增加,氨揮發(fā)總量呈指數(shù)形式增加,即增幅隨氮肥水平不斷增加(圖2c)。無論是基肥期還是追肥期,凈氨揮發(fā)量隨施氮量增加均呈現(xiàn)冪函數(shù)的增加趨勢(圖2b和圖2d)。
圖2 冬小麥氨揮發(fā)總量和凈氨揮發(fā)量在基肥期和追肥期與化肥施氮量的關(guān)系
通過48對基/追肥施氮量為1:1的文獻樣本進行分析發(fā)現(xiàn),基肥期冬小麥氨揮發(fā)樣本的中位數(shù)、平均值、上下限均低于追肥氨揮發(fā)的樣本(圖3),根據(jù)配對T檢驗結(jié)果(T=2.685,=0.01),基肥期氨揮發(fā)累積量(平均值為7.13 kg/hm2)顯著高于追肥期(平均值為5.03 kg/hm2)(<0.05),兩者占總氨揮發(fā)量的比例分別為58.7%和41.3%。
圖3 基/追比為1:1條件下冬小麥基肥和追肥期的氨揮發(fā)累積量
采用海綿吸收法測得氨揮發(fā)總量的平均值為12.8±1.63 kg/hm2,凈氨揮發(fā)量平均值為12.5±1.92 kg/hm2,凈氨揮發(fā)量占化肥施氮量的比例為6.29%±0.97%左右。采用海綿吸收法時,氨揮發(fā)總量與化肥施氮量的回歸方程為指數(shù)函數(shù)(=2.70e0.006 5x)(圖4a),凈氨揮發(fā)量與化肥施氮量的回歸方程為冪函數(shù)(=0.024 51.07)(圖4b)。真空抽氣法測得氨揮發(fā)總量為10.6±1.31 kg/hm2,凈氨揮發(fā)量平均為8.73±1.6 kg/hm2,占化肥施氮量的比例為4.38%±0.76%左右。采用真空抽氣法時,氨揮發(fā)總量與化肥施氮量的回歸方程為指數(shù)函數(shù)(=2.56e0.006 8x)(圖4c),凈氨揮發(fā)量與化肥施氮量的回歸方程為冪函數(shù)(=0.001 31.59)(圖4d)。海綿吸收法測得氨揮發(fā)總量為12.8±1.63 kg/hm2,凈氨揮發(fā)量平均為12.5± 1.92 kg/hm2,占化肥施氮量的比例為6.29%±0.97%。無論是海綿吸收法還是真空抽氣法,冬小麥氨揮發(fā)總量隨化肥施氮量增加均呈指數(shù)形式增加,而凈氨揮發(fā)量均呈冪函數(shù)形式增加,增速低于氨揮發(fā)總量。
根據(jù)海綿吸收法和真空抽氣法測定氨揮發(fā)的擬合方程,計算施氮量為180 kg/hm2時,2方法測定的氨揮發(fā)總量相當(dāng)。當(dāng)施氮量<180 kg/hm2時,海綿吸收法測定的氨揮發(fā)量比真空抽氣法高0~5%;施氮量在180~400 kg/hm2區(qū)間范圍內(nèi),真空抽氣法測定的氨揮發(fā)量比海綿吸收法高0~6.9%,但采用配對T方法,發(fā)現(xiàn)2方法的測定結(jié)果無顯著差異(>0.05)。
圖4 分別采用海綿吸收法和真空抽氣法測定的冬小麥氨揮發(fā)總量和凈氨揮發(fā)量與化肥施氮量的關(guān)系
在農(nóng)田中,影響氨排放量的主要因素是施肥量[7]。冬小麥各施肥期氨揮發(fā)速率和總量均隨著施氮量增加而增加[19-24],施用氮肥顯著促進土壤氨揮發(fā)[25],不同施氮方式下氨揮發(fā)速率、揮發(fā)累積量及其占施氮量的比例均隨施氮量的增大而增大[14]。本研究發(fā)現(xiàn),氨揮發(fā)總量與化肥施氮量的擬合回歸方程是指數(shù)函數(shù),冬小麥常規(guī)施肥處理下氨揮發(fā)總量占化肥施氮量的比例平均為8.12%。Chen等研究結(jié)果有所不同[16],該研究發(fā)現(xiàn)冬小麥氨揮發(fā)總量與施氮量的擬合結(jié)果呈一次函數(shù)關(guān)系,氮肥引起的氨揮發(fā)比例平均值為22%,顯著高于本研究總結(jié)海綿吸收法和真空抽氣法測定的氨揮發(fā)量(<0.05)。原因可能是Chen等[16]收集的數(shù)據(jù)主要采用微氣象學(xué)法或風(fēng)洞法等方法學(xué)上引起的差異[23, 26]。海綿吸收法和真空抽氣法簡單易行,經(jīng)濟快捷,適用于田間小區(qū)對比試驗[6],數(shù)據(jù)整合的結(jié)果也驗證了在超過一定施氮量后,多余的氮素會以更高比例揮發(fā)損失的結(jié)果[27],也進一步說明,優(yōu)化施氮量是控制氨揮發(fā)的有效措施[28]。
本研究中,冬小麥基肥期氨揮發(fā)累積量顯著高于追肥期(<0.05),基肥期氨揮發(fā)量占整個生育期氨揮發(fā)量的58.7%,追肥期占41.3%,與大部分研究發(fā)現(xiàn)是一致的[14, 29-33]。有研究結(jié)果發(fā)現(xiàn)麥田土壤氨揮發(fā)損失主要來自于追肥[24-25, 34],主要是由于該研究追肥期氮肥投入量占總施肥量的比例較高(60%)。小麥基肥撒施,與土壤表層混合,基肥時期環(huán)境溫度較高,有利于銨根離子揮發(fā)成NH3,而追肥期是小麥需要養(yǎng)分的時期,吸收銨態(tài)氮的速度也高,而且追施后立即灌水,使尚未水解的尿素淋洗到土壤深層,減少了銨態(tài)氮在土壤的聚集,從而減少了氨揮發(fā)[35]。因此,適當(dāng)控制基肥氮肥投入,可以有效降低氨揮發(fā)損失。
激發(fā)效應(yīng)是指外加有機物質(zhì)或含氮物質(zhì)而使土壤中原來有機質(zhì)的分解速率改變的現(xiàn)象,有機碳分解,其中包含的N也會損失,其中一種重要損失方式就是氨揮發(fā)[36]。許多研究表明,化肥施入促進了土壤中有機物進一步分解,顯著促進土壤氨揮發(fā)[37]。銨態(tài)氮肥對土墊旱耕人為土和黃土正常新成土表現(xiàn)出正的激發(fā)效應(yīng),且低肥力土壤激發(fā)效應(yīng)高于高肥力土壤[38-40]。研究表明,秸稈和氮肥同時添加會增加土壤胞外酶活性和利用秸稈碳的真細比,進而加劇了秸稈降解和土壤激發(fā)效應(yīng)強度[41]。
需要指出的是,以前諸多研究在計算土壤凈氨揮發(fā)時,采用的是施氮肥處理減去不施氮肥處理,忽略了氮肥對土壤氨揮發(fā)的激發(fā)效應(yīng),因此計算得出的由于氮肥引起的凈氨揮往往被高估了。本研究根據(jù)孫昭安[18]對冬小麥氮肥對激發(fā)效應(yīng)的研究,估算出不考慮激發(fā)效應(yīng)的凈氨揮發(fā)比考慮激發(fā)效應(yīng)的氨揮發(fā)平均高估了21.8%±3.57%(圖5),這一研究發(fā)現(xiàn)值得今后特別注意。
雙層海綿吸收法回收率和精確度較高,測定氨揮發(fā)相對于密閉法要更加準確和精確,回收率為99.5%,變異系數(shù)僅為0.77%,適于田間土壤氨揮發(fā)的原位測定[42]。楊陽等[43]在2011-2013年黃土高原南部冬小麥田測定氨揮發(fā)也采用該方法,回收率為99%。Zhang等[44]在內(nèi)蒙古草原測定氨揮發(fā)時,該方法回收率為87%以上。吳艷香等研究表明,與海綿吸收法(回收率為94.95%)相比,真空抽氣法的回收率較高,為96.9%[45]。周偉等研究發(fā)現(xiàn),真空抽氣法回收率為90%,變異系數(shù)在5%以內(nèi)[46]。
圖5 考慮激發(fā)效應(yīng)與不考慮激發(fā)效應(yīng)的凈氨揮發(fā)量與不考慮激發(fā)效應(yīng)的凈氨揮發(fā)量的高估比例
綜上可知,真空抽氣法的優(yōu)點是明顯消除相鄰兩塊地之間的干擾,改善了小區(qū)之間的氣象條件,但是空氣流將密閉室空氣中的氨帶到系統(tǒng)外用酸吸收,導(dǎo)致取樣室內(nèi)外壓差較大,并在一定范圍內(nèi)隨通氣頻率的增加而增大,且壓力較大情況下可能高估。海綿吸收法相對簡單,成本較低,易于控制條件,應(yīng)用廣泛,且大部分研究發(fā)現(xiàn)回收率較高,但無法考慮風(fēng)速對氨揮發(fā)的影響[26]。
中國北方冬小麥生產(chǎn)中,氨揮發(fā)總量隨化肥施氮量的增加呈指數(shù)函數(shù)形式增加,凈氨揮發(fā)量則呈冪函數(shù)形式增加,基肥期氨揮發(fā)量顯著高于追肥期。常規(guī)氮肥水平下,凈氨揮發(fā)量占化肥施氮量的平均比例為6.27%。降低氮肥,特別是基肥期氮肥施用量,或者改善施肥方式(如快速灌溉和覆土),可以有效降低氨揮發(fā)數(shù)量。不考慮氮肥對于土壤氨揮發(fā)的激發(fā)效應(yīng),會導(dǎo)致凈氨揮發(fā)數(shù)量高估(21.8%)。田間試驗中,在180 kg/hm2氮肥水平時,海綿吸收法和真空抽氣法獲得的氨揮發(fā)水平相當(dāng),在低于和高于該氮肥水平時,海綿吸收法和真空抽氣法監(jiān)測獲得的氨揮發(fā)數(shù)量偏高。
[1]巨曉棠,谷保靜. 我國農(nóng)田氮肥施用現(xiàn)狀、問題及趨勢[J]. 植物營養(yǎng)與肥料學(xué)報,2014,20(4):783-795.
Ju Xiaotang, Gu Baojing. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795. (in Chinese with English abstract)
[2]武良,張衛(wèi)峰,陳新平,等. 中國農(nóng)田氮肥投入和生產(chǎn)效率[J]. 中國土壤與肥料,2016(4):76-83.
Wu Liang, Zhang Weifeng, Chen Xinping, et al. Nitrogen fertilizer input and nitrogen use efficiency in Chinese farmland[J]. Soil and Fertilizer Sciences in China, 2016(4): 76-83. (in Chinese with English abstract)
[3]國家統(tǒng)計局. 中國統(tǒng)計年鑒2018[M]. 北京:中國統(tǒng)計出版社,2018.
[4]Liu Xuejun, Zhang Ying, Han Wenxuan, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462.
[5]Ju Xiaotang, Zhang Chong. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review[J]. Journal of Integrative Agriculture, 2017, 16(12): 2848-2862.
[6]趙榮芳,陳新平,張福鎖. 華北地區(qū)冬小麥-夏玉米輪作體系的氮素循環(huán)與平衡[J]. 土壤學(xué)報,2009,46(4):684-697.
Zhao Rongfang, Chen Xinping, Zhang Fusuo. Nitrogen cycling and balance in winter-wheat-summer-maize rotation system in Northern China Plain[J]. Acta Pedologica Sinica, 2009, 46(4): 684-697. (in Chinese with English abstract)
[7]盧麗麗,吳根義. 農(nóng)田氨排放影響因素研究進展[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2019,24(1):149-162.
Lu Lili, Wu Genyi. Advances in affecting factors of ammonia emission in farmland[J]. Journal of China Agricultural University, 2019, 24(1): 149-162. (in Chinese with English abstract)
[8]Ouyang Wei, Lian Zhongmin, Hao Xin, et al. Increased ammonia emissions from synthetic fertilizers and land degradation associated with reduction in arable land area in China[J]. Land Degradation & Development, 2018, 29(11): 3928-3939.
[9]Pan Baobao, Lam Shu Kee, Mosier Arvin, et al. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis[J]. Agriculture, Ecosystems & Environment, 2016, 232: 283-289.
[10]張福鎖,崔振嶺,王激清,等. 中國土壤和植物養(yǎng)分管理現(xiàn)狀與改進策略[J]. 植物學(xué)通報,2007,24(6):687-694.
Zhang Fusuo, Cui Zhenling, Wang Jiqing, et al.Current status of soil and plant nutrient management in China and improvement strategies[J]. Chinese Bulletin of Botany, 2007, 24(6): 687-694. (in Chinese with English abstract)
[11]Zeng Yang, Tian Shili, Pan Yuepenng. Revealing the Sources of Atmospheric Ammonia: a Review[J]. Current Pollution Reports, 2018, 4(3): 189-197.
[12]呂貽忠,李保國. 土壤學(xué)[M]. 北京:中國農(nóng)業(yè)出版社,2006.
[13]朱兆良. 農(nóng)田中氮肥的損失與對策[J]. 土壤與環(huán)境,2000,9(1):1-6.
Zhu Zhaoliang. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil and Environmental Sciences, 2000, 9(1): 1-6. (in Chinese with English abstract)
[14]楊淑莉,朱安寧,張佳寶,等. 不同施氮量和施氮方式下田間氨揮發(fā)損失及其影響因素[J]. 干旱區(qū)研究,2010,27(3):415-421.
Yang Shuli, Zhu Anning, Zhang Jiabao, et al. Ammonia volatilization loss and its affecting factors under different amounts and ways of N application in field[J]. Arid Zone Research, 2010, 27(3): 415-421. (in Chinese with English abstract)
[15]翟學(xué)旭,王振林,戴忠民,等. 灌溉與非灌溉條件下黃淮冬麥區(qū)不同追氮時期農(nóng)田土壤氨揮發(fā)損失研究[J]. 植物營養(yǎng)與肥料學(xué)報,2013,19(1):54-64.
Zhai Xuexu, Wang Zhenlin, Dai Zhongmin, et al. Ammonia volatilization loss in Huang Huai winter wheat cultivation areas under irrigated and rainfed conditions[J]. Plant Nutrition and Fertilizer Science, 2013, 19(1): 54-64. (in Chinese with English abstract)
[16]Chen Xinping, Cui Zhenling, Fan Mingsheng, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523): 486-489.
[17]蘇芳,丁新泉,高志嶺,等. 華北平原冬小麥-夏玉米輪作體系氮肥的氨揮發(fā)[J]. 中國環(huán)境科學(xué),2007,27(3):409-413.
Su Fang, Ding Xinquan, Gao Zhiling, et al. Ammonia volatilization from nitrogen fertilization of winter wheat-summer maize rotation system in the North China Plain[J]. China Environmental Science, 2007, 27(3): 409-413. (in Chinese with English abstract)
[18]孫昭安. 不同供氮條件下冬小麥生產(chǎn)向土壤碳庫的輸入及氮素損失特征[D]. 北京:中國農(nóng)業(yè)大學(xué),2018.
Sun Zhao’an. Allocation of Winter Wheat Photosynthesized Carbon into Soil Carbon Pool at Different Rates of Nitrogen Fertilization and Nitrogen Losses[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)
[19]王秀斌,周衛(wèi),梁國慶,等. 優(yōu)化施肥條件下華北冬小麥/夏玉米輪作體系的土壤氨揮發(fā)[J]. 植物營養(yǎng)與肥料學(xué)報,2009,15(2):344-351.
Wang Xiubin, Zhou Wei, Liang Guoqing, et al. Effect of optimized nitrogen application on ammonia volatilization from soil in winter wheat-summer corn rotation system in Northern China[J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 344-351. (in Chinese with English abstract)
[20]山楠,畢曉慶,杜連鳳,等. 基施氮肥對麥田冬前氨揮發(fā)損失的影響[J]. 中國土壤與肥料,2013(6):47-51.
Shan Nan, Bi Xiaoqing, Du Lianfeng, et al. Effect of basal nitrogen fertilization on cornfield ammonia volatilization loss ahead of winter in-site conditions[J]. Soil and Fertilizer Sciences in China, 2013(6): 47-51. (in Chinese with English abstract)
[21]馬銀麗,吉艷芝,李鑫,等. 施氮水平對小麥-玉米輪作體系氨揮發(fā)與氧化亞氮排放的影響[J]. 生態(tài)環(huán)境學(xué)報,2012,21(2):225-230.
Ma Yinli, Ji Yanzhi, Li Xin, et al. Effects of N fertilization rates on the NH3volatilization and N2O emissions from the wheat-maize rotation system in North China Plain[J]. Ecology and Environmental Sciences, 2012, 21(2): 225-230. (in Chinese with English abstract)
[22]巨曉棠,劉學(xué)軍,鄒國元,等. 冬小麥/夏玉米輪作體系中氮素的損失途徑分析[J]. 中國農(nóng)業(yè)科學(xué),2002,35(12):1493-1499.
Ju Xiaotang, Liu Xuejun, Zou Guoyuan, et al. Evaluation of nitrogen loss way in winter wheat and summer maize rotation system[J]. Scientia Agricultura Sinica, 2002,35(12): 1493-1499. (in Chinese with English abstract)
[23]董文旭,胡春勝,張玉銘. 華北農(nóng)田土壤氨揮發(fā)原位測定研究[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2006,14(3):46-48.
Dong Wenxu, Hu Chunsheng, Zhang Yuming. In situ determination of ammonia volatilization in field of North China[J]. Chinese Journal of Eco-Agriculture, 2006, 14(3): 46-48. (in Chinese with English abstract)
[24]劉紅梅,龐鳳梅,賴欣,等. 供氮水平和有機無機配施對麥田土壤氨揮發(fā)的影響[J]. 安徽農(nóng)業(yè)科學(xué),2012,40(12):7122-7719,7249.
Liu Hongmei, Pang Fengmei, Lai Xin, et al. Effects of nitrogen fertilizer rate and combined application of organic manure and chemical fertilizer on soil ammonia volatilization in winter-wheat field[J]. Journal of Anhui Agriculture Science, 2012, 40(12): 7122-7719, 7249. (in Chinese with English abstract)
[25]鄭鳳霞,董樹亭,劉鵬,等. 長期有機無機肥配施對冬小麥籽粒產(chǎn)量及氨揮發(fā)損失的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2017,23(3):567-577.
Zheng Fengxia, Dong Shuting, Liu Peng, et al. Effects of combined application of manure and chemical fertilizers on ammonia volatilization loss and yield of winter wheat[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 567-577. (in Chinese with English abstract)
[26]Yang Jie, Jiao Yan, Yang Wenzhu, et al. Review of methods for determination of ammonia volatilization in farmland[J]. IOP Conference Series: Earth and Environmental Science, 2018, 113: 1-8.
[27]Jiang Yu, Deng Aixing, Bloszies Sean, et al. Nonlinear response of soil ammonia emissions to fertilizer nitrogen[J]. Biology and Fertility of Soils, 2017, 53(3): 269-274.
[28]Huang Shan, LvWeisheng, Bloszies Sean, et al. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: A meta-analysis[J]. Field Crops Research, 2016, 192: 118-125.
[29]王玨,巨曉棠,張麗娟,等. 華北平原小麥季氮肥氨揮發(fā)損失及影響因素研究[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報,2009,32(3):5-11.
Wang Jue, Ju Xiaotang, Zhang Lijuan, et al. Ammonia volatilization of N fertilizer and influencing factors in the North China Plain[J]. Journal of Agricultural University of Hebei, 2009, 32(3): 5-11. (in Chinese with English abstract)
[30]山楠,趙同科,畢曉慶,等. 不同施氮水平下小麥田氨揮發(fā)規(guī)律研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2014,33(9):1858-1865.
Shan Nan, Zhao Tongke, Bi Xiaoqing, et al. Ammonia volatilization from wheat soil under different nitrogen rates[J]. Journal of Agro-Environment Science, 2014, 33(9): 1858-1865. (in Chinese with English abstract)
[31]上官宇先,師日鵬,韓坤,等. 壟作覆膜條件下冬小麥田的氨揮發(fā)研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2011,29(5):163-168.
Shang Guanyuxian, Shi Ripeng, Han Kun, et al. The dynamics of ammonia volatilization in winter wheat field with furrow planting system and ridge with plastic film mulching[J]. Agricultural Research in the Arid Areas, 2011, 29(5): 163-168. (in Chinese with English abstract)
[32]倪康,丁維新,蔡祖聰. 有機無機肥長期定位試驗土壤小麥季氨揮發(fā)損失及其影響因素研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2009,28(12):2614-2622.
Ni Kang, Ding Weixin, Cai Zucong. Ammonia volatilization from soil as affected by long-term application of organic manure and chemical fertilizers during wheat growing season[J]. Journal of Agro-Environment Science, 2009, 28(12): 2614-2622. (in Chinese with English abstract)
[33]鄧美華,尹斌,張紹林,等. 不同施氮量和施氮方式對稻田氨揮發(fā)損失的影響[J]. 土壤,2006,38(3):263-269.
Deng Meihua, Yin Bin, Zhang Shaolin, et al. Effects of rate and method of N application on ammonia volatilization in paddy fields[J]. Soils, 2006, 38(03): 263-269. (in Chinese with English abstract)
[34]董文旭,胡春勝,陳素英,等. 保護性耕作對冬小麥-夏玉米農(nóng)田氮肥氨揮發(fā)損失的影響[J]. 中國農(nóng)業(yè)科學(xué),2013,46(11):2278-2284.
Dong Wenxu, Hu Chunsheng, Chen Suying, et al. Effect of conservation tillage on ammonia volatilization from nitrogen fertilizer in winter wheat-summer maize cropping system[J]. Scientia Agricultura Sinica, 2013, 46(11): 2278-2284. (in Chinese with English abstract)
[35]曹兵,李新慧,張琳,等. 冬小麥不同基肥施用方式對土壤氨揮發(fā)的影響[J]. 華北農(nóng)學(xué)報,2001,16(2):83-86.
Cao Bing, Li Xinhui, Zhang Lin, et al. Effect of different basal-dressing application methods on soil ammonia volatilization from winter wheat field[J]. Acta Agriculturae Boreali-Sinica, 2001, 16(2): 83-86. (in Chinese with English abstract)
[36]關(guān)連珠. 普通土壤學(xué)[M]. 北京:中國農(nóng)業(yè)大學(xué)出版社,2016.
[37]朱霞,韓曉增,喬云發(fā),等. 外加可溶性碳、氮對不同熱量帶土壤氨揮發(fā)的影響[J]. 環(huán)境科學(xué),2009,30(12):3465-3470.
Zhu Xia, Han Xiaozeng, Qiao Yunfa, et al. Influence of soluble carbon and nitrogen on ammonia volatilization from different thermal zones soil[J]. Environmental Science, 2009, 30(12): 3465-3470. (in Chinese with English abstract)
[38]李紫燕,李世清,李生秀. 銨態(tài)氮肥對黃土高原典型土壤氮素激發(fā)效應(yīng)的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2008,14(5):866-873.
Li Ziyan, Li Shiqing, Li Shengxiu. Priming effect of ammonium nitrogen fertilizer on soil nitrogen in typical soils of Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2008, 14(5): 866-873. (in Chinese with English abstract)
[39]呂殿青,張樹蘭,楊學(xué)云. 外加碳、氮對土壤氮礦化、固定與激發(fā)效應(yīng)的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2007,13(2):223-229.
Lu Dianqing, Zhang Shulan, Yang Xueyun. Effect of supplying C and N on the mineralization, immobilization and priming effect of soil nitrogen[J]. Plant Nutrition and Fertilizer Science, 2007, 13(2): 223-229. (in Chinese with English abstract)
[40]呂殿青,張樹蘭,楊學(xué)云. 外加碳、氮對黃綿土有機質(zhì)礦化與激發(fā)效應(yīng)的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2007,13(3):423-429.
Lü Dianqing, Zhang Shulan, Yang Xueyun. Effect of supplying C and N on the mineralization and priming effect of organic matter in loessial soil[J]. Plant Nutrition and Fertilizer Science, 2007, 13(3): 423-429. (in Chinese with English abstract)
[41]貝水寬. 施肥對石灰性土壤硝化過程和激發(fā)效應(yīng)相關(guān)微生物區(qū)系的影響[D]. 北京:中國農(nóng)業(yè)大學(xué),2019.
Bei Shuikuan. Effects of Fertilization on the Community Composition of Soil Microbiome Associated with Nitrification and Priming Effect on Calcareous Soils[D]. Beijing: China Agricultural University, 2019. (in Chinese with English abstract)
[42]王朝輝,劉學(xué)軍,巨曉棠,等. 田間土壤氨揮發(fā)的原位測定:通氣法[J]. 植物營養(yǎng)與肥料學(xué)報,2002,8(2):205-209.
Wang Chaohui, Liu Xuejun, Ju Xiaotang, et al. Field in situ determination of ammonia volatilization from soil: Venting method[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205-209. (in Chinese with English abstract)
[43]楊陽,李娜,王林權(quán),等. 壟作對降低黃土高原南部冬小麥田氨揮發(fā)風(fēng)險的影響[J]. 環(huán)境科學(xué)研究,2015,28(3):431-439.
Yang Yang, Li Na, Wang Linquan, et al. Effects of ridge tillage practices on reducing ammonia volatilization from winter wheat fields in southern loess plateau of China[J]. Research of Environmental Sciences, 2015, 28(3): 431-439. (in Chinese with English abstract)
[44]Zhang Yunhai, He Nianpeng, Zhang Guangming, et al. Ammonia emissions from soil under sheep grazing in inner mongolian grasslands of China[J]. Journal of Arid Land, 2013, 5(2): 155-165.
[45]吳艷香. 土壤氨揮發(fā)方法優(yōu)選及不同pH值的影響[J]. 貴州科學(xué),2017,35(5):85-90.
Wu Yanxiang. Optimization of ammonia volatilization testing methods and effects of pH value on ammonia volatilization[J]. Guizhou Science, 2017, 35(5): 85-90. (in Chinese with English abstract)
[46]周偉,田玉華,曹彥圣,等. 兩種氨揮發(fā)測定方法的比較研究[J]. 土壤學(xué)報,2011,48(5):1090-1095.
Zhou Wei, Tian Yuhua, Cao Yansheng, et al. A comparative study on two methods for determination of ammonia volatilization[J]. Acta Pedologica Sinica, 2011, 48(5): 1090-1095. (in Chinese with English abstract)
Ammonia volatilization from winter wheat cropland in Northern China based on a literature analysis
Kang Fei, Meng Fanqiao※
(100193,)
Northern China is the main intensive agricultural area for winter wheat-summer maize production in China. In the past 30 years, chemical nitrogen (N) fertilizer was the main source of N input in the farmland ecosystem and plays a key role in crop production and soil quality. Due to the excessive application of chemical N fertilizer and frequent irrigation, fertilizer N usage efficiency was low and was also lost into the environment and this caused many negative environmental pollutions. Among the fates of fertilizer N applied, ammonia volatilization was an important gaseous N loss, and it was one of the main sources of atmospheric ammonia and significantly contributed to the formation of atmospheric pollutant PM2.5. Besides, compared with the acid soil in southern China, the proportion of ammonia volatilization from calcareous soil after N fertilization in northern China was higher. In the past, although many experimental studies have been carried out on ammonia volatilization in northern China Plain, few have systematically investigated the relationship between ammonia volatilization and fertilizer N used, and the efficacies of different ammonia collection methods, i.e., sponge absorption method and vacuum suction method. In this study, the works of literature on ammonia volatilization during the winter wheat season in northern China published from 1980 to 2018 were collected and the methods of regression analysis and T-test were adopted. Among the 31 papers collected in this study, 17 adopted the sponge absorption method and 14 adopted the vacuum suction method to measure the ammonia volatilized after N fertilization during the winter wheat season. The results showed that under farmer’s conventional N fertilization level, the cumulative total ammonia and net ammonia volatilization was exponentially (=2.64e0.006 6x)and power-functionally(=0.004 81.358 9) correlated with the fertilized N rate, respectively. Correspondingly, the average proportion of net ammonia volatilization to total chemical N applied was (6.27±0.98)%. Under the same N rate at the basal and topdressing stages, the corresponding ammonia volatilization was 58.7% and 41.3% of the total ammonia volatilization in the whole wheat season, indicating the higher contribution of N volatilization at the basal stage, and the importance of mitigation the ammonia volatilization for winter wheat season. At the fertilization rate of 180 kg/hm2during the winter wheat season, the ammonia volatilization determined by the vacuum suction method and the sponge absorption method was similar. At the fertilization rate of <180 kg/hm2, the ammonia volatilization determined by the sponge absorption method was 0-5% higher than that of the vacuum suction method and at 180-400 kg/hm2, the vacuum suction method was 0-6.9% higher than that of the sponge absorption method, although the statistic differences between these two methods were not significant. This study also found the priming effect of the ammonia volatilization due to chemical N fertilization was 21.8%±3.57%; the net ammonia volatilization determined without considering of priming effect was significantly higher than that determined with considering of priming effect. The mitigation of ammonia volatilization in the winter wheat season should focus on optimizing the N fertilization rate, mainly at the basal fertilization stage, and combined with other farming measures such as drip irrigation and soil mulching). During the field study of ammonia volatilization caused by chemical N fertilization, the priming effect and the overestimate of ammonia volatilization should not be neglected. Differences of NH3volatilization via the sponge absorption method and the vacuum suction method should also be taken into consideration.
winter wheat; ammonia volatilization; fertilizer N rate; fertilization period; vacuum suction; sponge absorption
康 飛,孟凡喬. 基于文獻分析的北方冬麥田氨揮發(fā)特性[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(1):228-234.doi:10.11975/j.issn.1002-6819.2020.01.027 http://www.tcsae.org
Kang Fei, Meng Fanqiao. Ammonia volatilization from winter wheat cropland in Northern China based on a literature analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 228-234. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.027 http://www.tcsae.org
2019-11-24
2019-12-18
國家重點研發(fā)計劃項目(2017YFD0800605和2016YFD0800104)
康 飛,博士,研究方向:面源污染與農(nóng)田養(yǎng)分循環(huán)。Email:15612246306@163.com
孟凡喬,教授,博士,主要從事面源污染與農(nóng)業(yè)物質(zhì)循環(huán)研究。Email:mengfq@cau.edu.cn
10.11975/j.issn.1002-6819.2020.01.027
S143.1
A
1002-6819(2020)-01-0228-07