徐 智,張 勇,陳雪嬌,王宇蘊(yùn)
稻殼-雞糞好氧高溫堆肥體系中磷石膏消納能力的研究
徐 智,張 勇,陳雪嬌,王宇蘊(yùn)※
(云南農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,昆明 650201)
為探究堆肥體系中磷石膏的消納能力,增加磷石膏資源化利用強(qiáng)度,該研究以稻殼作為主要原料,以雞糞為輔料,添加基于堆肥有機(jī)物料(干質(zhì)量)的0、10%、20%、30%和40%磷石膏(CK、P10、P20、P30和P40)作為堆肥調(diào)理劑,研究其對(duì)高溫堆肥過(guò)程中堆肥的物理、化學(xué)、生物指標(biāo)以及堆肥腐熟后堆料品質(zhì)性狀的影響,從肥料化的角度,探究稻殼-雞糞堆肥體系中磷石膏的消納能力。結(jié)果表明,相比于CK而言,磷石膏添加量在10%~30%明顯促進(jìn)了堆料溫度的快速上升和高溫時(shí)間,增加堆肥的發(fā)酵強(qiáng)度。當(dāng)磷石膏的添加量超過(guò)20%以后,隨著磷石膏添加量的增加,堆肥持續(xù)高溫期的時(shí)間有明顯減少。添加40%磷石膏處理稀釋效應(yīng)太明顯,堆肥結(jié)束以后,堆肥的總有機(jī)碳的絕對(duì)含量較低,導(dǎo)致堆肥產(chǎn)物的有機(jī)質(zhì)含量(34.3%)不達(dá)標(biāo)。添加磷石膏可以提高堆體的種子發(fā)芽指數(shù),到堆肥結(jié)束時(shí),CK、P10、P20、P30和P40的種子發(fā)芽指數(shù)分別為65.43%、86.54%、97.52%、81.35%和71.40%。但P40處理到堆肥結(jié)束時(shí),水溶性銨態(tài)氮含量還高達(dá)528.2 mg/kg。與CK處理相比,P10、P20和P30處理的養(yǎng)分含量增加顯著, 且均符合NY525-2012標(biāo)準(zhǔn)要求。各處理重金屬含量均未超過(guò)NY525-2012標(biāo)準(zhǔn)的要求,但磷石膏的添加仍有增加堆肥重金屬的風(fēng)險(xiǎn)。綜合添加磷石膏對(duì)堆肥腐熟度的影響和堆肥品質(zhì)的影響來(lái)看,在稻殼為主要原料的堆肥體系中,添加有機(jī)物料干質(zhì)量的30%的磷石膏,是本堆肥體系磷石膏最大的消納量。
稻殼;雞糞;堆肥;磷石膏;消納能力
磷石膏是磷肥生產(chǎn)過(guò)程中的一種酸性副產(chǎn)品[1]。磷肥工業(yè)中每生產(chǎn)1 t磷酸大約產(chǎn)出5 t的磷石膏[2]。據(jù)統(tǒng)計(jì)2018年中國(guó)磷石膏產(chǎn)量達(dá)到7 800萬(wàn)t,其綜合利用率只有40%[3]。磷石膏主要利用領(lǐng)域?yàn)楣I(yè)和建筑業(yè)。此外,磷石膏也可用來(lái)改良鹽堿土,提高土壤肥力[4]。但是磷石膏本身具有強(qiáng)酸性,可能有重金屬污染風(fēng)險(xiǎn),對(duì)農(nóng)作物成長(zhǎng)與農(nóng)產(chǎn)品安全存在一定隱患[5],極大地限制了磷石膏直接農(nóng)用。
大量的研究表明,農(nóng)業(yè)有機(jī)固體廢棄物與磷石膏聯(lián)合堆肥,是實(shí)現(xiàn)磷石膏的資源化利用一條有效途徑[6-8]。因?yàn)榱资嗟膹?qiáng)酸性、顆粒細(xì)小、容重大等特點(diǎn),結(jié)合絕大多數(shù)以畜禽糞便為主的堆肥體系的實(shí)際,從影響堆肥進(jìn)程的角度來(lái)看適宜磷石膏的添加量為10%左右[9]。限制了磷石膏在堆肥體系的大量應(yīng)用,影響磷石膏農(nóng)用的消納能力。堆肥體系對(duì)磷石膏的消納能力可能跟堆肥產(chǎn)品的利用方向以及堆肥原料性質(zhì),特別是原料的孔隙度和容重有密切關(guān)系,如:陳雪嬌等[6]研究表明,在稻殼與油枯聯(lián)合堆肥開(kāi)發(fā)基質(zhì)的研究中,添加磷石膏可以明顯增加堆體維持高溫時(shí)間,加快堆體腐熟進(jìn)程,并且磷石膏的添加量最多可以達(dá)到40%而不至于影響堆肥進(jìn)程。
中國(guó)是一個(gè)水稻生產(chǎn)和加工大國(guó),每年產(chǎn)生稻殼0.4億噸[10]。稻殼在堆肥體系中是很好的輔料,其在調(diào)節(jié)C/N比的同時(shí),還有利于堆料的通風(fēng)和供氧[11]。但在中國(guó)的某些區(qū)域,稻殼的產(chǎn)生量大,畜禽糞便等高氮原料又不足的情況下,稻殼作為堆肥處理,只能當(dāng)作主要原料來(lái)對(duì)待,而稻殼作為主要原料來(lái)堆肥,稻殼孔隙度大、容重小就成為它的弊端[12]。利用磷石膏作為堆肥原料的填充物,正好可以有效改善堆肥物料的孔隙度和容重,達(dá)到促進(jìn)堆肥進(jìn)程的目的。但是磷石膏添加量過(guò)多,又會(huì)影響堆肥品質(zhì)[6]。因此,本研究以稻殼作為主要原料,以適當(dāng)量的雞糞為輔料,通過(guò)添加基于堆肥有機(jī)物料(干質(zhì)量)不同磷石膏比例,研究其對(duì)高溫堆肥過(guò)程中堆體的溫度、酸堿度(pH)和種子發(fā)芽指數(shù)(germination index,GI)等物理、化學(xué)、生物指標(biāo)的影響以及堆肥腐熟后堆料品質(zhì)性狀的影響,探究稻殼-雞糞堆肥體系中磷石膏的消納能力,為最大實(shí)現(xiàn)磷石膏的資源化利用提供科學(xué)依據(jù)。
試驗(yàn)于2017年4月至2017年5月在云南農(nóng)業(yè)大學(xué)溫室大棚內(nèi)進(jìn)行,環(huán)境溫度在20~26 ℃間。稻殼來(lái)自晉寧科貿(mào)有限公司,磷石膏來(lái)自晉寧昆陽(yáng)磷肥廠,雞糞來(lái)自昆明云南農(nóng)業(yè)大學(xué)養(yǎng)殖基地,其主要成分見(jiàn)表1。
表1 主要堆肥原料的基本理化性質(zhì)
注:“-”表示該原料的該指標(biāo)未檢或未檢測(cè)出。
Note: “-” indicates the index of the material was not detected.
選取泡沫塑料箱(55 cm×25 cm×34 cm)作為好氧發(fā)酵裝置。先用保鮮膜覆蓋各個(gè)箱體四周,再用透明膠帶纏繞,為的是加強(qiáng)泡沫箱的保溫作用。最后在箱體底部的最右側(cè)打一個(gè)小孔,插入皮管通氣。
磷石膏過(guò)2 mm篩備用。以稻殼為主要原料,以雞糞為輔料,按照C/N比為30配制和混合有機(jī)物料。保證每個(gè)堆肥處理的有機(jī)物料總量相等前提下,按照有機(jī)物料干重的10%、20%、30%和40%添加磷石膏(磷石膏的添加量以干重計(jì),分別記作P10、P20、P30和P40處理),并以不添加磷石膏添的處理為對(duì)照(記為CK處理)??偣?個(gè)處理,每個(gè)處理重復(fù)3次,各處理含水率調(diào)為55%。發(fā)酵過(guò)程中通氣頻率設(shè)定為6 min/h,通氣速率為5 L/min。堆肥前一周每日翻堆1次,之后每3 d翻堆1次。
1.31 樣品采集
在堆肥的第0天、第3天、第6天、第12天、第18天、第24天和第30天進(jìn)行取樣。采用多點(diǎn)取樣法獲取300 g混合均樣。平均分成2份,1份風(fēng)干和磨碎,過(guò)1 mm篩備用;1份于4 ℃冰箱保存待用。
1.32 指標(biāo)測(cè)定與方法
每日上午10時(shí)采用溫度計(jì)測(cè)定箱體中心溫度,同時(shí)測(cè)定周?chē)h(huán)境溫度。稱(chēng)取待測(cè)鮮樣5 g,與50 ml蒸餾水混勻,振蕩2 h后過(guò)濾,吸取濾液5 ml加到墊有1張9 cm定性濾紙的干燥培養(yǎng)皿中,每個(gè)培養(yǎng)皿均放入20粒飽滿(mǎn)的水芹種子(),置于25 ℃恒溫培養(yǎng)箱中培養(yǎng)48 h,測(cè)定種子發(fā)芽率與根長(zhǎng)。同時(shí)以蒸餾水為空白,每個(gè)處理重復(fù)3次。
根據(jù)黃紅英等[13]的方法計(jì)算種子發(fā)芽指數(shù)(germination index,GI);根據(jù)Sciubba等[14]的方法測(cè)定酸堿度(pH)和電導(dǎo)率(electrical conductivity,EC);全氮(total nitrogen,TN)和總有機(jī)碳(total organic carbon,TOC)測(cè)定方法參照農(nóng)業(yè)部有機(jī)肥料NY525-2012標(biāo)準(zhǔn)進(jìn)行[15]。
稱(chēng)取2 g鮮樣放置于三角瓶中,并加入1 mol/L氯化鉀浸提液40 mL,于恒溫震蕩機(jī)中180 r/min下振蕩60 min,再用定性濾紙過(guò)濾[16]。過(guò)濾液體保存在4 ℃冰箱,用Auto Analyz 3 High Resolution連續(xù)流動(dòng)分析儀測(cè)定浸提液中水溶性NH+4-N含量。
堆肥原料及產(chǎn)品重金屬元素Cd、Pb和Cr采用原子吸收光度法進(jìn)行分析,As和Hg采用原子熒光儀進(jìn)行測(cè)定[17]。
采用Microsoft Excel 2010軟件作圖,運(yùn)用Microsoft Excel 2010軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)處理,SPSS 21軟件對(duì)數(shù)據(jù)進(jìn)行LSD多重比較,<0.05表示差異顯著。
2.1.1 溫度變化
在高溫好氧堆肥發(fā)酵過(guò)程中,堆體內(nèi)部溫度是表征微生物活性與有機(jī)物料腐熟進(jìn)程的主要指標(biāo),也是整個(gè)堆肥工藝中的關(guān)鍵因素。研究表明,堆體內(nèi)部溫度≥50 ℃并維持5~7 d,會(huì)對(duì)堆料中的致病微生物和害蟲(chóng)卵起到殺害作用,從而達(dá)到堆肥工藝的安全標(biāo)準(zhǔn)[18]。從圖1可知,各處理堆體內(nèi)部溫度呈現(xiàn)先快速上升,再保持穩(wěn)定,后期呈下降趨勢(shì)。CK、P10、P20、P30和P40進(jìn)入高溫期的時(shí)間分別為第4天(d)、第2天、第2天、第3天和第3天;維持高溫期間的時(shí)間分別為8、11、13、10和9 d。說(shuō)明磷石膏添加可能增加了堆料的孔隙,有利于熱量的累積,即添加適量磷石膏能夠加快堆體達(dá)到高溫的速度,并維持堆體高溫。但當(dāng)磷石膏的添加量超過(guò)20%以后,隨著磷石膏添加量的增加,堆肥持續(xù)高溫期的時(shí)間有所減少,充分說(shuō)明太多的磷石膏添加也可能影響堆肥的發(fā)酵強(qiáng)度。
2.1.2 酸堿度(pH)與電導(dǎo)率(EC)的變化
酸堿度(pH)是影響微生物活動(dòng)的重要因素,是直接反應(yīng)內(nèi)部酸堿程度的重要指標(biāo)。從圖2a可知,pH值變化范圍在3.0~8.0之間,各處理pH值隨著堆肥的進(jìn)行,總體呈現(xiàn)先緩慢上升后下降趨勢(shì),均在第18天達(dá)到最大值。添加磷石膏明顯地降低了堆料的pH值,處理CK、P10、P20、P30和P40初始pH值分別為5.12、4.83、4.73、3.87和3.27,至堆肥結(jié)束時(shí),各組處理pH值分別為6.80,6.15,6.47,6.01和5.02,這可能和磷石膏具有強(qiáng)酸性(pH值為1.53)有直接關(guān)系。
注:CK,未添加磷石膏;P10,添加10%磷石膏;P20,添加20%磷石膏;P30,添加30%磷石膏;P40,添加40%磷石膏,下同。
電導(dǎo)率(electrical conductivity,EC)是表征堆肥鹽分含量的重要指標(biāo)。圖2b中各處理EC值呈現(xiàn)先上升再下降趨勢(shì)。初期各處理EC值分別為1.67、2.58、2.70、3.53和3.93,至結(jié)束時(shí)分別為2.04、3.16、3.38、3.50和3.59。堆肥初期及堆肥結(jié)束時(shí)所添加磷石膏的各組處理EC值均大于CK處理,且磷石膏添加比例越大,EC值越大,這可能與磷石膏本身EC值偏高有關(guān)。聶艷麗等[19]認(rèn)為堆肥腐熟后物料EC值在0.75~3.50 ms/cm之間為宜,除了P40處理不符合其要求,其他處理均滿(mǎn)足條件。
2.1.3 總有機(jī)碳(TOC)含量變化
圖2c中明顯可以看出,各組處理的總有機(jī)碳(total organic carbon,TOC)含量整體呈現(xiàn)下降趨勢(shì),且由于磷石膏的稀釋效應(yīng),磷石膏的添加可以顯著降低堆肥物料的TOC含量。劉媛媛等[7]的研究結(jié)果表明,磷石膏的添加可以增加堆肥的發(fā)酵強(qiáng)度,本研究的研究結(jié)果也進(jìn)一步印證適當(dāng)?shù)牧资嗟奶砑佑欣诙逊实陌l(fā)酵強(qiáng)度(圖1),正因?yàn)榱资啻龠M(jìn)了堆肥的發(fā)酵,到堆肥結(jié)束時(shí)添加磷石膏處理的TOC減少的幅度普遍較CK高,堆肥結(jié)束后CK、P10、P20、P30和P40處理較堆肥開(kāi)始時(shí),TOC含量分別減少了11.32%、12.78%、12.53%、12.19%和11.61%。當(dāng)磷石膏的添加量超過(guò)20%以后,隨著磷石膏添加量的增加,因?yàn)槎逊食掷m(xù)高溫期的時(shí)間有所減少,減弱了堆肥的發(fā)酵強(qiáng)度,故30%和40%磷石膏添加量處理TOC絕對(duì)損失量較20%磷石膏添加量處理要少。堆肥TOC的變化與堆肥溫度反應(yīng)的磷石膏影響堆肥強(qiáng)度的趨勢(shì)一致(圖1)。但是添加40%磷石膏處理由于磷石膏添加量大,稀釋效應(yīng)太明顯,堆肥結(jié)束以后,堆肥的TOC絕對(duì)含量較低,可能會(huì)導(dǎo)致堆肥產(chǎn)物的有機(jī)質(zhì)含量不達(dá)標(biāo)。
2.1.4 水溶性銨態(tài)氮(NH4+-N)含量的變化
從圖2d可以看出來(lái),堆體發(fā)酵前期,各處理水溶性NH+4-N含量迅速增加,在第6天達(dá)到最大值,之后迅速下降。堆肥pH是影響堆肥過(guò)程中NH3揮發(fā)的重要因素[20-22],可能是因?yàn)閺?qiáng)酸性磷石膏的添加,顯著地降低了堆體pH值,進(jìn)而減少NH3在高溫期揮發(fā),所以,堆肥0~6 d,添加磷石膏處理的水溶性NH4+-N含量增速高于CK處理??赡苁前l(fā)酵強(qiáng)度的影響(圖1和圖2b),導(dǎo)致CK處理NH4+-N含量下降較慢,到堆肥結(jié)束時(shí)NH4+-N濃度還有437.1 mg/kg,而40%磷石膏的添加量太多,導(dǎo)致堆肥的pH值太低(圖2a),可能是P40處理NH4+-N含量下降較慢的重要原因,到堆肥結(jié)束時(shí)其N(xiāo)H4+-N含量還有528.2 mg/kg。這些結(jié)果與陳雪嬌研究的不同磷石膏對(duì)稻殼與油枯堆肥過(guò)程水溶性NH4+-N含量的影響結(jié)果相似[7]。按照堆體發(fā)酵腐熟時(shí)水溶性NH4+-N含量小于400 mg/kg要求[23],處理P10、P20和P30均符合堆肥腐熟的要求。
圖2 堆肥過(guò)程中化學(xué)和生物指標(biāo)變化
2.1.5 種子發(fā)芽指數(shù)(GI)的變化
堆肥的生物指標(biāo)主要體現(xiàn)在堆肥的成品對(duì)植物生長(zhǎng)的影響及堆肥中微生物的變化,其中包括種子發(fā)芽指數(shù)(germination index,GI)。未腐熟的堆肥物料對(duì)植物有一定毒害,而GI值是測(cè)定堆肥原料有無(wú)毒性最敏感的指標(biāo)。當(dāng)GI值>50%時(shí),堆肥毒性較低;當(dāng)GI值>80%,堆肥完全腐熟[24]。如圖2e所示,至堆肥結(jié)束時(shí),各處理的GI值相應(yīng)為65.43%、86.54%、97.52%、81.35%和71.40%。說(shuō)明添加磷石膏可以提高堆體GI值,可能是因?yàn)榱资嗟奶砑釉黾恿硕洋w孔隙度,良好的水氣條件促進(jìn)微生物的生長(zhǎng)[16],增加了堆肥的發(fā)酵強(qiáng)度,這一結(jié)果與圖1和圖2b的結(jié)果相互印證。相比于P10、P20和P30處理,P40處理因磷石膏添加量過(guò)多,影響了其堆肥發(fā)酵的強(qiáng)度(圖1和圖2c),同時(shí)可能因?yàn)镻40有較高的EC值(圖2b),所以P40處理的GI值明顯低于P10、P20和P30 處理。說(shuō)明添加過(guò)多的磷石膏對(duì)堆肥的腐熟程度可能有抑制作用。
與CK處理比較,堆肥結(jié)束后,P10、P20和P30處理的養(yǎng)分含量增加顯著,且總養(yǎng)分含量≥5%(表2),由于P40 處理添加磷石膏量過(guò)大,稀釋效應(yīng)明顯,堆肥結(jié)束時(shí)TOC絕對(duì)含量低(圖2c),導(dǎo)致其堆肥產(chǎn)品有機(jī)質(zhì)含量<45%。隨著磷石膏添加量的增加,堆肥產(chǎn)品的重金屬含量均表現(xiàn)出明顯的增加(表2),但堆肥各處理重金屬的含量均符合NY525-2012標(biāo)準(zhǔn)要求[15]。參照NY525-2012標(biāo)準(zhǔn)要求[15],30%磷石膏添加量為本堆肥體系最大消納量。
表2 堆肥的品質(zhì)性狀
注:CK,未添加磷石膏; P10,添加10%磷石膏; P20,添加20%磷石膏; P30,添加30%磷石膏; P40,添加40%磷石膏。同一列不同堆肥體系內(nèi)的不同小寫(xiě)字母表示在<0.05水平上差異顯著。
Note: CK, added without phosphogypsum; P10, added 10% phosphogypsum; P20, added 20% phosphogypsum; P30, added 30% phosphogypsum; P40, added 40% phosphogypsum. Different lowercase letters in the same column of different composting systems show significant differences at<0.05.
相比于稻殼為主要原料的堆肥處理(CK)而言,磷石膏的添加可以增加堆肥的發(fā)酵強(qiáng)度,顯著增加堆肥產(chǎn)品的養(yǎng)分含量,其中堆肥過(guò)程中添加10%~30%磷石膏處理能夠獲得較為理想的腐熟度和符合NY525-2012標(biāo)準(zhǔn)要求的養(yǎng)分含量,雖然添加10%~40%磷石膏后堆肥產(chǎn)品的重金屬含量均不超標(biāo),但磷石膏的添加有增加堆肥重金屬的風(fēng)險(xiǎn)。
綜合添加磷石膏對(duì)堆肥腐熟度的影響和堆肥品質(zhì)的影響,在稻殼為主要原料的堆肥體系中,添加有機(jī)物料干質(zhì)量的30%的磷石膏,是本堆肥體系磷石膏最大的消納量。
[1] 谷林靜,白來(lái)漢,張乃明,等. 菌根技術(shù)對(duì)磷石膏農(nóng)用的強(qiáng)化效應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2013,29(17):152-159.
Gu Linjing, Bai Laihan, Zhang Naiming, et al. Strengthening effect of mycorrhizal technology on application of phosphogypsum in agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(17): 152-159. (in Chinese with English abstract)
[2] Novikova A P, Perova N M, Chupakhin O N. Assessment of phosphogypsum impact on the salt-marshes of the Tinto River (SW Spain): Role of natural attenuation processes[J]. Marine Pollution Bulletin, 2011, 62(12): 2787-2796.
[3] 葉學(xué)東. 2018年我國(guó)磷石膏利用現(xiàn)狀、問(wèn)題及建議[J]. 磷肥與復(fù)肥,2019,34(7):1-4.
Ye Xuedong. Current situation, existing problems and suggestions of phosphogypsum utilization in China in 2018[J]. Phosphate & Compound Fertilizer, 2019, 34(7): 1-4. (in Chinese with English abstract)
[4] Alenazy A A, Albarakah F, Aloud S, et al. Effect of phosphogypsum application and bacteria co-inoculation on biochemical properties and nutrient availability to maize plants in a saline soil[J]. Archives of Agronomy & Soil Science, 2018, 64(10): 1394-1406.
[5] 張麗,岳獻(xiàn)榮,谷林靜,等. 接種叢枝菌根真菌和施用磷石膏對(duì)烤煙生長(zhǎng)及砷累積的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(7):1294-1303.
Zhang Li, Yue Xianrong, Gu Linjing, et al. Effects of arbuscular mycorrhizal fungi and phosphogypsum on growth and arsenic accumulation of tobacco (L.)[J]. Journal of Agro-Environment Science, 2014, 33(7): 1294-1303. (in Chinese with English abstract)
[6] 陳雪嬌,王宇蘊(yùn),徐智,等. 不同磷石膏添加比例對(duì)稻殼與油枯堆肥過(guò)程的影響及基質(zhì)化利用的評(píng)價(jià)[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2018,37(5):1001-1008.
Chen Xuejiao, Wang Yuyun, Xu Zhi, et al. Effect of phosphogypsum addition on the rice husk and oil cake composting process and evaluation of its physicochemical character as a substrate[J]. Journal of Agro-Environment Science, 2018, 37(5): 1001-1008. (in Chinese with English abstract)
[7] 劉媛媛,徐智,陳卓君,等. 外源添加磷石膏對(duì)堆肥碳組分及腐殖質(zhì)品質(zhì)的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2018,37(11):2483-2490.
Liu Yuanyuan, Xu Zhi, Chen Zhuojun, et al. Effects of phosphogypsum addition on carbon fractions and humus quality during composting[J]. Journal of Agro-Environment Science, 2018, 37(11): 2483-2490. (in Chinese with English abstract)
[8] 羅希榕,覃成,劉方,等. 添加磷石膏城市垃圾堆肥對(duì)草坪草生長(zhǎng)及草坪質(zhì)量的影響[J]. 貴州農(nóng)業(yè)科學(xué),2009,37(5):109-112.
Luo Xirong, Qin Cheng, Liu Fang, et al. The effect of urban rubbish compositing manure with different phosphogypsum proportion on grass growth and lawn quality[J]. Guizhou Agricultural Sciences, 2009, 37(5): 109-112.(in Chinese with English abstract)
[9] 范茂攀,湯利,徐智,等. 橡膠籽油枯-鋸末-磷石膏聯(lián)合堆肥過(guò)程研究[J]. 云南農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,28(5):750-754.
Fan Maopan, Tang Li, Xu Zhi, et al. Study on co-composting process of rubber seed oil cake, sawdust and phosphogypsum[J]. Journal of Yunnan Agricultural University, 2013, 28(5): 750-754. (in Chinese with English abstract)
[10] Zheng Jilu. Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80(1): 30-35.
[11] 李赟,袁京,李國(guó)學(xué),等. 輔料添加對(duì)廚余垃圾快速堆肥腐熟度和臭氣排放的影響[J]. 中國(guó)環(huán)境科學(xué),2017,37(3):1031-1039.
Li Yun, Yuan Jing, Li Guoxue, et al. Use of additive to control odors and promote maturity of municipal kitchen waste during aerobic com posting[J]. China Environmental Science, 2017, 37(3): 1031-1039. (in Chinese with English abstract)
[12] 尚秀華,謝耀堅(jiān),楊小紅,等. 4種不同氮源對(duì)稻殼腐熟處理效果的研究[J]. 熱帶作物學(xué)報(bào),2011,32(12):2226-2230.
Shang Xiuhua, Xie Yaojian, Yang Xiaohong, et al. The effect of four different nitrogen sources on rice husk compost[J]. Chinese Journal of Tropical Crops, 2011, 32(12): 2226-2230. (in Chinese with English abstract)
[13] 黃紅英,孫恩惠,武國(guó)峰,等. 麥秸秸稈花盆堆肥化研究及評(píng)價(jià)[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(12):2386-2393.
Huang Hongying, Sun Enhui, Wu Guofeng, et al. Composting of wheat straw flowerpots and its evaluation[J]. Journal of Agro-Environment Science, 2015, 34(12): 2386-2393. (in Chinese with English abstract)
[14] Sciubba L, Cavani L, Marzadori C, et al. Effect of biosolids from municipal sewage sludge composted with rice husk on soil functionality[J]. Biology and Fertility of Soils, 2013, 49(5): 597-608.
[15] 中華人民共和國(guó)農(nóng)業(yè)部. 有機(jī)肥料:NY525-2012[S]. 2012, 03.
[16] 谷思玉,蔡海森,閆立龍,等. 雞糞與稻殼好氧堆肥的不同C/N研究[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,46(4):51-58.
Gu Siyu, Cai Haisen, Yan Lilong, et al. Study on different C/N ratio of aerobic composting between chicken manure and rice husk[J]. Journal of Northeast Agricultural University, 2015, 46(4): 51-58. (in Chinese with English abstract)
[17] 王萍,劉靜,朱健,等. 巖溶山區(qū)磷石膏堆場(chǎng)重金屬遷移對(duì)耕地質(zhì)量的影響及污染風(fēng)險(xiǎn)管控[J]. 水土保持通報(bào),2019,39(4):294-299.
Wang Ping, Liu Jing, Zhu Jian, et al. Impacts of heavy metal migration on quality of cultivated land and control of pollution risk in phosphogypsum yard in Karst Mountain area[J]. Bulletin of Soil and Water Conservation, 2019, 39(4): 294-299. (in Chinese with English abstract)
[18] 中華人民共和國(guó)衛(wèi)生部.糞便無(wú)害化衛(wèi)生要求:GB 7959-2012[S]. 2012-11.
[19] 聶艷麗,周躍華,曾郁珉,等. 甘蔗渣堆肥化處理及用作山桂花育苗基質(zhì)[J]. 東北林業(yè)大學(xué)學(xué)報(bào),2009,37(2):49-52.
Nie Yanli, Zhou Yuehua, Zeng Yumin, et al. Sugarcane bagasse compost used as param michelia baillonii nursery substrate[J]. Journal of Northeast Forestry University, 2009, 37(2): 49-52. (in Chinese with English abstract)
[20] Mahmoud E, Abd ElKader N. Heavy metal immobilization in contaminated soils using phosphogypsum and rice straw compost[J]. Land Degradation & Development, 2015, 26(8): 819-824.
[21] Yang Fang, Li Guoxue, Shi Hong, et al. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting[J]. Waste Management, 2015, 36(2): 70-76.
[22] Hu Weitong, Zheng Guanyuan, Fang Di, et al. Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study[J]. Waste Management, 2015, 44(7): 55-62.
[23] Bernal M P, Alburquerque J A, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment: A review[J]. Bioresource Technology, 2009, 100(22): 5444-5453.
[24] Wong J W C, Karthikeyan O P, Selvam A. Biological nutrient transformation during composting of pig manure and paper waste[J]. Environmental Technology, 2017, 38(6): 754-761.
Processing capacity of phosphogypsum in rice husk-chicken manure high-temperature composting system
Xu Zhi, Zhang Yong, Chen Xuejiao, Wang Yuyun※
(,,650201,)
The purpose of this study was to explore the processing capacity of phosphogypsum in the composting system and improve the resources utilization intensity of phosphogypsum. The rice husk was used as the main raw material, the chicken manure was used as auxiliary organic material, and the phosphogypsum was used as a compost conditioner. The rice husk and chicken manure were thoroughly mixed in a certain proportion to obtain organic raw materials for composting, which C/N ratio of the raw material was 30. According to the different amount of phosphogypsum added in the composting system, 5 composting treatments were set, including added without phosphogypsum (CK), added 10% phosphogypsum (P10), added 20% phosphogypsum (P20), added 30% phosphogypsum (P30) and added 40% phosphogypsum (P40), which were based on the proportion of organic materials (dry weight) of composting. The moisture content of the composting mixture of 5treatments was adjusted to 55%, and the composting was carried out. The physical, chemical and biological indicators during the composting process and organic matter content, nutrient properties (N, P2O5and K2O), heavy metal content (Hg, As, Cd, Pb and Cr) of compost at the end of composting were studied. The results showed that compared with CK, 10%~30% phosphogypsum addition significantly promoted the rising temperature of composting and maintaining the high-temperature time, increased the fermentation strength of the composting. With the increasing of the addition amount of phospgypsum, the pH value of the composting significantly decreased, and the electrical conductivity value of the composting significantly increased. At the end of composting, the pH value and electrical conductivity value of P40 treatment were 5.02 and 3.59 ms/cm, respectively. After the end of composting, the total organic carbon reduction of treatments with phosphogypsum were generally higher than that of CK (the total organic carbon content of CK, P10, P20, P30 and P40 decreased by 11.32%, 12.78%, 12.53%, 12.19% and 11.61%, respectively), which further indicated that the addition of phosphogypsum was beneficial to increase the fermentation strength of the composting. But the dilution effect of 40% phosphogypsum (P40) was too obvious, resulting in the organic matter content of the compost product not meeting the NY525-2012 standard, which the organic matter content of P40 was 34.3%. Phosphogypsum addition could increase the germination index value of the compost, by the end of composting, the germination index values of CK, P10, P20, P30 and P40 were 65.43%, 86.54%, 97.52%, 81.35% and 71.40%, respectively. However, when P40 was processed to the end of composting, the water-soluble NH4+-N content was still up to 528.2 mg/kg. Compared with CK, the nutrient content of P10, P20 and P30 treatment increased significantly, and all of them met requirements of the NY525-2012 standard. With the increase of the addition amount of phosphogypsum, the contents of Hg, As, Cd, Pb and Cr in composting products increased significantly, and the contents of heavy metals in each treatment did not exceed requirements of the NY525-2012 standard, indicating that the addition of phosphogypsum still had the risk of increasing the contents of heavy metals during the composting, therefore, the heavy metal content of phosphogypsum should be taken into account when it was used as composting conditioner. Thus, the composting system with rice husk as the main raw material, adding 30% phosphogypsum as the dry weight of organic material was the maximum consumption of phosphogypsum. This study explored the processing capacity of phosphogypsum in the rice husk-chicken manure composting system, and the results provided a scientific basis for phosphogypsum promoting the composting efficiency of rice-husk as the main raw material and maximizing the utilization of phosphogypsum in some areas of China in which rice husk production was high and livestock waste was scarce as composting auxiliary materials.
rice husk; chicken manure; composting; phosphogypsum; processing capacity
徐 智,張 勇,陳雪嬌,王宇蘊(yùn). 稻殼-雞糞好氧高溫堆肥體系中磷石膏消納能力的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):208-213.doi:10.11975/j.issn.1002-6819.2020.01.024 http://www.tcsae.org
Xu Zhi, Zhang Yong, Chen Xuejiao, Wang Yuyun. Processing capacity of phosphogypsum in rice husk-chicken manure high-temperature composting system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 208-213. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.024 http://www.tcsae.org
2019-09-01
2019-12-23
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0800607);國(guó)家自然科學(xué)基金項(xiàng)目(31760609);云南農(nóng)業(yè)大學(xué)自然科學(xué)青年科研基金項(xiàng)目(A2006097);云南省萬(wàn)人計(jì)劃青年拔尖人才項(xiàng)目;云南省畜禽糞便資源化產(chǎn)業(yè)技術(shù)體系畜禽養(yǎng)殖廢物生物轉(zhuǎn)化崗位專(zhuān)家項(xiàng)目
徐 智,博士,副教授,主要從事有機(jī)固體廢棄物資源化利用方面的研究。Email:xuzhi9910@126.com
王宇蘊(yùn),講師,主要從事養(yǎng)分循環(huán)利用方面的研究。Email:yuyunwhere@163.com
10.11975/j.issn.1002-6819.2020.01.024
X712
A
1002-6819(2020)-01-0208-06