• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于有效積溫的中國水稻生長模型的構(gòu)建

      2020-03-03 11:46:36蘇李君劉云鶴王全九
      農(nóng)業(yè)工程學(xué)報 2020年1期
      關(guān)鍵詞:有效積溫葉面積作物

      蘇李君,劉云鶴,王全九,2

      基于有效積溫的中國水稻生長模型的構(gòu)建

      蘇李君1,劉云鶴1,王全九1,2※

      (1. 西安理工大學(xué)省部共建西北旱區(qū)生態(tài)水利國家重點實驗室,西安 710048;2. 中國科學(xué)院水利部水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點實驗室,楊凌 712100)

      有效積溫是指作物生長至某一生育階段所需要積累的有效溫度,是反映氣象條件對作物生長影響的主要指標,研究有效積溫對作物生長過程的影響對提高農(nóng)業(yè)生產(chǎn)效率具有重要意義。該文以有效積溫作為氣象因子,收集中國氣象數(shù)據(jù)網(wǎng)中的氣象數(shù)據(jù)和已發(fā)表的學(xué)術(shù)論文中的水稻生長數(shù)據(jù),建立了描述水稻生長過程的葉面積指數(shù)和干物質(zhì)積累量的普適Logistic模型,并研究了水稻最大葉面積指數(shù)與最大干物質(zhì)積累量、收獲指數(shù)(作物經(jīng)濟產(chǎn)量與生物產(chǎn)量的比值)及降水量之間的關(guān)系。結(jié)果表明:有效積溫為1 000 ℃左右時,水稻葉面積指數(shù)最大,且此時干物質(zhì)增長速率最大;水稻最大葉面積指數(shù)與最大干物質(zhì)積累量之間表現(xiàn)為線性關(guān)系;最大葉面積指數(shù)和收獲指數(shù)、降水量之間為二次拋物線關(guān)系,當(dāng)降水量為670.5 mm時,最大葉面積指數(shù)為7.93,對應(yīng)的水稻收獲指數(shù)達到最大值0.50。該研究對于構(gòu)建其他作物的生長模型具有一定的參考意義。

      降水量;生物量;水稻;有效積溫;作物生長指標;Logistic模型

      0 引 言

      水稻是中國的主要糧食作物之一,其種植面積占谷物總種植面積的32.5%,產(chǎn)量占糧食總產(chǎn)量的37.9%[1]。但近年來,隨著氣候變化,水稻生育期內(nèi)的高溫和暴雨天氣頻發(fā),直接導(dǎo)致了稻米質(zhì)量下降,甚至造成減產(chǎn),糧食安全受到威脅[2]。有研究表明,相較于20世紀,21世紀水稻生育期內(nèi)的平均日照時數(shù)減少了11.93%,總降水量增加了1.59%,平均降水強度增加了3.22%,而溫度每升高1 ℃,水稻單產(chǎn)將下降4%~10%[3]。因此,為了水稻生產(chǎn)管理適應(yīng)氣候變化,結(jié)合氣象因素來研究氣候變化情況下水稻的生長特征,建立普適的水稻生長模型已經(jīng)刻不容緩。

      近年來眾多學(xué)者對作物生長指標的模型研究較多,王信理[4]對Logistic方程進行了深入分析,考慮了作物群體狀態(tài)與時間的影響,建立了Logistic方程修正形式,即作物普適生長函數(shù)。該模型對于后季稻(晚熟稻)以及南亞熱帶等稻區(qū)的雜交水稻生長后期干物質(zhì)積累下降趨勢的描述較好,擬合效果顯著。林瑞余等[5]研究發(fā)現(xiàn)其試驗所選3種品種水稻的干物質(zhì)積累隨時間變化趨勢均為“S”型,并利用三次曲線模型和Logistic模型分別模擬,結(jié)果顯示三次曲線擬合精度較高。李艷大等[6]將水稻不同生育期的地上干物質(zhì)累積量與輻熱積進行了“歸一化”處理,經(jīng)建模及模型篩選后,選擇擬合效果好且各參數(shù)具有生物學(xué)意義的Richards模型作為水稻相對干物質(zhì)積累的動態(tài)模型。上述研究表明,相同地區(qū)不同處理的水稻的生長特征可采用歸一化的模型進行描述,但不同地區(qū)的水稻是否仍然具有相同生長特征,需要深入分析,為建立更加普適的模擬模型提供依據(jù)。

      水稻是喜高溫、多濕、短日照作物,因此以溫度及降雨狀況作為因子來建立模型,能較好地反映水稻的生長狀況。有效積溫(growing degree days,GDD)在17世紀30年代首次被提出,當(dāng)時是作為一種生態(tài)系統(tǒng)指標來研究溫度的日變化,同時研究其對不同植物生長階段的影響,作為發(fā)展未來氣候適應(yīng)性作物的基礎(chǔ)[7]。它是指作物在某一生育階段內(nèi)所積累的有效溫度,反映了作物在該生育期所需要的熱量大小,相較于生育期天數(shù)更為穩(wěn)定,因此以有效積溫取代播種后天數(shù)來建立作物生長模型,能更為精確的達到預(yù)測作物產(chǎn)量的目的[8]。本研究將基于有效積溫來模擬水稻的生長變化特征,采用Logistic模型對水稻的葉面積指數(shù)和干物質(zhì)積累量進行分析,建立普適的水稻生長指標與有效積溫的關(guān)系,確定合理的水稻收獲指數(shù),提高作物生產(chǎn)效率,為更大范圍水稻生長特征分析,提供理論依據(jù)和相應(yīng)技術(shù)參數(shù)。

      1 數(shù)據(jù)來源與研究方法

      1.1 數(shù)據(jù)來源

      水稻生長特征數(shù)據(jù)資料源自國內(nèi)外已發(fā)表的89篇文章(1985年—2018年),遍及全國63個地點(不含香港、澳門、臺灣地區(qū)),氣象數(shù)據(jù)均來自中國氣象數(shù)據(jù)網(wǎng)。在采集作物生長數(shù)據(jù)時,遵循了以下原則:1)既直接獲取原文章中提供的數(shù)據(jù),同時也利用GetData Graph Digitizer,根據(jù)文章中的曲線圖獲取數(shù)據(jù);2)優(yōu)先選擇普遍栽培技術(shù)和施肥、灌溉條件下的作物生長數(shù)據(jù),不選擇未廣泛采用的新技術(shù)管理下的數(shù)據(jù);3)每個地區(qū)盡量獲取3組以上數(shù)據(jù)樣本,但少數(shù)地區(qū)因種植和研究較少,僅取得1~2組數(shù)據(jù)樣本。

      圖1顯示了本研究所采用的水稻種植地區(qū)分布圖,主要分布在東北、華東、華中和華南地區(qū)。種植地區(qū)土壤質(zhì)地以水稻土為主,肥力均勻。各地區(qū)不同品種水稻的播種時間均集中在4月中旬—5月下旬,收獲時間集中在同年9月下旬—10月上旬。水稻生長期間高溫多雨,未處于淹水狀態(tài)時土壤含水量可達到田間持水量的80%左右。試驗地多以尿素(氮肥)、K2O(鉀肥)、P2O5(磷肥)作基肥。表1給出了本次研究中各生長指標所采用的樣本數(shù)量及數(shù)據(jù)來源。

      注:△,驗證數(shù)據(jù)區(qū);●,建模數(shù)據(jù)區(qū)。

      表1 數(shù)據(jù)來源與樣本數(shù)量

      1.2 研究方法

      通過查閱國內(nèi)外大量有關(guān)水稻生長特征的文獻,收集其葉面積指數(shù)和地上干物質(zhì)積累量變化過程的相關(guān)數(shù)據(jù),同時通過中國氣象數(shù)據(jù)網(wǎng),收集溫度數(shù)據(jù),計算各地區(qū)不同年份水稻生育期的有效積溫,進而分析水稻各生長指標隨有效積溫變化的特征。選擇相關(guān)數(shù)據(jù)建立適用于不同地區(qū)的普適生長模型,同時建立水稻最大葉面積指數(shù)和最大干物質(zhì)積累量之間的函數(shù)關(guān)系。采用湖南長沙、湖北荊州、浙江杭州、北京海淀、江蘇揚州、廣西南寧6個地區(qū)的試驗數(shù)據(jù)對所建葉面積指數(shù)生長模型進行驗證,利用遼寧大洼、四川溫江、湖北武漢、江蘇贛榆、福建尤溪、廣東江門6個地區(qū)的試驗數(shù)據(jù)驗證地上干物質(zhì)積累量的生長模型。由于數(shù)據(jù)量過大,本研究選擇不同時間、有代表性且種植水稻較為普遍的地區(qū)的試驗數(shù)據(jù)來繪制各生長指標與有效積溫之間的關(guān)系曲線,研究其統(tǒng)一變化規(guī)律。此外,收集水稻葉面積指數(shù)、收獲指數(shù)以及降水量的數(shù)據(jù),將最大葉面積指數(shù)的取值范圍以3~4、>4~5、>5~6、>6~7、>7~8、>8~9、>9~10、>10~11共8個區(qū)間進行劃分,并對每個區(qū)間的最大葉面積指數(shù)及對應(yīng)的收獲指數(shù)求取平均值,建立二者之間的函數(shù)關(guān)系。將降水量的范圍以200~300、>300~400、>400~500、>500~600、>600~700、>700~800、>800~900、>900~1 000、>1 000~1 100 mm 9個區(qū)間進行劃分,并對每個區(qū)間的降水量及對應(yīng)的最大葉面積指數(shù)求取平均值,建立二者之間的函數(shù)關(guān)系。

      1.3 有效積溫計算公式和Logistic模型

      每種作物都有其生物學(xué)上、下限溫度,超過這個溫度范圍,作物便停止生長[98]。水稻的生物學(xué)上限溫度為40 ℃,下限溫度為10 ℃[99]。有效積溫是指日平均氣溫與作物活動所需要的最低溫度之差:

      式中GDD為有效積溫,℃;avg為日平均氣溫,℃;base為作物活動所需要的最低溫度,℃。

      式中T為日最高氣溫,℃;T為日最低氣溫,℃;upper為作物活動所需要的最高溫度,℃。

      分別采用以GDD作為自變量的Logistic模型(式(4))和修正的Logistic模型(式(3))分析不同地區(qū)葉面積指數(shù)和干物質(zhì)積累量的變化過程,具體公式如下所示:

      式中LAI為葉面積指數(shù),LAImax為葉面積指數(shù)理論最大值;DMA為作物干物質(zhì)積累量,kg/hm2;DMAmax為干物質(zhì)積累量理論最大值(dry matter accumulation maximum),kg/hm2;01201均為參數(shù)。在試驗過程中存在一定的測量誤差,因此各項指標的實測最大值可能并不是真實的最大值,本研究將賦予各實測最大值一定的增量,根據(jù)實測最大值來擬合理論最大值。

      1.4 數(shù)據(jù)處理及誤差分析

      所收集的數(shù)據(jù)均采用Excel 2016進行處理;用MATLAB 2016進行模型參數(shù)推求;并利用2、均方根誤差(root mean square error,RMSE)、相對誤差(relative error,RE)等指標進行誤差分析;利用SPSS 22.0進行方差分析。

      2 結(jié)果與分析

      2.1 水稻葉面積指數(shù)變化特征

      葉面積指數(shù)是反映作物群體狀況的重要生長指標。采用774組數(shù)據(jù)進行分析,并以東北地區(qū)為例,水稻葉面積指數(shù)隨著有效積溫變化的曲線如圖2所示。水稻葉面積指數(shù)隨有效積溫變化的規(guī)律性很強,其增減趨勢基本保持一致。當(dāng)有效積溫在300~700 ℃之間時,水稻處于拔節(jié)期,此時葉面積指數(shù)快速增長;當(dāng)有效積溫在700~1 000 ℃之間時,水稻處于幼穗分化至孕穗期,此階段水稻所吸收的能量同時供給營養(yǎng)生長和生殖生長,葉片生長所需能量較少,因此葉面積指數(shù)增長速率變緩;當(dāng)有效積溫在1 000 ℃左右時,水稻開始孕穗,葉片基本停止生長,此時水稻葉面積指數(shù)達到最大值,之后葉片開始凋萎,葉面積指數(shù)逐漸下降。

      圖2 水稻葉面積指數(shù)隨有效積溫的變化(以東北地區(qū)為例)

      盡管水稻葉面積指數(shù)隨有效積溫變化趨勢基本一致,但各地區(qū)的LAI值存在顯著差異。為了分析其內(nèi)在機制,采用相對葉面積指數(shù)以分析其共有增長特征,圖3為相對葉面積指數(shù)與有效積溫之間的關(guān)系圖。采用修正的Logistic模型對水稻相對葉面積指數(shù)進行擬合:

      注:相對葉面積指數(shù)為水稻生長至某一生育期時的葉面積指數(shù)與全生育期最大葉面積指數(shù)的比值。下同。

      Note: RLAI is ratio of LAI when the rice grows to a certain growth period and the maximum LAI of the whole growth period. Same as below.

      圖3 不同地區(qū)水稻相對葉面積指數(shù)(RLAI)隨有效積溫的變化曲線

      Fig.3 Variation of rice relative leaf area index (RLAI) with GDD in different regions

      相對葉面積指數(shù)Logistic模型擬合較好(2>0.80),0分別為3.79和8.36,1分別為?0.012和?0.010,2分別為6×10-6和1×10-5(表2)。采用其他6個地區(qū)的試驗數(shù)據(jù)對所得模型進行驗證,驗證結(jié)果如圖4所示,水稻葉面積指數(shù)平均曲線的模擬值與實測值之間有較好的吻合度,平均曲線、上包絡(luò)線和下包絡(luò)線的2分別為0.96、0.35、0.41,RMSE分別為0.06、0.19、0.22,RE分別為0.61%、7.09%、9.01%,綜上,平均曲線的擬合結(jié)果最好,因此采用平均曲線作為水稻葉面積指數(shù)的模擬模型。

      表2 相對葉面積指數(shù)平均曲線與包絡(luò)線的Logistic系數(shù)數(shù)值

      注:R2是決定系數(shù);RE是相對誤差;RMSE是均方根誤差;下同。

      2.2 水稻地上干物質(zhì)積累量變化特征

      采用473組數(shù)據(jù)分析了水稻地上干物質(zhì)積累量隨著有效積溫變化特性,不同區(qū)域變化趨勢一致,以華中地區(qū)為例(如圖5所示)。各地區(qū)干物質(zhì)積累過程整體均隨有效積溫的增大呈現(xiàn)上升趨勢,就某個地區(qū)干物質(zhì)積累量的變化特征而言,有效積溫<700 ℃時,主要是水稻株高和葉片生長,水稻干物質(zhì)積累較慢;當(dāng)有效積溫1 000~1 200 ℃之間時,水稻處于孕穗期至抽穗期,水稻同時進行營養(yǎng)生長與生殖生長,即株高、葉片和果實同時生長,因此干物質(zhì)積累較快;有效積溫在1 200~1 500 ℃之間時,此時葉面積達到最大值,水稻處于齊穗期到乳熟期,主要進行生殖生長,水稻穗粒迅速生長飽滿,干物質(zhì)仍然快速增長,但增長速度小于孕穗期,此階段溫度對水稻的生殖生長起主導(dǎo)作用,光合作用差、溫度過低或過高都可能影響水稻受精,導(dǎo)致水稻減產(chǎn)[100];積溫到達1 500 ℃之后,干物質(zhì)積累速率明顯減小,當(dāng)GDD升高至2 000 ℃左右時,干物質(zhì)積累量達到最大值,此時對應(yīng)水稻的成熟期。

      圖5 水稻干物質(zhì)積累量隨有效積溫的變化(以華中地區(qū)為例)

      計算相對干物質(zhì)積累量與有效積溫間關(guān)系,如圖6所示。采用Logistic模型對圖6中水稻相對干物質(zhì)積累量隨有效積溫變化過程進行擬合,結(jié)果如下:

      式中RDMA為水稻相對干物質(zhì)積累量;DMAmax為地上干物質(zhì)積累量的最大值,kg/hm2。

      注:RDMA為水稻生長至某一生育期時的干物質(zhì)積累量與全生育期最大干物質(zhì)積累量的比值。下同。

      Note: RDMA is ratio of DMA when the rice grows to a certain growth period and the maximum DMA of the whole growth period. Same as below.

      圖6 不同地區(qū)水稻相對干物質(zhì)積累量的模擬結(jié)果

      Fig.6 Comparison between measured data and fitting curve of rice relative dry matter accumulation (RDMA)

      表3給出了相對地上干物質(zhì)積累量的上下包絡(luò)線的擬合參數(shù)值,可以看出,上下包絡(luò)線與外邊緣點的擬合程度較好,2均大于0.90,0分別為2.800和3.718,1分別為-3.744×10-3和-2.953×10-3。采用其他6個地區(qū)的試驗數(shù)據(jù)對所得模型進行驗證,驗證結(jié)果如圖7所示,可以看出,干物質(zhì)積累量的模擬值與實測值之間有較好的吻合度,其中平均曲線、上包絡(luò)線和下包絡(luò)線的2分別為0.96、0.74、0.49,RMSE分別為0.06、0.19、0.20,RE分別為1.02%、7.54%、10.04%。平均曲線的擬合結(jié)果最佳,可以反映大部分地區(qū)的生長狀況。

      利用平均曲線來分析水稻干物質(zhì)積累量與有效積溫間相對變化率,對式(6)求一階導(dǎo)函數(shù),并令其有效積溫分別等于200、700、1 000、1 500、2 000 ℃,得到不同有效積溫對應(yīng)的曲線斜率分別為2×10-4、6×10-4、8×10-4、4×10-4、1×10-4,可知有效積溫處于1 000 ℃左右時水稻干物質(zhì)積累增長速率最大,與從曲線圖中得到的結(jié)論一致。

      表3 相對干物質(zhì)積累量平均曲線與包絡(luò)線的Logistic系數(shù)

      圖7 水稻相對干物質(zhì)積累量模型驗證圖

      2.3 水稻最大葉面積指數(shù)與最大干物質(zhì)積累量的定量關(guān)系

      葉片的大小可以反映植株的生長狀況,因此在很大程度上決定著干物質(zhì)積累量的大小。收集了30個地點220組水稻最大葉面積指數(shù)與最大干物質(zhì)積累量的數(shù)據(jù)來探究兩者之間的關(guān)系,如圖8所示。隨著最大葉面積指數(shù)的增大,水稻的最大干物質(zhì)積累也逐漸增大,二者之間呈現(xiàn)出線性函數(shù)關(guān)系。

      圖8 水稻最大干物質(zhì)積累量(DMAmax)與最大葉面積指數(shù)(LAImax)的擬合曲線

      該函數(shù)的擬合效果較好,2為0.74。水稻處于孕穗期時,葉面積指數(shù)達到最大值,因此可以根據(jù)此時的葉面積指數(shù)值來預(yù)測最終干物質(zhì)積累量的大小,而干物質(zhì)積累量在一定程度上可以反映產(chǎn)量狀況,則圖8中公式可以起到初步預(yù)測產(chǎn)量的作用。

      2.4 水稻最大葉面積指數(shù)與收獲指數(shù)間定量關(guān)系

      收獲指數(shù)是指作物收獲時的經(jīng)濟產(chǎn)量與生物產(chǎn)量之比,反映了作物群體光合同化產(chǎn)物轉(zhuǎn)化為經(jīng)濟產(chǎn)品的能力。葉片是光合作用的主要器官,葉面積指數(shù)在極大程度上決定著產(chǎn)量的高低,不同水稻品種各生育時期的葉面積指數(shù)都與產(chǎn)量有一定的相關(guān)性[101-102]。以收集的30個地區(qū)220組水稻葉面積指數(shù)和收獲指數(shù)的數(shù)據(jù),分析兩者之間的關(guān)系,如圖9所示。

      圖9 水稻收獲指數(shù)(HI)與LAImax的擬合曲線

      從圖9中可以看出,隨著最大葉面積指數(shù)的增大,收獲指數(shù)也逐漸增大,當(dāng)葉面積指數(shù)增大到一定范圍內(nèi)時,收獲指數(shù)開始減小,說明在一定范圍內(nèi),葉面積指數(shù)越大,植株各器官分配的營養(yǎng)物質(zhì)越合理,相應(yīng)的產(chǎn)量也越大,而超過這個范圍之后,葉面積指數(shù)過大,葉片吸收過多營養(yǎng)物質(zhì),從而造成產(chǎn)量下降的現(xiàn)象,這與鄭俊官等[103]的研究結(jié)果一致。

      水稻最大葉面積指數(shù)與收獲指數(shù)的之間的關(guān)系可以采用二次多項式函數(shù)來描述,如圖9所示。該函數(shù)關(guān)系的擬合效果較好,2為0.94。對所得的函數(shù)關(guān)系式求一階導(dǎo)函數(shù),并令該導(dǎo)函數(shù)等于0,得到當(dāng)最大葉面積指數(shù)達到8,水稻的收獲指數(shù)最大為0.50,籽粒產(chǎn)量最大,說明水稻全生育期的最大葉面積指數(shù)應(yīng)控制在8左右,以獲取較高產(chǎn)量。

      2.5 水稻最大葉面積指數(shù)與全生育期內(nèi)降水量的定量關(guān)系

      耗水量指作物全生育期所消耗的水量,是作物生理指標的一個主要影響因素,適宜的土壤含水率和空氣濕度可以促進作物葉片及植株生長。中國水稻的種植地區(qū)多分布在南方,其生育期內(nèi)降雨多,降雨量一般可以滿足水稻的需水量,因此灌溉較少[104]。由于現(xiàn)有水稻的耗水量數(shù)據(jù)不夠充分,不具有代表性,本次研究采用降水量進行統(tǒng)計,建立水稻最大葉面積指數(shù)與全生育期降水量之間的關(guān)系。為了分析降水量與水稻生長間關(guān)系,本研究收集了30個地區(qū)220組水稻最大葉面積指數(shù)和對應(yīng)的全生育期總降水量數(shù)據(jù),計算了全生育期降水量與最大葉面積指數(shù)之間的關(guān)系,如圖10所示。從圖中可以看出,隨著降水量的增大,葉面積指數(shù)呈現(xiàn)出先增大后減小的趨勢。水稻屬于喜濕作物,一定范圍內(nèi),隨著降雨量的增大,水稻的植株蒸騰和棵間蒸發(fā)作用增強,可以促進水稻的良好生長。但降水量過大時,則可能導(dǎo)致水稻根系土壤結(jié)構(gòu)變差,團聚體嚴重減少,通氣狀況不良,過大的土壤含水量還可能影響作物根系的呼吸作用,造成根系無氧呼吸,不利于水稻正常生長,甚至造成減產(chǎn)。大量研究表明,作物生長過程中,適當(dāng)?shù)乃痔澣蹦軌蜻_到增產(chǎn)的作用[105-106]。

      水稻最大葉面積指數(shù)與全生育期降水量的關(guān)系可以采用二次多項式函數(shù)來描述,如圖10所示。該函數(shù)關(guān)系擬合效果較好,2為0.95。對上式求一階導(dǎo)函數(shù)并令該導(dǎo)函數(shù)等于0,可得當(dāng)總降水量為670.50 mm時,葉面積指數(shù)達到最大值7.93,對應(yīng)的收獲指數(shù)基本接近最大值0.50。因此,當(dāng)降雨量大于670.50 mm時,應(yīng)及時采取適當(dāng)?shù)拇胧┡懦鏊咎镏羞^多的水分,以保證水稻的正常生長。

      圖10 水稻最大葉面積指數(shù)與全生育期降水量(W)的擬合曲線

      綜上,水稻葉面積指數(shù)以及干物質(zhì)積累量與有效積溫之間存在良好關(guān)系,最大葉面積指數(shù)和最大干物質(zhì)積累量之間具有線性關(guān)系,而且收獲指數(shù)與葉面積指數(shù)有關(guān),葉面積指數(shù)與降水量也存在顯著函數(shù)關(guān)系,這樣構(gòu)成了通過降水量和有效積溫,綜合分析水稻主要生長特征的定量模型,如式(8)所示,其中包括產(chǎn)量預(yù)測模型和過程調(diào)控模型。通過降水量,可以預(yù)測出水稻的最大葉面積指數(shù),進而預(yù)測其收獲指數(shù);給出相應(yīng)生育時期的有效積溫后,可以預(yù)測葉面積指數(shù)和地上干物質(zhì)積累量的變化過程,進一步將收獲指數(shù)和干物質(zhì)積累量相乘,可以獲得水稻的最終產(chǎn)量。根據(jù)年際間的溫度變化情況,結(jié)合水稻生育期所需的有效積溫,可以確定適宜的移栽時間,水稻生長過程中某一階段的生長指標也可以通過有效積溫進行預(yù)測,若實際測量出的葉面積指數(shù)或干物質(zhì)積累量與預(yù)測值偏差過大,則可根據(jù)氣候狀況,從補充灌溉、排除漬水、追施肥料等方面入手進行調(diào)控,由此形成了過程調(diào)控模型。

      式中為水稻產(chǎn)量,kg/hm2。

      3 討 論

      本研究在分析了全國63個不同地區(qū)的水稻葉面積指數(shù)和干物質(zhì)累積量的變化特征的基礎(chǔ)上,將水稻的各生長指標進行歸一化處理,利用相對葉面積指數(shù)和相對地上干物質(zhì)積累量來描述水稻的生長特征,采用修正的Logistic模型和有效積溫擬合出上下包絡(luò)線并給出模型參數(shù)范圍,建立了適用于中國大部分地區(qū)的水稻生長普適模型。目前國際上發(fā)展較為成熟的作物模型包括AquaCrop[107],DSSAT[93],APSIM[108],WOFOST[109]等,它們對于研究田間作物在不同氣候條件、灌溉措施、施肥措施、田間管理下的生長狀況以及產(chǎn)量預(yù)測方面具有重要的作用,但是它們在作物生長模擬過程中需要較多的參數(shù),不同地區(qū)、氣候條件下需要率定不同的參數(shù)值,使得模型的使用相對復(fù)雜。國內(nèi)不少學(xué)者利用試驗數(shù)據(jù)建立了模擬水稻生長的多項式[8]、Logistic及Richards[9]模型,但大都是利用生育期天數(shù)來建立的模型,不能反映溫度對于水稻生長的影響,且受地域與種植時間的限制,模型不能廣泛應(yīng)用。本研究基于大量數(shù)據(jù)建立了適用于中國東北、長江中下游以及華南、云貴等地區(qū)的普適模型,模型評估結(jié)果顯示2均大于0.95,擬合效果較好。該普適生長模型具有參數(shù)少,形式簡單,便于運用的優(yōu)點,在不同地區(qū)具有很大的推廣應(yīng)用前景,對于確定不同地區(qū)水稻的適宜播期,把握水稻生長態(tài)勢,準確預(yù)測產(chǎn)量,提高作物生產(chǎn)力具有十分重要的作用。

      本研究利用不同地區(qū)、不同年份水稻全生育期降水量的數(shù)據(jù),建立了降水量與水稻最大葉面積指數(shù)的關(guān)系。由于目前收集的文獻中同時提供水稻生長指標數(shù)據(jù)和耗水量或灌水量的數(shù)據(jù)過少,不能直接采用耗水量或灌溉量與作物生長指標建立關(guān)系。劉鈺等研究表明[110],東北、長江中下游以及華南等地區(qū)作物對灌溉的需求量相對較低,其平均灌溉指數(shù)均小于0.5,而本次研究采集到的數(shù)據(jù)大都來源于這些地區(qū),僅有一小部分來自華北地區(qū)(北京),因此考慮采用降水量進行初步的分析。此外,不同品種的水稻在某一相同的生育階段其株高、葉面積指數(shù)、干物質(zhì)積累量等大小均有所不同,但由于每個品種下的數(shù)據(jù)過少,分別建立模型不具有代表性,考慮到各品種水稻的生長發(fā)育過程都是相似的,因此針對葉面積指數(shù)和干物質(zhì)積累量進行了歸一化處理。通過對每組試驗數(shù)據(jù)相對化處理,并且與氣候條件結(jié)合,利用有效積溫和降水量進行建模,以此來消除不同地區(qū)氣候條件差異對作物生長特征的影響,但由于品種、灌溉、施肥、種植密度和土壤等因素的不同,從而導(dǎo)致仍然存在某些相對值偏高或偏低的情況(圖3和圖6)。因此,進一步的研究應(yīng)針對上、下包絡(luò)線附近的數(shù)據(jù),結(jié)合不同土壤條件、水稻品種以及具體耕作措施來建立水稻生長指標與這些因素之間的內(nèi)在聯(lián)系,同時擴大數(shù)據(jù)量,擴展數(shù)據(jù)收集地區(qū),注重機理研究,以提高作物產(chǎn)量的預(yù)測精度,為增產(chǎn)增收、提高農(nóng)業(yè)生產(chǎn)效率提供有效預(yù)測分析方法。

      4 結(jié) 論

      本文研究了水稻相對葉面積指數(shù)和相對地上干物質(zhì)積累量隨著有效積溫的變化規(guī)律,并分析了最大葉面積指數(shù)與最大干物質(zhì)積累量之間的關(guān)系,以及最大葉面積指數(shù)對于水稻收獲指數(shù)的影響和總降水量對最大葉面積指數(shù)的影響,得出如下結(jié)論:

      1)隨著有效積溫的增大,不同地區(qū)水稻葉面積指數(shù)變化趨勢基本一致,表現(xiàn)為先增大后減小的變化規(guī)律。當(dāng)有效積溫增加至1 000 ℃左右時,葉面積指數(shù)達到最大值,且葉面積指數(shù)與有效積溫之間的變化規(guī)律可以很好地用Logistic模型來擬合。

      2)不同地區(qū)水稻干物質(zhì)積累量的增長速率呈現(xiàn)出“前期慢、中期快、后期慢”的變化特征,其變化過程同樣可以用Logistic模型擬合,且擬合精度較好,決定系數(shù)較高。當(dāng)有效積溫在1 000 ℃左右時,水稻處于孕穗期,干物質(zhì)積累的增長速率達到最大值。

      3)水稻最大干物質(zhì)積累量與最大葉面積指數(shù)之間呈現(xiàn)出明顯的線性關(guān)系,隨著最大葉面積指數(shù)的增大,最大干物質(zhì)積累量也逐漸增大。

      4)水稻收獲指數(shù)隨著最大葉面積指數(shù)的變化,呈現(xiàn)出明顯的先增后減的二次多項式關(guān)系。當(dāng)最大葉面積指數(shù)為8時,收獲指數(shù)達到最大值0.50,最大葉面積指數(shù)繼續(xù)增加,收獲指數(shù)則會逐漸減小。水稻最大葉面積指數(shù)隨全生育期降水量表現(xiàn)為先增加后減小的變化特征。當(dāng)降水量為670.5 mm左右時,葉面積指數(shù)達到最大值7.93,且該值所對應(yīng)的收獲指數(shù)接近最大值0.50。

      [1]國家統(tǒng)計局. 2013年中國統(tǒng)計年鑒[M]. 北京:中國統(tǒng)計出版社,2013.

      [2]Boyer J S. Plant productivity and environment[J]. Science, 1982, 218(4571): 443-448.

      [3]姜曉劍,湯亮,劉小軍,等. 中國主要稻作區(qū)水稻生產(chǎn)氣候資源的時空特征[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(7):238-245.

      Jiang Xiaojian, Tang Liang, Liu Xiaojun, et al. Spatial and temporal characteristics of rice production climatic resources in main growing regions of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 238-245. (in Chinese with English abstract)

      [4]王信理. 在作物干物質(zhì)積累的動態(tài)模擬中如何合理運用Logistic方程[J]. 中國農(nóng)業(yè)氣象,1986(1):14-19.

      Wang Xinli. How to apply logistic equation reasonably in dynamic simulation of crop dry matter accumulation[J]. Chinese Journal of Agrometeorology, 1986(1):14-19. (in Chinese with English abstract)

      [5]林瑞余,梁義元,蔡碧瓊. 不同水稻產(chǎn)量形成過程的干物質(zhì)積累與分配特征[J]. 中國農(nóng)學(xué)通報,2006,22(2):185-190.

      Lin Ruiyu, Liang Yiyuan, Cai Biqiong. Characteristics of dry matter accumulation and partitioning in the process of yield formation in different rice cultivars[J]. Chinese Agricultural Science Bulletin, 2006, 22(2):185-190. (in Chinese with English abstract)

      [6]李艷大,湯亮,李青春. 水稻地上部干物質(zhì)積累動態(tài)的定量模擬[J]. 應(yīng)用生態(tài)學(xué)報,2010,21(6):1504-1510.

      Li Yanda, Tang Liang, Li Qingchun. Dry matter accumulation in rice aboveground part: Quantitative simulation[J]. Chinese Journal of Applied Ecology, 2010, 21(6):1504-1510. (in Chinese with English abstract)

      [7]Anandhi A. Growing degree days: Ecosystem indicator for changing diurnal temperatures and their impact on corn growth stages in Kansas[J]. Ecological Indicators, 2016, 61:149-158.

      [8]Van W J, Kersebaum K C, Peng S, et al. Estimating crop yield potential at regional to national scales[J]. Field Crops Research, 2013, 143(1):34-43.

      [9]王衛(wèi),陳安磊,謝小立,等. 雙季超級稻的生長與光合特性研究[J]. 長江流域資源與環(huán)境,2011,20(5):635-640.

      Wang Wei, Chen Anlei, Xie Xiaoli, et al. Growth and photosynthetic characteristics of early and late super hybrid rice[J]. Resources and Environment in the Yangtze Basin, 2011, 20(5): 635-640. (in Chinese with English abstract)

      [10]傅志強,劉依依,謝天洋,等. 水氮組合模式對雙季稻生長和產(chǎn)量的影響[J]. 中國農(nóng)學(xué)通報,2015,31(12):84-91.

      Fu Zhiqiang, Liu Yiyi, Xie Tianyang, et al. Effects of water and nitrogenous fertilizer coupling modes on double season rice growth and yield[J]. Chinese Agricultural Science Bulletin, 2015, 31(12): 84-91. (in Chinese with English abstract)

      [11]王衛(wèi),謝小立,謝永宏,等. 不同施肥制度對雙季稻氮吸收、凈光合速率及產(chǎn)量的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2010(3):752-757.

      Wang Wei, Xie Xiaoli, Xie Yonghong, et al. Effects of different fertilization on nitrogen uptake, net photosynthesis rate and yield of rice[J]. Plant Nutrition and Fertilizer Science, 2010(3): 752-757. (in Chinese with English abstract)

      [12]徐一蘭,劉唐興,付愛斌,等. 不同土壤耕作模式對雙季稻植株生物學(xué)特性的影響[J]. 廣東農(nóng)業(yè)科學(xué),2018,45(1):1-8.

      Xu Yilan, Liu Tangxing, Fu Aibin, et al. Effects of different soil tillage practices on biological characteristics and grain yield of rice in double cropping rice field[J]. Guangdong Agricultural Sciences, 2018, 45(1): 1-8. (in Chinese with English abstract)

      [13]Zhou H, Zhu W, Yang W, et al. Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages[J]. Ecotoxicology and Environmental Safety, 2018, 152:91-97.

      [14]Zhang X, Yu H, Li F, et al. Behaviors of heavy metal(loid)s in a cocontaminated alkaline paddy soil througho-ut the growth period of rice[J]. Science of the Total Environment, 2019. https://doi.org/10.1016/j.scitotenv.2019.136204

      [15]曹秀霞,安開忠,蔡偉,等. CERES Rice模型在江漢平原的驗證與適應(yīng)性評價[J]. 中國農(nóng)業(yè)氣象,2013,34(4):447-454.

      Cao Xiuxia, An Kaizhong, Cai Wei, et al. Validation and adaptability evaluation of CERES-Rice model in the Jianghan Plain[J]. Chinese Journal of Agrometeorology, 2013, 34(4): 447-454. (in Chinese with English abstract)

      [16]潘圣剛,黃勝奇,張帆,等. 超高產(chǎn)栽培雜交中秈稻的生長發(fā)育特性[J]. 作物學(xué)報,2011,37(3):537-544.

      Pan Shenggang, Huang Shengqi, Zhang Fan, et al. Growth and development characteristics of super-high-yielding mid-season indica hybrid rice[J]. Acta Agronomica Sinica, 2011, 37(3): 537-544. (in Chinese with English abstract)

      [17]Ling X, Zhang T, Deng N, et al. Modelling rice growth and grain yield in rice ratooning production system[J]. Field Crops Research, 2019, 241: 107574. https://doi.org/10.1016/j.fcr.2019.107574.

      [18]吳文革,張洪城,錢銀飛,等. 超級雜交中秈水稻物質(zhì)生產(chǎn)特性分析[J]. 中國水稻科學(xué),2007,21(3):287-293.

      Wu Wenge, Zhang Hongcheng, Qian Yinfei, et al. Analysis on dry matter production characteristics of middle-season indica super hybrid rice[J]. Chinese Journal of Rice Science, 2007, 21(3): 287-293. (in Chinese with English abstract)

      [19]徐英,周明耀,薛亞鋒. 水稻葉面積指數(shù)和產(chǎn)量的空間變異性及關(guān)系研究[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(5):10-14.

      Xu Ying, Zhou Mingyao, Xue Yafeng. Spatial variability and relationships of rice leaf area index and yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(5):10-14. (in Chinese with English abstract)

      [20]沙依然·外力,李秉柏,張佳華,等. 水稻模擬模型在高溫敏感性研究中的應(yīng)用[J]. 植物生態(tài)學(xué)報,2014(5):515-528.

      Sayran·Waley, Li Bingbai, Zhang Jiahua, et al. Application of a rice simulation model in high temperature sensitivity study[J]. Chinese Journal of Plant Ecology, 2014(5):515-528. (in Chinese with English abstract)

      [21]楊建昌,杜永,吳長付,等. 超高產(chǎn)粳型水稻生長發(fā)育特性的研究[J]. 中國農(nóng)業(yè)科學(xué),2006,39(7):1336-1345.

      Yang Jianchang, Du Yong, Wu Changfu, et al. Growth and development characteristics of super-high-yielding mid-season japonica rice[J]. Scientia Agricultura Sinica, 2006, 39(7): 1336-1345. (in Chinese with English abstract)

      [22]Ata-Ul-Karim S T, Zhu Y, Yao X, et al. Determination of critical nitrogen dilution curve based on leaf area index in rice[J]. Field Crops Research, 2014, 167: 76-85.

      [23]陳建衛(wèi). 秸稈還田對機插水稻群體特征及產(chǎn)量構(gòu)成的影響[J]. 農(nóng)業(yè)裝備技術(shù),2011,37(6):53-54.

      Chen Jianwei. Effect of straw returning to field on population characteristics and yield composition of mechanically inserted rice[J]. Agricultural Equipment and Technology, 2011, 37(6): 53-54. (in Chinese with English abstract)

      [24]周明耀,趙瑞龍,顧玉芬,等. 水肥耦合對水稻地上部分生長與生理性狀的影響[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(8):38-43.

      Zhou Mingyao, Zhao Ruilong, Gu Yufen, et al. Effects of water and nitrogen coupling on growth and physiological characteristics of overground part of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(8): 38-43. (in Chinese with English abstract)

      [25]蘇祖芳,郭宏文,張洪程,等. 水稻葉齡進程群體葉面積與產(chǎn)量形成關(guān)系及其調(diào)控途徑[J]. 耕作與栽培,1990(4):9-11.

      Su Zufang, Guo Hongwen, Zhang Hongcheng, et al. Relationship between leaf area and yield formation of rice leaf-age process and its control[J]. Tillage and Cultivation, 1990(4): 9-11. (in Chinese with English abstract)

      [26]李湘閣,何海燕,景元書,等. 水稻旱育拋秧生長發(fā)育的動態(tài)模擬模型[J]. 大氣科學(xué)學(xué)報,1999,22(4):587-595.

      Li Xiangge, He Haiyan, Jing Yuanshu, et al. A dynamic model for dry-land-seeding and throwing transplanting (HSTT) rice[J]. Journal of Nanjing Institute of Meteorology, 1999, 22(4): 587-595. (in Chinese with English abstract)

      [27]張軍,王興龍,方書亮,等. 氮肥運籌對缽苗機插稻產(chǎn)量及形成的影響[J]. 中國稻米,2016,22(2):39-42.

      Zhang Jun, Wang Xinglong, Fang Shuliang, et al. Effects of nitrogen application on yield and yield formation of pot-seedling mechanical transplanting rice[J]. China Rice, 2016, 22(2): 39-42. (in Chinese with English abstract)

      [28]楊峰,范亞民,李建龍,等. 高光譜數(shù)據(jù)估測稻麥葉面積指數(shù)和葉綠素密度[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(2):237-243.

      Yang Feng, Fan Yamin, Li Jianlong, et al. Estimating LAI and CCD of rice and wheat using hyperspectral remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 237-243. (in Chinese with English abstract)

      [29]吉振華,顧莉娟,侍山林,等. 施肥對水稻生長動態(tài)和穗粒結(jié)構(gòu)的影響分析[J]. 安徽農(nóng)業(yè)科學(xué),2007,35(27):8581-8585.

      Ji Zhenhua, Gu Lijuan, Shi Shanlin, et al. Effects of fertilization on the growth dynamics and spike-grain structure in rice[J]. Journal of Anhui Agricultural Sciences, 2007, 35(27): 8581-8585. (in Chinese with English abstract)

      [30]嚴德翼,何曉艷. 水稻肥料配方驗證研究[J]. 安徽農(nóng)業(yè)科學(xué),2015(18):113-114.

      Yan Deyi, He Xiaoyan. Study on verification of fertilizer formula for paddy[J]. Journal of Anhui Agricultural Sciences, 2015(18): 113-114. (in Chinese with English abstract)

      [31]萬辛. 水稻高產(chǎn)優(yōu)質(zhì)栽培肥料試驗研究[J]. 上海農(nóng)業(yè)科技,2006(5):82-84.

      Wan Xin. Experimental study on high yield and high quality cultivated fertilizer of rice[J]. Shanghai Agricultural Science and Technology, 2006(5): 82-84. (in Chinese with English abstract)

      [32]嚴克華,彭亞明,蔡曉祥. 機插水稻密度與產(chǎn)量關(guān)系探索[J]. 大麥與谷類科學(xué),2009(1):19-22.

      Yan Kehua, Peng Yaming, Cai Xiaoxiang. Study on the relationship between density and yield of mechanically inserted rice[J]. Barley and Cereal Sciences, 2009(1): 19-22. (in Chinese with English abstract)

      [33]Zhang H, Liu H, Hou D, et al. The effect of integrative crop management on root growth and methane emission of paddy rice[J]. The Crop Journal, 2019, 7: 444-457.

      [34]程乾,黃敬峰,王人潮,等. MODIS植被指數(shù)與水稻葉面積指數(shù)及葉片葉綠素含量相關(guān)性研究[J]. 應(yīng)用生態(tài)學(xué)報,2004,15(8):1363-1367.

      Cheng Qian, Huang Jingfeng, Wang Renchao, et al. Correlation analysis of simulated MODIS vegetation indices and rice leaf area index and leaf chlorophyⅡ content[J]. Chinese Journal of Applied Ecology, 2004, 15(8):1363-1367. (in Chinese with English abstract)

      [35]程乾. 基于MOD09產(chǎn)品的水稻葉面積指數(shù)和葉綠素含量的遙感估算模型[J]. 應(yīng)用生態(tài)學(xué)報,2006,17(8):1453-1458.

      Cheng Qian. Estimation models of rice LAI and Chlorophyll content based on MOD09[J]. Chinese Journal of Applied Ecology, 2006, 17(8): 1453-1458. (in Chinese with English abstract)

      [36]陳中赟,盛瓊,李洪權(quán),等. 單季稻葉面積指數(shù)變化特征及其與氣象條件的關(guān)系[J]. 中國農(nóng)學(xué)通報,2018,34(1):1-5.

      Chen Zhongyun, Sheng Qiong, Li Hongquan, et al. LAI of single cropping rice: The variation characteristics and its relationship with meteorological condition[J]. Chinese Agricultural Science Bulletin, 2018, 34(1): 1-5. (in Chinese with English abstract)

      [37]吳增琪,林賢青,朱貴平,等. 精準生產(chǎn)設(shè)計與決策支持系統(tǒng)在中浙優(yōu)1號生產(chǎn)上的應(yīng)用[J]. 中國農(nóng)學(xué)通報,2009,25(20):128-131.

      Wu Zengqi, Lin Xianqing, Zhu Guiping, et al. Application of the quantitative design of a cultural pattern and decision support system in Zhongzheyou 1[J]. Chinese Agricultural Science Bulletin, 2009, 25(20): 128-131. (in Chinese with English abstract)

      [38]黃云彭,曹若梅. 水稻施肥技術(shù)的研究[J]. 中國土壤與肥料,1990(2):42-45.

      Huang Yunpeng, Cao Ruomei. Study on the technology of rice fertilization[J]. Soils and Fertilizers, 1990(2): 42-45. (in Chinese with English abstract)

      [39]王曉燕,韋還和,張洪程,等. 水稻甬優(yōu)12產(chǎn)量13.5 t/hm2以上超高產(chǎn)群體的生育特征[J]. 作物學(xué)報,2014,40(12):2149-2159.

      Wang Xiaoyan, Wei Huanhe, Zhang Hongcheng, et al. Population characteristics for super-high yielding hybrid rice Yongyou 12 (>13.5 t/ha)[J]. Acta Agronomica Sinica, 2014, 40(12): 2149-2159. (in Chinese with English abstract)

      [40]陳鴻飛,林瑞余,梁義元,等. 不同栽培模式早稻-再生稻頭季干物質(zhì)積累運轉(zhuǎn)特性研究[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2008,16(1):129-133.

      Chen Hongfei, Lin Ruiyu, Liang Yiyuan, et al. Dry matter accumulation and transportation in first rice crop of early rice-ratoon rice under different cultivation patterns[J]. Chinese Journal of Eco-Agriculture, 2008, 16(1): 129-133. (in Chinese with English abstract)

      [41]李忠,陳軍,林世圣,等. 氮肥運籌比例對水稻生長及產(chǎn)量的影響[J]. 福建農(nóng)業(yè)學(xué)報,2011,26(4):557-561.

      Li Zhong, Chen Jun, Lin Shisheng, et al. Effects of nitrogen application ratio on the growth and yield of rice (. L)[J]. Fujian Journal of Agricultural Sciences, 2011, 26(4): 557-561. (in Chinese with English abstract)

      [42]吳端普,吳天恩. 水稻需水規(guī)律與灌溉技術(shù)試驗研究[J]. 中國農(nóng)村水利水電,1995(11):11-15.

      Wu Duanpu, Wu Tianen. Experimental study on water demand law and irrigation technology of rice[J]. Journal of Rural Water Resources and Hydropower, 1995(11): 11-15. (in Chinese with English abstract)

      [43]李端富,周天生,吳能,等. 稻田養(yǎng)魚對水稻生長發(fā)育的效應(yīng)試驗初報[J]. 基因組學(xué)與應(yīng)用生物學(xué),1990(4):27-34.

      Li Duanfu, Zhou Tiansheng, Wu Neng, et al. The primary report about the effects of pisiculture in paddy field on the growth of rice[J]. Journal of Guangxi Agricultural University, 1990(4): 27-34. (in Chinese with English abstract)

      [44]韋善清,徐世宏,李如平,等. 免耕拋栽水稻源庫特性研究[J]. 中國農(nóng)學(xué)通報,2005,21(9):237-241.

      Wei Shanqing, Xu Shihong, Li Ruping, et al. Studies on source-sink characteristics of no-tillage and cast transplanting rice[J]. Chinese Agricultural Science Bulletin, 2005, 21(9): 237-241. (in Chinese with English abstract)

      [45]夏小曼,吳炫柯,龍國蘭. 水稻物質(zhì)生產(chǎn)特性研究[J]. 南方農(nóng)業(yè)學(xué)報,2008,39(6):756-759.

      Xia Xiaoman, Wu Xuanke, Long Guolan. Study on traits of biomass production of rice[J]. Journal of Southern Agriculture, 2008, 39(6): 756-759. (in Chinese with English abstract)

      [46]薛正平,楊星衛(wèi),段項鎖,等. 精準農(nóng)業(yè)水稻最佳氮肥施用量研究[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2003,11(1):53-55.

      Xue Zhengping, Yang Xingwei, Duan Xiangsuo, et al. The optimum application of nitrogen on rice in precision agriculture[J]. Chinese Journal of Eco-Agriculture, 2003, 11(1): 53-55. (in Chinese with English abstract)

      [47]呂雄杰,潘劍君,張佳寶. 水稻冠層光譜反射特征及其與葉面積指數(shù)關(guān)系研究[J]. 土壤,2004,36(6):648-653.

      Lü Xiongjie, Pan Jianjun, Zhang Jiabao. Rice canopy spectral reflectance and lesf area index[J]. Soils, 2004, 36(6):648-653. (in Chinese with English abstract)

      [48]Shi Z, Chang T, Chen G, et al. Dissection of mechanisms for high yield in two elite rice cultivars[J]. Field Crops Research, 2019, 241:107563. https://doi.org/10.1016/j.fcr.2019.107563.

      [49]彭國照,費永成,陳林,等. ORYZA2000水稻模型在四川盆地參數(shù)本地化及驗證應(yīng)用[J]. 西南師范大學(xué)學(xué)報,2018,43(3):125-132.

      Peng Guozhao, Fei Yongcheng, Chen Lin, et al. Parameter debug of rice growth model ORYZA2000 and its verification application in Sichuan Basin[J]. Journal of Southwest China Normal University, 2018, 43(3): 125-132. (in Chinese with English abstract)

      [50]紀洪亭,馮躍華,何騰兵,等. 兩個超級雜交水稻品種物質(zhì)生產(chǎn)的特性[J]. 作物學(xué)報,2013,39(12):2238-2246.

      Ji Hongting, Feng Yuehua, He Tengbing, et al. Dynamic characteristics of matter population in two super hybrid rice cultivars[J]. Acta Agronomica Sinica, 2013, 39(12): 2238-2246. (in Chinese with English abstract)

      [51]張書華,余常水,王懷昕. 水稻超高產(chǎn)栽培專家系統(tǒng)應(yīng)用研究[J]. 耕作與栽培,2003(6):4-6.

      Zhang Shuhua, Yu Changshui, Wang Huaixin. Application of expert system for super-high-yield cultivation of rice[J]. Tillage and Cultivation, 2003(6): 4-6. (in Chinese with English abstract)

      [52]高蓓,胡凝,高茂盛. 水稻ORYZA2000模型在陜西省的適應(yīng)性評價[J]. 西南師范大學(xué)學(xué)報,2016,41(5):74-80.

      Gao Bei, Hu Ning, Gao Maosheng. On adaptability evaluation of ORYZA2000 in Shaanxi Province[J]. Journal of Southwest China Normal University, 2016, 41(5): 74-80. (in Chinese with English abstract)

      [53]吳公惠,王廣榮,王有良. 水稻定向立體受光栽培研究初探[J]. 鹽堿地利用,1993(2):15-19.

      Wu Gonghui, Wang Guangrong, Wang Youliang. A preliminary study on the study of the three-dimensional light-receiving and cultivation[J]. Journal of Saline and Alkali Land Utilization, 1993(2): 15-19. (in Chinese with English abstract)

      [54]金學(xué)泳,商文楠,曹海峰,等. 不同灌溉方式對水稻生育及產(chǎn)量的影響[J]. 中國農(nóng)學(xué)通報,2005,21(8):121-125.

      Jin Xueyong, Shang Wennan, Cao Haifeng, et al. Effects of different irrigation style on rice growing and yield[J]. Chinese Agricultural Science Bulletin, 2005, 21(8): 121-125. (in Chinese with English abstract)

      [55]趙宏偉,陳賓賓,鄒德堂,等. 灌溉方式和氮肥用量對水稻群體生長特性的影響[J]. 灌溉排水學(xué)報,2016(1):32-35.

      Zhao Hongwei, Chen Binbin, Zou Detang, et al. Impacts of irrigation mode and nitrogen amount on population growth characteristics of rice[J]. Journal of Irrigation and Drainage, 2016(1): 32-35. (in Chinese with English abstract)

      [56]聶曉,王毅勇,劉興土. 灌溉方式對寒地水稻生長和產(chǎn)量構(gòu)成要素的影響[J]. 灌溉排水學(xué)報,2013,32(6):34-37.

      Nie Xiao, Wang Yiyong, Liu Xingtu. Effects of irrigation modes on growth and yield structures of rice in cold area[J]. Journal of Irrigation and Drainage, 2013, 32(6): 34-37. (in Chinese with English abstract)

      [57]徐瑩瑩,閻百興,王莉霞. 水稻露水凝結(jié)量研究[J]. 中國農(nóng)業(yè)科學(xué),2011,44(3):524-530.

      Xu Yingying, Yan Baixing, Wang Lixia. A research of dewfall in paddy[J]. Scientia Agricultura Sinica, 2011, 44(3): 524-530. (in Chinese with English abstract)

      [58]Fang H, Li W, Wei S, et al. Seasonal variation of leafarea index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods[J]. Agricultural and Forest Meteorology, 2014, 198/199: 126-141.

      [59]張巍巍,柴永山,孫玉友,等. 水稻不同時期群體指標與產(chǎn)量的關(guān)系研究[J]. 中國稻米,2015(6):32-36.

      Zhang Weiwei, Chai Yongshan, Sun Yuyou, et al. Research on relationships of yields and population indexes of different growth stage of rice[J]. China Rice, 2015(6): 32-36. (in Chinese with English abstract)

      [60]趙鳳亮,鄭桂萍,刁偉偉,等. 墾鑒稻10號高產(chǎn)群體結(jié)構(gòu)研究[J]. 中國稻米,2008(6):63-67.

      Zhao Fengliang, Zheng Guiping, Diao Weiwei, et al. Study on the structure of high yield population of Kenjiandao 10[J]. China Rice, 2008(6): 63-67. (in Chinese with English abstract)

      [61]沈巧梅,姜思慧,趙澤松,等. 鎂鉀配比對水稻產(chǎn)量的影響[J]. 北方水稻,2012,42(6):26-29.

      Shen Qiaomei, Jiang Sihui, Zhao Zesong, et al. Effects of potassium and magnesium fertilizer on the yield of rice[J]. North Rice, 2012, 42(6): 26-29. (in Chinese with English abstract)

      [62]Fang H, Zhang Y, Wei S, et al. Validation of global moderate resolution leaf area index (LAI) products over croplands in northeastern China[J]. Remote Sensing of Environment, 2019, 233: 111377. https://doi.org/10.1016/j.rse.2019.111377.

      [63]張俊寶,潘惠文,張洪文. 不同施肥方式對水稻生長發(fā)育及產(chǎn)量的影響[J]. 農(nóng)業(yè)科技通訊,2017(3):66-69.

      Zhang Junbao, Pan Huiwen, Zhang Hongwen. Effects of different fertilization methods on growth and yield of rice[J]. Agricultural Science and Technology Newsletter, 2017(3): 66-69.

      [64]馬波. 氮肥運籌對寒地香稻綏粳4號產(chǎn)量及葉面積指數(shù)的影響[J]. 黑龍江農(nóng)業(yè)科學(xué),2017(2):48-50.

      Ma Bo. Influence of nitrogen application on yield and LAI of aromatic japonica rice Suijing 4 in cold region[J]. Heilongjiang Agricultural Sciences, 2017(2): 48-50. (in Chinese with English abstract)

      [65]孫國宏. 寒地粳型超級稻群體光環(huán)境研究[J]. 黑龍江農(nóng)業(yè)科學(xué),2014(5):42-44.

      Sun Guohong. Study on light environment of japonica super rice in cold region[J]. Heilongjiang Agricultural Sciences, 2014(5): 42-44. (in Chinese with English abstract)

      [66]胡法龍,鄭桂萍,于洪明,等. 寒地水稻不同群體葉面積指數(shù)、干物質(zhì)量與產(chǎn)量的關(guān)系[J]. 江蘇農(nóng)業(yè)科學(xué),2014,42(5):93-97.

      Hu Falong, Zheng Guiping, Yu Hongming, et al. Relationship between leaf area index, dry matter quality and yield of different population in cold area[J]. Jiangsu Agricultural Sciences, 2014, 42(5): 93-97. (in Chinese with English abstract)

      [67]魏永華,何雙紅,徐長明. 控制灌溉條件下水肥耦合對水稻葉面積指數(shù)及產(chǎn)量的影響[J]. 農(nóng)業(yè)系統(tǒng)科學(xué)與綜合研究,2010,26(4):500-505.

      Wei Yonghua, He Shuanghong, Xu Changming. Influence of water-fertilizer coupling on rice LAI and yield under the condition of controlling irrigation[J]. System Sciences and Comprehensive Studies in Agriculture, 2010, 26(4): 500-505. (in Chinese with English abstract)

      [68]鄭天翔,唐湘如,羅錫文,等. 不同灌溉方式對精量穴直播超級稻生產(chǎn)的影響[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(8):52-55.

      Zheng Tianxiang, Tang Xiangru, Luo Xiwen, et al. Effects of different irrigation methods on production of precision hill-direct-seeding super rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(8): 52-55. (in Chinese with English abstract)

      [69]張旭,黃秋妹,黃農(nóng)榮,等. 高產(chǎn)早秈稻群體動態(tài)結(jié)構(gòu)的差異[J]. 熱帶亞熱帶植物學(xué)報,1999(S1):22-29.

      Zhang Xu, Huang Qiumei, Huang Nongrong, et al. The differents of population dynamic structure among some high-yielding indica rices[J]. Journal of Tropical and Subtropical Botany, 1999(S1): 22-29. (in Chinese with English abstract)

      [70]莫釗文,黃忠林,羅錫文,等. 華南雙季水稻機械種植方式的物質(zhì)生產(chǎn)和積累特性[J]. 中國農(nóng)學(xué)通報,2012,28(3):161-165.

      Mo Zhaowen, Huang Zhonglin, Luo Xiwen, et al. Characteristics of matter production and accumulation under mechanical planting methods of south China double-cropping rice[J]. Chinese Agricultural Science Bulletin, 2012, 28(3): 161-165. (in Chinese with English abstract)

      [71]周祖興,盧志杰. 農(nóng)用蠟在水稻上的應(yīng)用試驗初報[J]. 廣東農(nóng)業(yè)科學(xué),1995(3):15-16.

      Zhou Zuxing, Lu Zhijie. Preliminary report on the application of agricultural wax in rice[J]. Guangdong Agricultural Science, 1995(3): 15-16. (in Chinese with English abstract)

      [72]林萬粦. 雙季稻省水高產(chǎn)灌溉技術(shù)[J]. 廣東農(nóng)業(yè)科學(xué),1990(5):12-15.

      Lin Wanlin. Water-saving and high-yielding irrigation techniques for double cropping rice [J]. Guangdong Agricultural Sciences, 1990(5): 12-15. (in Chinese with English abstract)

      [73]Huang Q, Fan X, Tang S, et al. Seasonal differences in N release dynamic of controlled-released urea in paddy field and its impact on the growth of rice under double rice cropping system[J]. Soil and Tillage Research, 2019, 195, 104371. https://doi.org/10.1016/j.still.2019.104371.

      [74]劉偉東,項月琴,鄭蘭芬,等. 高光譜數(shù)據(jù)與水稻葉面積指數(shù)及葉綠素密度的相關(guān)分析[J]. 遙感學(xué)報,2000,4(4):279-283.

      Liu Weidong, Xiang Yueqin, Zheng Lanfen, et al. Relationships between rice LAI, CH.D and hyperspectra data[J]. Journal of Remote Sensing, 2000, 4(4): 279-283. (in Chinese with English abstract)

      [75]賀帆. 不同氮肥水平對水稻冠層小氣候和群體健康的影響[J]. 安徽農(nóng)業(yè)科學(xué),2010,38(5):2285-2287.

      He Fan. Effects of N rates on canopy microclimate and community health in irrigated rice[J]. Journal of Anhui Agricultural Sciences, 2010, 38(5): 2285-2287. (in Chinese with English abstract)

      [76]徐鵬,顧曉鶴,孟魯閩,等. 洪澇脅迫的水稻葉面積指數(shù)變化及其光譜響應(yīng)研究[J]. 光譜學(xué)與光譜分析,2013,33(12):3298-3302.

      Xu Peng, Gu Xiaohe, Meng Lumin, et al. Change of LAI and spectral response for rice under flood and waterlogging stress[J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3298-3302. (in Chinese with English abstract)

      [77]馬宏瑋,許強,劉生祥,等. 寧夏灌區(qū)冬麥后復(fù)種水稻適宜移栽期的研究[J]. 寧夏農(nóng)林科技,2003(2):19-20.

      Ma Hongwei, Xu Qiang, Liu Shengxiang, et al. Study on the suitable transplanting period of the replanted rice after winter wheat in Ningxia irrigation area[J]. Ningxia Journal Agriculture and Forestry Science and Technology, 2003(2): 19-20. (in Chinese with English abstract)

      [78]王成璦,趙磊,王伯倫,等. 干旱脅迫對水稻生育性狀與生理指標的影響[J]. 農(nóng)學(xué)學(xué)報,2014(1):4-14.

      Wang Chengyuan, Zhao Lei, Wang Bolun, et al. Effect of water stress of soil on growing characteristics and physiological index of rice ()[J]. Journal of Agriculture, 2014(1): 4-14. (in Chinese with English abstract)

      [79]崔曾杰,耿艷秋,范麗麗,等. 生物菌肥對鹽堿地水稻生長發(fā)育及產(chǎn)量的影響[J]. 東北農(nóng)業(yè)科學(xué),2013,38(5):32-35.

      Cui Zengjie, Geng Yanqiu, Fan Lili, et al. Effects of bacterial manure on the growth and yield of rice growing in saline-alkali land[J]. Journal of Jilin Agricultural Sciences, 2013, 38(5): 32-35. (in Chinese with English abstract)

      [80]韓煥豪,崔遠來,時元智,等. SunScan冠層分析儀在水稻葉面積指數(shù)測量中的應(yīng)用[J]. 灌溉排水學(xué)報,2015(8):44-48.

      Han Huanhao, Cui Yuanlai, Shi Yuanzhi, et al. Application of SunScan canopy analysis system to measure leaf area index of rice[J]. Journal of Irrigation and Drainage, 2015(8): 44-48. (in Chinese with English abstract)

      [81]陳小榮,肖自京,孫嘉,等. 不同產(chǎn)量晚稻品種分蘗期動態(tài)密度稀化下群體自動調(diào)節(jié)力的差異與生理機制[J]. 中國水稻科學(xué),2013,27(4):405-412.

      Chen Xiaorong, Xiao Zijing, Sun Jia, et al. Discrepancy and its physiological mechanism of population self regulatory ability for late rice varieties under treatment of dynamic thinning of seedings during tillering stage[J]. Chinese Journal of Rice Science, 2013, 27(4): 405-412. (in Chinese with English abstract)

      [82]陳龍,史學(xué)正,徐勝祥,等. 基于水稻葉面積指數(shù)的根生物量預(yù)測模型研究[J]. 土壤,2014(5):862-868.

      Chen Long, Shi Xuezheng, Xu Shengxiang, et al. Rice root biomass forecasting model based on leaf area index[J]. Soils, 2014(5): 862-868. (in Chinese with English abstract)

      [83]葉會財,黃慶海,余喜初,等. 紅壤稻田長期施鉀肥及有機肥對水稻葉面積指數(shù)及產(chǎn)量構(gòu)成的影響[J]. 江西農(nóng)業(yè)學(xué)報,2010,22(10):6-9.

      Ye Huicai, Huang Qinghai, Yu Xichu, et al. Effects of long-term application of potassium and organic fertilizer on leaf area index and yield components of rice in red soil paddy field[J]. Acta Agriculturae Jiangxi, 2010, 22(10): 6-9. (in Chinese with English abstract)

      [84]柳開樓,秦江濤,張斌. 播種期對輕簡栽培方式再生稻源庫關(guān)系的影響[J]. 土壤,2012,44(4):686-695.

      Liu Kailou, Qin Jiangtao, Zhang Bin. Effects on source-sink of ratoon rice under simplified cultivation of different seeding stages[J]. Soils, 2012, 44(4): 686-695. (in Chinese with English abstract)

      [85]柳開樓,夏桂龍,李亞貞,等. 生物黑炭用量對贛東北雙季稻生長和產(chǎn)量的影響[J]. 中國稻米,2015,21(4):91-94.

      Liu Kailou, Xia Guilong, Li Yazhen, et al. Effects of different biochar fertilizer rates on early and late rice growth and yield in northeast area of Jiangxi Province[J]. China Rice, 2015, 21(4): 91-94. (in Chinese with English abstract)

      [86]李珣,王素玲,李繼開,等. 水稻高成穗率栽培技術(shù)推介[J]. 北方水稻,2009,39(1):52-56.

      Li Xun, Wang Suling, Li Jikai, et al. Introduction to cultivation techniques of high panicle rate in rice[J]. North Rice, 2009, 39(1): 52-56. (in Chinese with English abstract)

      [87]王伯倫,劉新安,王術(shù),等. 水稻高產(chǎn)高效益栽培的進一步探討:二[J]. 鹽堿地利用,1995(1):1-3.

      Wang Bolun, Liu Xinan, Wang Shu, et al. Further study on high yield and high benefit cultivation of rice (2)[J]. Journal of Saline and Alkali Land Utilization, 1995(1): 1-3. (in Chinese with English abstract)

      [88]付立東,王宇,隋鑫,等. 氮素基蘗穗肥不同施入比例對超級稻生育及產(chǎn)量的影響[J]. 作物雜志,2010(5):34-38.

      Fu Lidong, Wang Yu, Sui Xin, et al. Effects of different rate of nitrogen base-tiller and panicle fertilizer on development and yield of super rice[J]. Crops, 2010(5): 34-38. (in Chinese with English abstract)

      [89]付立東,王宇,李旭,等. 磷肥不同施用量對水稻產(chǎn)量及磷肥利用率的影響[J]. 北方水稻,2011,41(4):20-24.

      Fu Lidong, Wang Yu, Li Xu, et al. Effects of different phosphorus fertilizer amount on yield and utilization efficiency[J]. North Rice, 2011, 41(4): 20-24. (in Chinese with English abstract)

      [90]付立東,王宇,隋鑫,等. 生物型化肥增效抗鹽堿劑在水稻上的應(yīng)用研究[J]. 北方水稻,2013,43(4):6-10.

      Fu Lidong, Wang Yu, Sui Xin, et al. Applied research on bio-fertilizer efficiency salt resistant agent on rice[J]. North Rice, 2013, 43(4): 6-10. (in Chinese with English abstract)

      [91]王錚,韓勇,李建國,等. 遼寧省粳型超級稻品種生物產(chǎn)量與光合特性研究[J]. 北方水稻,2010,40(6):5-8.

      Wang Zheng, Han Yong, Li Jianguo, et al. Study on biomass and photosynthesis characteristics of japonica super rice varieties in Liaoning Province[J]. North Rice, 2010, 40(6): 5-8. (in Chinese with English abstract)

      [92]張喜娟,李偉娟,李紅嬌,等. 超級稻沈農(nóng)265生長發(fā)育特性及產(chǎn)量形成特點[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報,2008,27(4):445-450.

      Zhang Xijuan, Li Weijuan, Li Hongjiao, et al. Growth and development characteristics and yield formation of super rice Shennong 265[J]. Journal of Huazhong Agricultural University: Natural Science Edition, 2008, 27(4): 445-450. (in Chinese with English abstract)

      [93]Jones J W, Hoogenboom G, Porter C H, et al. The DSSAT cropping system model[J]. European Journal of Agronomy, 2003, 18(3): 235-265.

      [94]Huang J, Hu T, Yasir M, et al. Root growth dynamics and yield responses of rice (L.) under drought-Flood abrupt alternating conditions[J]. Environmental and Experimental Botany, 2019, 157: 11-25. https://doi.org/10.1016/j.envexpbot.2018.09.018.

      [95]金小實. 芒市不同移栽秧齡對機插稻產(chǎn)量的影響[J]. 現(xiàn)代農(nóng)業(yè)科技,2015(9):19-20.

      Jin Xiaoshi. Effect of different transplanting seedling sge on the yield of mechanical transplanting rice in Mangshi City[J]. Modern Agricultural Science and Technology, 2015(9): 19-20. (in Chinese with English abstract)

      [96]劉軍,余鐵橋. 大穗型水稻超高產(chǎn)產(chǎn)量形成特點及物質(zhì)生產(chǎn)分析[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報,1998(1):1-7.

      Liu Jun, Yu Tieqiao. Analysis of the formation of super-high yield of big panicle rice and its dry matter production[J]. Journal of Hunan Agricultural University, 1998(1): 1-7. (in Chinese with English abstract)

      [97]辛陽,魏云霞,王清峰,等. 減緩施肥對水稻生長和產(chǎn)量形成的影響[J]. 熱帶作物學(xué)報,2012,33(7):1184-1187.

      Xin Yang, Wei Yunxia, Wang Qingfeng, et al. Effect of reduced and delayed fertilization on growth and yield formation in rice[J]. Chinese Journal of Tropical Crops, 2012, 33(7): 1184-1187. (in Chinese with English abstract)

      [98]段若溪,姜會飛. 農(nóng)業(yè)氣象學(xué):修訂版[M]. 北京:氣象出版社,2013.

      [99]陶炳炎,鄒永林,湯志成. 水稻生長發(fā)育動態(tài)監(jiān)測農(nóng)業(yè)氣象模式研究[J]. 南京氣象學(xué)院學(xué)報,1992(2):82-91.

      Tao Bingyan, Zou Yonglin, Tang Zhicheng. Study on agricultural models for monitoring rice growth/development dynamics[J]. Journal of Nanjing Institute of Meteorology, 1992(2): 82-91. (in Chinese with English abstract)

      [100]曲輝輝,姜麗霞,王冬冬. 氣候變化對黑龍江省水稻障礙型冷害的影響[J]. 生態(tài)學(xué)報,2016,36(3):769-777.

      Qu Huihui, Jiang Lixia, Wang Dongdong. Influence of climate change on sterile-type cooling injury in rice in Heilongjiang Province, China[J]. Acta Ecologica Sinica, 2016, 36(3):769-777. (in Chinese with English abstract)

      [101]徐英,周明耀,薛亞鋒. 水稻葉面積指數(shù)和產(chǎn)量的空間變異性及關(guān)系研究[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(5):10-14.

      Xu Ying, Zhou Mingyao, Xue Yafeng. Spatial variability and relationships of rice leaf area index and yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(5): 10-14. (in Chinese with English abstract)

      [102]薛亞鋒,周明耀,徐英,等. 水稻葉面積指數(shù)及產(chǎn)量信息的空間結(jié)構(gòu)性分析[J]. 農(nóng)業(yè)工程學(xué)報,2005,21(8):89-92.

      Xue Yafeng, Zhou Mingyao, Xu Ying, et al. Spatial structure of leaf area index and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(8): 89-92. (in Chinese with English abstract)

      [103]鄭俊官,高恩廣,孫中泰,等. 論水稻生長發(fā)育中的幾個生態(tài)平衡[J].墾殖與稻作,2004(4):31-32.

      Zheng Junguan, Gao Enguang, Sun Zhongtai, et al. On several ecological balance in the growth and development of rice[J]. Reclaim and Rice Cultivation, 2004(4): 31-32. (in Chinese with English abstract)

      [104]王衛(wèi)光,彭世彰,孫風(fēng)朝,等. 氣候變化下長江中下游水稻灌溉需水量時空變化特征[J]. 水科學(xué)進展,2012,23(5):656-664.

      Wang Weiguang, Peng Shizhang, Sun Fengchao, et al. Spatiotemporal variations of rice irrigation water requirements in the mid-lower reaches of Yangtze River under changing climate[J]. Advances in Water Science, 2012, 23(5): 656-664. (in Chinese with English abstract)

      [105]褚光,展明飛,朱寬宇,等.干濕交替灌溉對水稻產(chǎn)量與水分利用效率的影響[J]. 作物學(xué)報,2016,42(7):1026-1036.

      Chu Guang, Zhan Mingfei, Zhu Kuanyu, et al. Effects of alternate wetting and drying tiirgation on yield and water use efficiency of rice[J]. Acta Agronomica Sinica, 2016, 42(7): 1026-1036. (in Chinese with English abstract)

      [106]董淑喜,徐淑琴. 水分脅迫對寒區(qū)水稻生長特性及產(chǎn)量的影響[J]. 灌溉排水學(xué)報,2008,27(6):64-66.

      Dong Shuxi, Xu Shuqin. The influence of the different degrees in different periods of water stress on rice growth characteristic and yield in cold region[J]. Journal of Irrigation and Drainage, 2008, 27(6): 64-66. (in Chinese with English abstract)

      [107]Hsiao T C, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E. AquaCrop-The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize[J].Agronomy Journal, 2009, 101(3): 448-459.

      [108]Keating B A, Carberry P S, Hammer G L, et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy, 2003, 18(3): 267-288.

      [109]Diepen C A, Wolf J, Keulen H, et al. WOFOST: A simulation model of crop production[J]. Soil Use and Management, 1989, 5(1): 16-24.

      [110]劉鈺,汪林,倪廣恒,等. 中國主要作物灌溉需水量空間分布特征[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(12):6-12.

      Liu Yu, Wang Lin, Ni Guangheng, et al. Spatial distribution characteristics of irrigation water requirement for main crops in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(12): 6-12. (in Chinese with English abstract)

      Rice growth model in China based on growing degree days

      Su Lijun1, Liu Yunhe1, Wang Quanjiu1,2※

      (1.,,710048,; 2.,,712100,)

      Temperature determines the maturity of crops by affecting the formation of dry matter, and ultimately affects crop yield. Therefore, studying the relationship between temperature and crop growth is very important to improve agricultural production efficiency. In this study, an universal Logistic model for describing the growth process of rice was established with growing degree days as independent variable, the leaf area index and dry matter accumulation of rice as dependent variable, respectively. A large number of data of rice growth index were collected. At the same time, the relationships between the maximum leaf area index, the maximum dry matter accumulation, harvest index (the ratio of crop economic yield to total biomass) and precipitation throughout the growth period of rice were analyzed. The results showed that with the increase of growing degree days, the change of rice leaf area index revealed obvious characteristics: increase firstly then decrease, and the change trend of leaf area index in different regions was basically similar. When the growing degree days was increased to about 1 000 ℃, the leaf area index reached the maximum and this stage corresponded to the booting stage. When the growing degree days was increased to about 1 000 ℃, the increase rate of dry matter accumulation was the largest. At this time, the leaf area almost stoped growing, and the rice entered the reproductive growth stage. There was an obvious linear relationship between the maximum leaf area index and the maximum dry matter accumulation of rice. With the increase of the maximum leaf area index, the maximum dry matter accumulation increased gradually. There was a quadratic polynomial relationship between the maximum leaf area index and harvest index of rice. When the maximum leaf area index was about 8, the harvest index was the largest. The maximum leaf area index of rice increased first and then decreased with the increase of precipitation in the whole growing period. When the precipitation of the whole growing period was about 670.5 mm, the maximum leaf area index of rice increased to about 7.9. The corresponding harvest index was also almost the maximum value. If the precipitation was more than 670.5 mm, the growth of rice leaves would be inhibited, and the photosynthesis of rice leaves would be weakened, so that the function of leaves could not be brought into full play. At the same time, too much precipitation was not conducive to the growth of rice roots, resulting in yield reduction. In this study, the rice growth regulation and yield prediction model were constructed. The results showed that the growing degree days could be used to analyze the growth process of rice accurately, and it could improve the precision of rice yield prediction and efficiency agricultural production. In this study, we considered the relationsips between the meteorological factors and the crop growth, and established the universal rice growth model by using growing degree days, precipitation and the physiological index of the rice, and estalished the prediction model of the rice yield by using the harvest index. It would be a guidance of constructing growth models of other crops.

      precipitaition; biomass;rice; growing degree days; crop growth index; Logistic models

      蘇李君,劉云鶴,王全九. 基于有效積溫的中國水稻生長模型的構(gòu)建[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(1):162-174.doi:10.11975/j.issn.1002-6819.2020.01.019 http://www.tcsae.org

      Su Lijun, Liu Yunhe, Wang Quanjiu. Rice growth model in China based on growing degree days[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 162-174. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.019 http://www.tcsae.org

      2019-04-16

      2019-10-10

      國家自然科學(xué)基金面上項目(51679190);國家自然科學(xué)基金重點項目(41830754);國家自然科學(xué)基金面上項目(51979220)

      蘇李君,副教授,博士后,主要從事農(nóng)業(yè)水土工程和微分方程數(shù)值解研究。Email:sljun11@163.com

      王全九,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)水土資源與生態(tài)環(huán)境研究。Email:wquanjiu@163.com

      10.11975/j.issn.1002-6819.2020.01.019

      S511

      A

      1002-6819(2020)-01-0162-06

      猜你喜歡
      有效積溫葉面積作物
      有效積溫與不同供氮水平夏玉米干物質(zhì)和氮素積累定量化研究
      收斂式有效積溫與馬鈴薯植株性狀變化的相關(guān)性
      中國馬鈴薯(2022年2期)2022-07-05 00:12:08
      作物葉面積測量的研究進展
      作物遭受霜凍該如何補救
      四種作物 北方種植有前景
      馬奶子葡萄葉面積評估模型的建立
      貴州省中東部水稻有效積溫對氣候變化的響應(yīng)
      內(nèi)生微生物和其在作物管理中的潛在應(yīng)用
      貴州省中東部水稻有效積溫對氣候變化的響應(yīng)
      “光合作用與細胞呼吸”重點分析和突破
      霍城县| 称多县| 河曲县| 县级市| 长宁区| 大连市| 常德市| 巧家县| 清徐县| 松原市| 临桂县| 临安市| 曲靖市| 昭觉县| 顺平县| 三门县| 钦州市| 吴川市| 农安县| 涿州市| 凌海市| 东至县| 嵊泗县| 玉林市| 彭山县| 格尔木市| 宣化县| 固阳县| 武川县| 施甸县| 通道| 巫山县| 靖西县| 新泰市| 彭山县| 岗巴县| 凤翔县| 云龙县| 绥芬河市| 石家庄市| 巴彦县|