徐木生 何劉 吳深寶 馮萍 徐小宏 陳貴平
[摘要] 目的 研究孟魯司特對大鼠小腸缺血再灌注傷(IIR)腎臟CysLTsR1表達(dá)及腎功能的影響。 方法 30只成年雄性wistar大鼠隨機(jī)分為對照組、缺血再灌注組(模型組)和孟魯司特組,每組各10只。采用鉗閉大鼠腸系膜上動脈建立IIR模型。建模3 h后觀察各腎組織病理學(xué)形態(tài)并評分;免疫組化、Western blot和RT-PCR法檢測腎組織CysLTR1和中性粒細(xì)胞明膠酶相關(guān)脂質(zhì)運(yùn)載蛋白表達(dá)水平;生化分析儀檢測血清尿素氮(BUN)、肌酐(Cr)。 結(jié)果 模型組與對照組比較腎組織損傷嚴(yán)重,病理損傷Paller評分明顯增高[(408.9±17.3)分 vs (110.3±10.0)分],CysLTR1 mRNA水平顯著升高[(3.60±0.84) vs (1.93±0.11)],CysLTR1蛋白表達(dá)顯著升高,血清BUN和Cr值均顯著升高[(21.82±2.39) vs (6.25±0.56);(57.85±8.18) vs (25.55±2.92)],NAGL表達(dá)顯著升高[(677.67±6.03) vs (576.67±12.66)],差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。與模型組相比較,孟魯司特組病理損傷Paller評分顯著低于模型組[(323.4±14.9)分 vs (408.9±17.3)分];CysLTR1 mRNA水平顯著降低[(2.80±0.36) vs (3.60±0.84)];CysLTR1蛋白表達(dá)顯著降低(P<0.01);血清BUN和Cr均顯著降低[(13.50±1.31) vs (21.82±2.39);(30.85±3.94) vs (57.85±8.18)],差異有統(tǒng)計(jì)學(xué)意義(P<0.01),NAGL表達(dá)降低[(645.00±38.20) vs (677.67±6.03)],差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。 結(jié)論 孟魯司特可減輕小腸缺血再灌注腎損傷,其機(jī)制與其抑制腎組織CysLTR1的活化有關(guān)。
[關(guān)鍵詞] 半胱氨酰白三烯受體1;孟魯司特;小腸缺血再灌注;腎功能;中性粒細(xì)胞明膠酶相關(guān)脂質(zhì)運(yùn)載蛋白
[中圖分類號] R574? ? ? ? ? [文獻(xiàn)標(biāo)識碼] A? ? ? ? ? [文章編號] 1673-9701(2020)32-0040-05
[Abstract] Objective To study the effects of montelukast on the expression of CysLTsR1 and renal function in rats with small intestinal ischemia-reperfusion(IIR) injury. Methods Thirty adult male wistar rats were randomly divided into the control group and the ischemia-reperfusion group (model group), and the montelukast group with ten rats in each group. The IIR model was established by clamping the superior mesenteric artery in rats. After modeling for 3 hours, the pathological morphology of each kidney tissue was observed and scored. The expression levels of CysLTR1 and neutrophil gelatinase-related lipocalin in kidney tissue were detected by immunohistochemistry, Western blot, and RT-PCR methods. The serum urea nitrogen(BUN) and creatinine(Cr) were detected by biochemical analyzer. Results The kidney tissue damage in the model group was more severe than in the control group. The Paller score of pathological injury and the level of CysLTR1 mRNA in the model group was significantly high than that in the control group([408.9±17.3] points vs. [110.3±10.0] points), ([3.60±0.84] vs. [1.93±0.11]). The CysLTR1 protein expression of the model group was significantly increased. The serum BUN, Cr, and NAGL expression of the observation group were significantly higher than those of the control group ([21.82±2.39] vs. [6.25±0.56]; [57.85±8.18] vs. [25.55±2.92]); ([677.67±6.03] vs. [576.67±12.66]), and the difference was statistically significant(P<0.01). The Paller score of pathological damage and CysLTR1 mRNA level in the montelukast group was significantly lower than that in the model group ([323.4±14.9] points vs. [408.9±17.3] points); ([2.80±0.36] vs. [3.60±0.84]). The CysLTR1 protein expression of the montelukast group was significantly lower than that of the model group(P<0.01). The serum BUN, Cr, and NAGL expression of the montelukast group were significantly lower than those of the model group([13.50±1.31] vs. [21.82±2.39]; [30.85±3.94] vs. [57.85±8.18]); ([645.00±38.20] vs. [677.67±6.03]), and the difference was statistically significant(P<0.05). Conclusion Montelukast can alleviate small intestinal ischemia-reperfusion kidney injury. Its mechanism is related to its inhibition of renal activation of CysLTR1.
[Key words] Cysteinyl leukotriene receptor 1; Montelukast; Small intestine ischemia-reperfusion; Renal function; Neutrophil gelatinase-associated lipocalin
腸缺血再灌注傷(Intestinal ischemia reperfusion,IIR)可導(dǎo)致嚴(yán)重創(chuàng)傷、休克、腸系膜動脈血栓形成、絞窄性腸梗阻和小腸移植等常見嚴(yán)重并發(fā)癥,也可導(dǎo)致腎臟損傷在內(nèi)的遠(yuǎn)隔臟器損傷,死亡率高達(dá)60%~80%[1],研究表明,核心病理生理變化是IIR時腸道黏膜屏障損傷和血管通透性增加促發(fā)腸道菌群移位和機(jī)體嚴(yán)重炎癥級聯(lián)反應(yīng),大量炎癥細(xì)胞因子及移位菌群等有害物質(zhì)通過血液循環(huán)損傷肺臟、肝臟和腎臟等遠(yuǎn)隔臟器,嚴(yán)重者可致多器官功能障礙綜合征(Multiple organ dysfunction syndrome,MODS)[2]。腎臟是IIR損傷的一個重要靶器官,臨床處理非常棘手,缺乏有效的治療手段[3]。腎損傷中毒時中性粒細(xì)胞明膠酶相關(guān)脂質(zhì)運(yùn)載蛋白(Neutropil gelatinase-associated lipocalin,NGAL)可早期大量表達(dá)于近端小管上皮細(xì)胞,參與炎癥反應(yīng)和調(diào)節(jié)細(xì)胞增殖凋亡,可作為急性腎損傷的早期診斷標(biāo)志物之一[4]。半胱氨酰白三烯(Cysteinyl leukotrienes,CysLTs)是強(qiáng)有力的促炎介質(zhì),其配體半胱氨酰白三烯受體1(Cysteinyl leukotriene receptor 1,CysLTR1)廣泛表達(dá)于炎癥細(xì)胞和結(jié)構(gòu)細(xì)胞表面,在IIR損傷中起重要作用。課題組前期研究結(jié)果顯示,CysLTR1特異性受體拮抗劑孟魯司特對IIR模型鼠腸損傷具有保護(hù)作用[5-7]。本研究將進(jìn)一步探討IIR模型鼠腎損傷CysLTR1的表達(dá)及孟魯司特的保護(hù)作用,并探討其可能的機(jī)制,現(xiàn)報(bào)道如下。
1 材料與方法
1.1 實(shí)驗(yàn)材料
1.1.1 實(shí)驗(yàn)動物? 30只雄性wistar大鼠,體重(320±30)g。購自中國人民解放軍軍事醫(yī)學(xué)科學(xué)院實(shí)驗(yàn)動物中心,合格證號:SCXK-(軍)2007-004。
1.1.2 試劑和儀器? 孟魯司特片(杭州默沙東制藥有限公司,批號:110705);CysLTR1多克隆抗體(Abcam公司,貨號:ab95492);NAGL多克隆抗體(Abcam公司,貨號:ab137685);SP免疫組化染色試劑盒(福州邁新生物技術(shù)開發(fā)有限公司);高純總RNA快速提取試劑盒(Generay公司);SYBR Green PCR試劑盒和逆轉(zhuǎn)錄試劑盒(Thermo公司);全自動體生化分析儀(日本日立公司6500型)。
1.2 方法
1.2.1 造模與給藥? 采用隨機(jī)數(shù)字表法將大鼠隨機(jī)分為對照組、缺血再灌注組(模型組)、孟魯司特組,每組各10只。模型組和孟魯司特組參照文獻(xiàn)建立腸缺血再灌注模型鼠[6],具體如下:建模前各組大鼠禁食12 h,不禁水。孟魯司特組術(shù)前1 h按大鼠2 mg/kg孟魯司特灌胃給藥;對照組和模型組給予等體積生理鹽水灌胃。10%水合氯醛(3 mL/kg)腹腔注射麻醉,腹部皮膚常規(guī)備皮消毒,取中腹部正中切口長約4 cm,分離腸系膜上動脈(Superior mesenteric artery,SMA)起始部,予無創(chuàng)血管夾夾閉,使之完全阻斷血流45 min后松開,再灌注2 h,腸缺血再灌注模型制備成功。夾閉期間斷腹腔內(nèi)注射5 mL生理鹽水,以預(yù)防松開動脈夾后出現(xiàn)一過性低血容量反應(yīng),對照組除不鉗夾SMA外其余操作相同。各組關(guān)閉腹腔后放回鼠籠觀察,自由進(jìn)食、飲水。再灌注3 h后大鼠再次麻醉進(jìn)腹,腹主動脈采血后切除大鼠腎臟用于HE染色、RT-PCR、免疫組化和Western blot檢測。
1.2.2 大鼠腎臟病理變化及病理損傷評分? 腎臟組織經(jīng)10%福爾馬林固定、包埋、切片后HE染色,光學(xué)顯微鏡下觀察腎臟組織病理形態(tài)學(xué)的變化,每份樣本均由兩位有經(jīng)驗(yàn)的病理醫(yī)師獨(dú)立病理Paller's評分[7]:每個高倍鏡視野下隨機(jī)選擇10個病變的腎小管,按100個腎小管計(jì)分,評分標(biāo)準(zhǔn):腎小管明顯擴(kuò)張、細(xì)胞扁平1分;刷狀緣損傷1分,脫落2分;管型2分;腎小管管腔內(nèi)有脫落或壞死細(xì)胞(未成管型或細(xì)胞碎片)計(jì)1分。
1.2.3 大鼠血清標(biāo)本采集及生化指標(biāo)檢測? 抽取大鼠腹主動脈血液5 mL,2000 r/min離心10 min取血清,采用全自動生化分析儀測定血清尿素氮(Blood urea nitrogen,BUN)和血肌酐(Crea,Cr)含量。
1.2.4 大鼠腎臟免疫組化檢測CysLTR1蛋白和NGAL蛋白表達(dá)? 大鼠腎臟石蠟切片經(jīng)二甲苯脫蠟、不同濃度酒精水化和枸櫞酸緩沖液抗原修復(fù);分別滴加一抗多克隆CysLTR1抗體(1∶100)和多克隆NGAL抗體(1∶500),4℃過夜;二抗常溫孵育30 min;隨后DAB試劑染色、蘇木素復(fù)染及中性樹膠封片。顯微鏡下每張切片隨機(jī)選取4個高倍鏡觀察定位,利用Image J計(jì)算平均光密度值。
1.2.5 RT-PCR法測定腎臟組織中CysLTR1 mRNA水平? 切取大鼠腎臟組織并迅速放至-80℃冰箱凍存待檢。Trizol離心柱法提取組織總RNA,M-MLV逆轉(zhuǎn)錄酶進(jìn)行逆轉(zhuǎn)錄,采用熒光定量PCR擴(kuò)增CysLTR1,以GAPDH為內(nèi)參,根據(jù)Genbank設(shè)計(jì)引物,由上海生工生物技術(shù)公司合成(表1)。熒光定量PCR儀設(shè)置參數(shù):95℃預(yù)變性l min;95℃變性15 s,55℃退火20 s,72℃延伸20 s,讀板,共40個循環(huán);融解曲線。得到每個樣品的Ct值,計(jì)算每個樣品目的基因的相對表達(dá)量2-△△Ct。△△Ct=(待測組目的基因平均Ct值-待測組內(nèi)參基因平均Ct值)-(對照組目的基因平均Ct值-對照組內(nèi)參基因平均Ct值)。
1.2.6 Western-blot檢測大鼠腎臟組織CysLTR1蛋白表達(dá)? 冰上研碎大鼠腎組織100 mg后加入RIPA裂解液,超聲破碎后4℃,12000 r/min離心15 min,取上清液,測定蛋白濃度,制定標(biāo)準(zhǔn)蛋白曲線,8%SDS-PAGE凝膠電泳分離目的蛋白,然后將蛋白轉(zhuǎn)印至PVDF膜,5%脫脂奶粉封閉PVDF膜1 h,加CysLTR1抗體(1:500)孵育4℃過夜,含吐溫緩沖液(PBST)洗脫一抗(10 min×2次),加1:1000稀釋HRP標(biāo)記的二抗,孵育1 h后PBST洗脫二抗(10 min×3次),滴加顯影液(NBT/BCTP)顯色,發(fā)光壓片,以GAPDH作為內(nèi)參照,Image J分析測定灰度值,結(jié)果用靶蛋白/GAPDH比值表示蛋白表達(dá)的相對水平。
1.3 統(tǒng)計(jì)學(xué)方法
采用SPSS17.0統(tǒng)計(jì)學(xué)軟件進(jìn)行分析處理,計(jì)量資料用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,組間比較用單因素方差分析,方差齊時采用t檢驗(yàn),方差不齊時采用校正t檢驗(yàn),P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 各組大鼠腎臟組織的病理學(xué)變化
光鏡下對照組大鼠腎小球腎小管清晰可見,未見明顯的形態(tài)學(xué)改變;模型組大鼠腎臟可見不同程度的腎小球萎縮變形,腎間質(zhì)炎細(xì)胞浸潤,腎小管上皮細(xì)胞腫脹空泡變性,管腔變大,甚至腎小管片狀出血壞死;孟魯斯特組也存在上述病理改變,但較模型組明顯改善。Paller評分結(jié)果顯示:模型組顯著高于對照組[(408.9±17.3)分 vs (110.3±10.0)分],差異有顯著統(tǒng)計(jì)學(xué)意義(P<0.01);孟魯司特組顯著低于模型組[(323.4±14.9)分 vs (408.9±17.3)分],差異有顯著統(tǒng)計(jì)學(xué)意義(P<0.01)。見封三圖3。
2.2 各組大鼠血尿素氮和血肌酐的水平比較
再灌注后3 h,模型組大鼠血清中BUN、Cr含量顯著高于對照組,差異有顯著統(tǒng)計(jì)學(xué)意義(P<0.01);孟魯司特組大鼠血清中BUN和Cr的含量顯著低于模型組,差異有顯著統(tǒng)計(jì)學(xué)意義(P<0.01)。見表2。
2.3 免疫組化各組大鼠腎臟組織CysLTR1和NGAL的表達(dá)
與對照組比較,模型組CysLTR1和NGAL的表達(dá)均顯著增加,差異有顯著統(tǒng)計(jì)學(xué)意義(P<0.01);與模型組比較,孟魯司特組CysLTR1表達(dá)顯著降低,差異有顯著統(tǒng)計(jì)學(xué)意義(P<0.01);NAGL的表達(dá)降低,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。見封三圖4、表3。
2.4 各組腎臟組織中CysLTR1mRNA表達(dá)
與對照組相比,模型組CysLTR1 mRNA表達(dá)明顯升高[(3.60±0.84) vs (1.93±0.11)],兩組比較,差異有顯著統(tǒng)計(jì)學(xué)意義(P<0.01);而與模型組比較,孟魯斯特組CysLTR1 mRNA表達(dá)降低[(2.80±0.36) vs (3.60±0.84)],兩組比較,差異有顯著統(tǒng)計(jì)學(xué)意義(P<0.01)。
2.5 Western blot觀察各組大鼠腎臟組織CysLTR1蛋白表達(dá)
各組腎臟組織CysLTR1表達(dá)均有陽性條帶,位于44 kD。與對照組比較,模型組CysLTR1表達(dá)明顯增加,兩組比較,差異有顯著統(tǒng)計(jì)學(xué)意義(P<0.01);孟魯斯特組與模型組比較CysLTR1表達(dá)明顯降低(P<0.01)。見圖1。
3 討論
腸缺血再灌注傷致遠(yuǎn)隔器官損傷分子機(jī)制尚未完全闡明,可能為腸缺血再灌注時活化的血小板和血管收縮介質(zhì)誘發(fā)腸黏膜細(xì)胞鈣超載和大量氧自由基產(chǎn)生,加劇腸黏膜屏障損傷,腸道細(xì)菌和內(nèi)毒素等有害物質(zhì)移位至遠(yuǎn)隔器官[8-10]。腎臟血流動力學(xué)具有高灌注和高濾過特性,因此腎臟成為IIR的常見重要靶器官,嚴(yán)重腎臟損傷可致腎功能衰竭而危及生命。半胱氨酰白三烯(CysLTs)包括LTC4、LTD4和LTE4三種亞型,當(dāng)內(nèi)臟免疫細(xì)胞接觸過敏原、炎癥細(xì)胞因子刺激后,觸發(fā)細(xì)胞內(nèi)和細(xì)胞外液中Ca2+動員,導(dǎo)致胞漿磷脂酶A2(cPLA2)及其他類型PLA2酶的激活,這些酶從膜磷脂中分離出花生四烯酸,然后花生四烯酸通過5-脂氧合酶(5-lipoxygenase,5-LO)在5-LO活化蛋白(5-lipoxygenase-activating protein,F(xiàn)LAP)作用下產(chǎn)生CysLTs[11]。CysLTs除可促進(jìn)支氣管平滑肌收縮外,還主要為促炎因子,與急性或慢性炎癥反應(yīng)有關(guān),主要來源于免疫細(xì)胞外,另外內(nèi)皮細(xì)胞吸收白細(xì)胞釋放的LTA4后,經(jīng)微粒體GST-2和γ-谷氨酰轉(zhuǎn)肽酶作用也可分泌CysLTs;CysLTsR根據(jù)對經(jīng)典拮抗劑敏感性不同將CysLTs受體主要分為CysLTsR1和CysLTsR2兩種亞型。正常人體多種組織細(xì)胞如小腸、肝臟和腎臟等器官也低表達(dá)CysLTR1,并發(fā)揮一定正常的生理功能[12-14]。研究表明,CysLTsR1主要存在于肺部、支氣管、平滑肌等組織嗜酸粒細(xì)胞、嗜堿粒細(xì)胞、中性粒細(xì)胞、巨噬細(xì)胞、肥大細(xì)胞等多種炎癥細(xì)胞,主要識別LTC4、LTD4和LTE4,其中與LTD4的親和力最強(qiáng);而CysLTsR2主要分布在粒細(xì)胞。CysLTs通過CysLTs/CysLTsR途徑與其他炎癥介質(zhì)相互作用誘發(fā)炎癥級聯(lián)放大,增加血管通透性和促進(jìn)黏液分泌,促進(jìn)大量炎癥細(xì)胞聚集[15]。NGAL是由中性粒細(xì)胞和某些上皮細(xì)胞如腎小管所表達(dá)的微量蛋白,缺血性或腎毒性腎損傷時,NGAL在腎臟大量表達(dá),并被釋放到尿液和血漿,一般在腎損傷發(fā)生后2 h內(nèi)升高,為早期且敏感的腎損傷生物標(biāo)志物。本課題組前期研究證實(shí),腸缺血再灌注損傷時小腸組織的CysLTR1表達(dá)水平與小腸組織病理損傷程度關(guān)系密切,孟魯司特減輕腸缺血再灌注引起的小腸損傷[5]。為此,本研究進(jìn)一步研究發(fā)現(xiàn),正常對照組腎臟組織中NGAL和CysLTs輕微表達(dá);當(dāng)小腸缺血再灌注時腎功能受損嚴(yán)重,腎間質(zhì)大量炎癥細(xì)胞浸潤、部分腎小球萎縮變形、腎小管細(xì)胞水腫甚至出血,腎臟組織CysLTR1蛋白和CysLTR1 mRNA水平表達(dá)均明顯升高,免疫組化顯示CysLTR1主要表達(dá)于腎小球和腎小管,而相對應(yīng)腎小球和腎小管病理損傷嚴(yán)重,NGAL表達(dá)量顯著增加,表明腎臟組織CysLTsR1蛋白的表達(dá)水平和腎臟組織病理損傷及腎臟NGAL水平呈正相關(guān),腎臟組織CysLTsR1蛋白表達(dá)水平越高,腎臟組織損傷越嚴(yán)重。孟魯司特作為選擇性可逆的CysLT1受體拮抗劑具有抗氧化抗炎作用,臨床上常應(yīng)用于哮喘的維持治療、緩解季節(jié)性過敏癥狀[16-17]。本研究結(jié)果顯示,與模型組相比孟魯司特組腎組織CysLTR1和NGAL表達(dá)顯著下降,血清BUN和Cr含量降低,顯著改善腎功能,提示孟魯司特對IIR模型鼠腎損傷具有保護(hù)作用,可能與孟魯司特抑制CysLTs/CysLTsR途徑中性粒細(xì)胞浸潤、抑制分子黏附和脂質(zhì)過氧化有關(guān)[18-20]。
綜上所述,孟魯司特在IIR模型鼠腎損傷中起保護(hù)作用;保護(hù)機(jī)制是通過抑制腎組織中CysLTsR1表達(dá),抑制CysLTs/CysLTsR途徑而減少炎癥介質(zhì)的釋放。因此,靶向CysLTsR1有望成為IIR腎損傷新的治療手段,值得進(jìn)一步研究。
[參考文獻(xiàn)]
[1] Englert JA,Bobba C,Baron RM. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome[J]. JCI Insight,2019, 4(2):e124 061.
[2] Nadatani Y,Watanabe T,Shimada S,et al. Microbiome and intestinal ischemia/reperfusion injury[J]. J Clin Biochem Nutr,2018,63(1):26-32.
[3] Alexandropoulos D,Bazigos GV,Doulamis IP,et al. Protective effects of N-acetylcystein and atorvastatin against renal and hepatic injury in a rat model of intestinal ischemia-reperfusion[J]. Biomed Pharmacother,2017,89:673-680.
[4] Matsa R,Ashley E,Sharma V,et al. Plasma and urine neutrophil gelatinase-associated lipocalin in the diagnosis of new onset acute kidney injury in critically ill patients[J]. Crit Care,2014,18(4):R137.
[5] Wu S,Zhu X,Jin Z,et al. The protective role of montelukast against intestinal ischemia-reperfusion injury in rats[J]. Sci Rep,2015,5:15 787.
[6] Hu X,Ding C,Ding X,et al. Inhibition of myeloid differentiation protein 2 attenuates renal ischemia/reperfusion-induced oxidative stress and inflammation via suppressing TLR4/TRAF6/NF-kB pathway[J]. Life Ences,2020, 256:117 864.
[7] Shiva N,Sharma N,Kulkarni YA,et al. Renal ischemia/reperfusion injury:An insight on in vitro and in vivo models[J]. Life Ences,2020,256:117 860.
[8] Ceulemans LJ,Verbeke L,Decuypere JP,et al. Farnesoid X receptor activation attenuates intestinal ischemia reperfusion injury in rats[J]. PLoS One,2017,12(1):e0169 331.
[9] Paller MS,Hoidal JR,F(xiàn)erris TF. Oxygen free radicals in ischemic acute renal failure in the rat[J]. J Clin Invest,1984,74(4):1156-1164.
[10] Grootjans J,Lenaerts K,Buurman WA,et al. Life and death at the mucosal-luminal interface:New perspectives on human intestinal ischemia-reperfusion[J]. World J Gastroenterol,2016,22(9):2760-2770.
[11] Liu Z,Qu M,Yu L,et al. Artesunate inhibits renal ischemia-reperfusion-mediated remote lung inflammation through attenuating ROS-induced activation of NLRP3 inflammasome[J]. Inflammation,2018,41(4):1546-1556.
[12] Otunctemur A,Ozbek E,Cekmen M,et al. Protective effect of montelukast which is cysteinyl-leukotriene receptor antagonist on gentamicin-induced nephrotoxicity and oxidative damage in rat kidney[J]. Ren Fail,2013,35(3):403-410.
[13] Theron AJ,Steel HC,Tintinger GR,et al. Cysteinyl leukotriene receptor-1 antagonists as modulators of innate immune cell function[J]. J Immunol Res,2014,2014:608 930.
[14] Song W,Zhang Y,Wang J,et al. Antagonism of cysteinyl leukotriene receptor 1(cysLTR1) by montelukast suppresses cell senescence of chondrocytes[J]. Cytokine,2018,103:83-89.
[15] Duah E,Teegala LR,Kondeti V,et al. Cysteinyl leukotriene 2 receptor promotes endothelial permeability,tumor angiogenesis,and metastasis[J]. Proc Natl Acad Sci USA,2019,116(1):199-204.
[16] Paolo Gelosa,Elisabetta Bonfanti,Laura Castiglioni,et al. Improvement of fiber connectivity and functional recovery after stroke by montelukast,an available and safe anti-asthmatic drug[J]. Pharmacol Res,2019,142:223-236.
[17] Francis A,Baynosa R. Ischaemia-reperfusion injury and hyperbaric oxygen pathways:A review of cellular mechanisms[J]. Diving Hyperb Med,2017,47(2):110-117.
[18] Malek M,Nematbakhsh M. Renal ischemia/reperfusion injury; from pathophysiology to treatment[J]. J Renal Inj Prev,2015,4(2):20-27.
[19] Gad AM,El-Raouf OMA,El-Sayeh BM,et al. Renoprotective effects of montelukast in an experimental model of cisplatin nephrotoxicity in rats[J]. J Biochem Mol Toxicol,2017,31(12):10.1002/jbt.21979.
[20] Kse E,Oguz F,Vardi N,et al. Therapeutic and protective effects of montelukast against doxorubicin-induced acute kidney damage in rats[J]. Iranian Journal of Basic Medical Ences,2019,22(4):407-411.
(收稿日期:2020-09-17)