吳敏 李廣義 陳茀
摘 要:左室舒張功能不全(left ventrical diastolic dysfunction, LVDD)在慢性腎?。╟hronic heart diease, CKD)患者中患病率高、發(fā)生早,與心血管疾病的發(fā)生和生存率下降有關(guān).LVDD的主要表現(xiàn)為心肌松弛下降和心室充盈受限,進(jìn)而發(fā)展為心力衰竭(heart failure,HF),是尿毒癥心肌病的基礎(chǔ).CKD患者由于體液環(huán)境的復(fù)雜性,LVDD病程發(fā)展中既有年齡、男性、高血壓、糖尿病等傳統(tǒng)危險(xiǎn)因素;也有尿毒癥毒素、感染、氧化應(yīng)激等非傳統(tǒng)因素的綜合影響.目前超聲心動(dòng)圖是LVDD的主要無創(chuàng)性檢查工具,可通過結(jié)構(gòu)及動(dòng)力學(xué)改變?cè)u(píng)估功能障礙.
關(guān)鍵詞:慢性腎病;左室舒張功能不全;射血分?jǐn)?shù)保留的心力衰竭
中圖分類號(hào):R563.9;R541.6? 文獻(xiàn)標(biāo)識(shí)碼:A? 文章編號(hào):1673-260X(2020)01-0047-05
近年來,隨著老齡化推進(jìn),高血壓、糖尿病發(fā)病率增高,CKD呈現(xiàn)出持續(xù)遞增趨勢(shì).HF是晚期CKD患者最常見的并發(fā)癥之一,也是導(dǎo)致心血管死亡的主要原因,其中射血分?jǐn)?shù)保持的心力衰竭(Left ventrical diastolic dysfunction,HFpEF)占約50%[1],以往研究主要集中在射血分?jǐn)?shù)降低的收縮性心力衰竭而忽視了HFpEF.HFpEF在終末期腎病患者中非常常見,但往往診斷困難,因?yàn)槠渑R床表現(xiàn)與該人群中常見的容量超負(fù)荷相同,此外,許多患者身體虛弱,因此對(duì)心衰癥狀的主訴并不多.LVDD在HFpEF的病理生理學(xué)中起著重要的基礎(chǔ)性作用[2].在CKD患者中,LVDD通常比收縮功能障礙更早發(fā)生,在疾病的早期就能發(fā)現(xiàn),并且與HF和更高的死亡率相關(guān)[3].LVDD的主要機(jī)制包括心肌肥厚(left ventricular hypertrophy,LVH)、間質(zhì)纖維化、鈣處理受損和被動(dòng)心肌細(xì)胞剛度增加,導(dǎo)致心肌僵硬、舒張期充盈異常[4].對(duì)于CKD患者而言,LVDD的發(fā)生既受年齡、性別等傳統(tǒng)危險(xiǎn)因素影響,又有腎毒素、血流動(dòng)力學(xué)改變的特征性因素.慢性腎病與心血管疾病兩者互相影響,前者增加了后者的風(fēng)險(xiǎn),后者是前者的重要并發(fā)癥、合并癥和死亡原因.盡早識(shí)別心臟結(jié)構(gòu)變化和功能損傷非常重要,隨著時(shí)間的推移,會(huì)導(dǎo)致心臟結(jié)構(gòu)和功能的進(jìn)行性損傷,導(dǎo)致不可逆的心力衰竭.本文就CKD患者LVDD或HFpEF的發(fā)病機(jī)制及臨床評(píng)估做一綜述.
1 發(fā)病機(jī)制
LVDD的發(fā)病機(jī)制包括主動(dòng)心室松弛性和被動(dòng)心室順應(yīng)性異常,從而導(dǎo)致心室僵硬和較高的舒張壓,這些壓力通過心房傳遞至肺靜脈系統(tǒng),引起肺順應(yīng)性降低[5].松弛的損害可能是由任何影響細(xì)胞質(zhì)中鈣清除和肌動(dòng)蛋白跨橋分離的機(jī)制造成的[6],而左室順應(yīng)性降低與心肌成分的改變有關(guān),包括間質(zhì)纖維化、肌鈣蛋白磷酸化改變以及心肌細(xì)胞微管含量的增加有關(guān)[7].在CKD患者中LVDD涉及早期心肌細(xì)胞損傷和隨后加重的已知機(jī)制和途徑包括細(xì)胞功能受損(鈣處理不足,氧化應(yīng)激增加,線粒體功能障礙),結(jié)構(gòu)改變(LVH伴纖維化和心肌細(xì)胞僵硬)以及其他與CKD相關(guān)的因素如貧血、炎癥、神經(jīng)體液改變等[8-10].
1.1 LVH伴心肌纖維化
LVH在腎功能不全的早期就可以發(fā)現(xiàn),常伴有心肌纖維化,是該人群死亡的獨(dú)立危險(xiǎn)因素[4].大多數(shù)終末期腎病患者表現(xiàn)為舒張功能障礙和LVH,而只有少數(shù)患者表現(xiàn)為明顯的收縮功能障礙[4].通過切除5/6腎組織建立的小鼠慢性腎病模型發(fā)現(xiàn),LVH伴纖維化是CKD的主要心肌改變[11].CKD患者LVH涉及的病理生理因素一般分為3類:(1) 前負(fù)荷增加,(2)后負(fù)荷增加,(3)與后負(fù)荷或前負(fù)荷無關(guān)的.與前負(fù)荷相關(guān)的因素包括水鈉潴留、貧血和高流量動(dòng)靜脈瘺,導(dǎo)致心肌細(xì)胞延長(zhǎng)和偏心或不對(duì)稱的左室重塑.與后負(fù)荷相關(guān)因素包括全身動(dòng)脈阻力增加(收縮期和舒張期高血壓)和大血管順應(yīng)性下降(血管鈣化),這些因素都導(dǎo)致心肌細(xì)胞增厚和左室同心重構(gòu)[12].其他如高磷血癥、甲狀旁腺功能亢進(jìn)和維生素D缺乏在心肌代謝中發(fā)揮重大作用[13,14].心肌肥大誘導(dǎo)細(xì)胞凋亡信號(hào)的激活,并激活代謝途徑,從而增加細(xì)胞外基質(zhì)的產(chǎn)生,直至心肌纖維化心室壁僵硬[15].在LVDD患者中,由于左室肥厚和心肌間質(zhì)纖維化,主動(dòng)心肌松弛異常(舒張?jiān)缙冢┖捅粍?dòng)心室僵硬(舒張中晚期)導(dǎo)致左室充盈異常,從而導(dǎo)致左室充盈壓升高[3].LVH、心肌細(xì)胞凋亡和心肌間質(zhì)纖維化的結(jié)果是,心肌毛細(xì)血管密度降低與心室舒張充盈受損,進(jìn)一步心室內(nèi)傳導(dǎo)紊亂和心室擴(kuò)張[8,16].
1.2 線粒體功能障礙與鈣處理不足
鈣離子調(diào)節(jié)心肌收縮和線粒體活性,從而在心肌能量供需平衡中發(fā)揮關(guān)鍵作用[17].在心肌細(xì)胞中,由于細(xì)胞內(nèi)鈣濃度的短暫上升和下降而引起心肌收縮和舒張.舒張功能依賴于胞漿中Ca2+釋放的速率和程度,它們分別調(diào)節(jié)心肌細(xì)胞舒張的速率和程度[18,19].由于鈣的再攝取是高度依賴能量的,松弛對(duì)缺血或心肌能量缺乏非常敏感[20].線粒體是細(xì)胞內(nèi)最大的鈣池之一,通過對(duì)尿毒癥大鼠模型發(fā)現(xiàn)超載的鈣離子積聚在線粒體內(nèi)線粒體呼吸功能受損,對(duì)氧化應(yīng)激的敏感性增強(qiáng),氧化的、能量消耗的線粒體比例增加[9].在輕度線粒體功能障礙的情況下,細(xì)胞和線粒體Ca2+水平之間的這種耦合可能補(bǔ)償體內(nèi)心肌ATP供應(yīng),而中重度線粒體功能障礙可導(dǎo)致ADP升高并損害肌漿網(wǎng)Ca2+-ATP酶受體(SERCA2a)的活性[17],高的ADP和Ca2+超負(fù)荷是舒張功能障礙的機(jī)械基礎(chǔ),他們通過增加殘余肌動(dòng)球蛋白的相互作用而導(dǎo)致心肌細(xì)胞高硬度和松弛受損[6].
1.3 CKD相關(guān)因素對(duì)左室舒張功能的影響
1.3.1 腎毒素
腎小球?yàn)V過不足導(dǎo)致血液中多種生物活性化合物的保留,稱為尿毒癥毒素.尿毒癥毒素的積累會(huì)對(duì)多個(gè)器官產(chǎn)生有害的影響,其中心血管系統(tǒng)受到最嚴(yán)重的影響[21].心肌細(xì)胞暴露于CKD患者的尿毒癥血清中會(huì)導(dǎo)致Na/K-ATP酶抑制、鈣再攝取受損和延遲松弛[22].根據(jù)理化性質(zhì),將尿毒癥毒素分為3組:(1)尿素,肌酐和磷等游離的水溶性小分子,(2)中間分子量分子如β2-微球蛋白,甲狀旁腺激素,(3)與蛋白質(zhì)結(jié)合的分子,如吲哚酚硫酸鹽(IS)和對(duì)甲酚硫酸鹽(pCS)和高半胱氨酸[23].循環(huán)中尿毒癥毒素的持續(xù)存在促進(jìn)了氧化應(yīng)激和內(nèi)皮損傷,進(jìn)而引起病理性心臟重塑和功能障礙的[24,25].其中血尿素氮已被證明是從臨床前舒張功能不全到HFpEF進(jìn)展的獨(dú)立預(yù)測(cè)因子.研究表明,IS、pCS有促進(jìn)心臟細(xì)胞的增殖和促肥大作用,并已成為CKD患者舒張功能障礙的CKD主題[26].近年通過動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn)成纖維細(xì)胞生長(zhǎng)因子-23(FGF23)具有心臟毒性[23],通過干擾鈣的處理直接影響心肌細(xì)胞的功能,造成舒張功能障礙[27].
1.3.2 腎素-血管緊張素-醛固酮(RAAS)系統(tǒng)激活
CKD患者由于慢性腎缺血、缺氧引起RAAS系統(tǒng)過度激活,其對(duì)心肌肥厚、纖維化和重塑具有公認(rèn)的作用[28].RAAS系統(tǒng)通過調(diào)節(jié)血容量、血壓和血管張力在心血管內(nèi)穩(wěn)態(tài)中發(fā)揮重要作用,其中血管緊張素II引起全身血管收縮提高全身血管阻力,醛固酮水平升高引起水鈉潴留和循環(huán)血容量增加導(dǎo)致左心室前負(fù)荷增加,LVH伴L(zhǎng)VDD為機(jī)體對(duì)于容量與壓力負(fù)荷增加的適應(yīng)性反應(yīng)[29].RAAS通過NADP(H)氧化酶激活和隨后的ROS形成,冠狀動(dòng)脈微血管內(nèi)皮功能障礙[24].此外,醛固酮還可以通過內(nèi)皮和心肌鹽皮質(zhì)激素受體發(fā)揮作用,獨(dú)立于血管緊張素II直接促進(jìn)心肌纖維化、LVH和冠狀動(dòng)脈微血管功能障礙[30].
1.3.3 全身炎癥反應(yīng)
促炎癥狀態(tài)在CKD的早期階段就已經(jīng)存在,是心血管發(fā)病率和死亡率的重要危險(xiǎn)因素[10].CKD患者受尿毒癥狀態(tài)、營(yíng)養(yǎng)不良、慢性容量超載、感染增加、代謝性酸中毒和自主神經(jīng)功能障礙等多種因素影響處于持續(xù)的炎癥狀態(tài).全身促炎狀態(tài)被認(rèn)為是冠狀動(dòng)脈微血管功能障礙的關(guān)鍵因素,炎性反應(yīng)導(dǎo)致冠狀動(dòng)脈微循環(huán)血管內(nèi)皮細(xì)胞產(chǎn)生活性氧,消耗NO,以降低NO的生物利用度,導(dǎo)致蛋白激酶活性降低,誘導(dǎo)心肌向心性肥大[31].此外,NO生物利用度減低會(huì)激活血管緊張素II介導(dǎo)的血管收縮作用,從而導(dǎo)致向心臟輸送的血液減少,引起心肌細(xì)胞缺血性損傷[32].
1.3.4 貧血
貧血與舒張功能的前負(fù)荷依賴性標(biāo)記物密切相關(guān),與心血管住院和死亡的綜合結(jié)果相關(guān)[33].隨著CKD的進(jìn)展腎小管細(xì)胞鐵缺乏和促紅細(xì)胞生成素生成不足,繼發(fā)腎性貧血[34].貧血嚴(yán)重?fù)p害氧的輸送,需要增加心排血量以維持全身供氧,臨床表現(xiàn)為慢性心動(dòng)過速和交感神經(jīng)活動(dòng)增強(qiáng),這種代償機(jī)制增加心臟的額外負(fù)荷最終導(dǎo)致HFpEF的進(jìn)展[11].由此引起的心肌做功的增加和血液攜氧能力的降低均導(dǎo)致心肌氧平衡受損.心肌組織缺氧會(huì)引起心輸出量的代償性增加,并抑制線粒體呼吸,造成心肌細(xì)胞損傷[35].
1.3.5 維生素D缺乏
維生素D缺乏是CKD的常見表現(xiàn),與心肌肥大有關(guān)[36].腎功能下降導(dǎo)致1α-羥基化能力降低和活性維生素D的逐漸喪失.一項(xiàng)在敲除維生素D受體的動(dòng)物研究報(bào)發(fā)現(xiàn),維生素D缺乏癥大鼠心肌細(xì)胞肥大和細(xì)胞外基質(zhì)增加[37].維生素D是腎素-血管緊張素合成的負(fù)性內(nèi)分泌調(diào)節(jié)因子,不僅會(huì)導(dǎo)致心肌肥大,還會(huì)引起炎癥性改變,從而導(dǎo)致心肌纖維化[38].維生素D通過激活心肌細(xì)胞、血管內(nèi)皮細(xì)胞的核受體和調(diào)節(jié)RAAS、肥胖和胰腺細(xì)胞活性,發(fā)揮心血管活性[39].
2 左室舒張功能評(píng)估
由于LVDD被定義為心肌舒張功能受損和/或左心室順應(yīng)性下降,直接測(cè)量左心室舒張和充盈壓力是評(píng)估舒張功能最好的方法.使用心導(dǎo)管進(jìn)行有創(chuàng)血流動(dòng)力學(xué)評(píng)估是目前診斷LVDD的金標(biāo)準(zhǔn),因?yàn)樗軌蛑苯訙y(cè)量整個(gè)心臟周期的心室壓力,評(píng)估心室舒張功能[40].這種方法的侵襲性和風(fēng)險(xiǎn)性降低了其臨床價(jià)值,特別是對(duì)于合并嚴(yán)重疾病和不穩(wěn)定的患者.
非侵入性檢測(cè)LVDD一直是一個(gè)挑戰(zhàn),近年來,超聲心動(dòng)圖已成為診斷LVDD的首選方法,其中多普勒超聲心動(dòng)圖和組織多普勒超聲心動(dòng)圖是最常用的檢查技術(shù).E/E′和LAVI已被證明可以可靠地評(píng)估CKD患者和普通人群的舒張功能[41].但是超聲存在操作者依賴性,部分患者難以獲得清晰圖像的弊端.
最后,心臟磁共振(CMR)可以成為評(píng)估DD的一個(gè)有價(jià)值的工具,特別是在超聲心動(dòng)圖結(jié)果不確定的患者中.CMR可以量化評(píng)估心肌纖維化程度,具有更高的空間分辨率和更好的再現(xiàn)性[42].由于CMR設(shè)備的有限可用性、檢查費(fèi)用昂貴,不適用于臨床常規(guī)檢查,目前被多用于科研.
3 總結(jié)
CKD患者LVDD機(jī)制復(fù)雜,主要與LVH有關(guān),其他與CKD相關(guān)的因素如RAAS系統(tǒng)激活、炎癥、貧血等,都可能導(dǎo)致LVDD的發(fā)生與發(fā)展.LVDD是保留左心室射血分?jǐn)?shù)(HFpEF)的心力衰竭的主要特征,也是其重要的病理環(huán)節(jié).目前超聲作為首選的無創(chuàng)性性檢查技術(shù)用于LVDD的篩查與監(jiān)測(cè),為L(zhǎng)VDD的早期診斷及階段性治療提供了依據(jù),以探索緩解與治療方法.
——————————
參考文獻(xiàn):
〔1〕Smith DH, Thorp ML, Gurwitz JH, et al. Chronic kidney disease and outcomes in heart failure with preserved versus reduced ejection fraction: the Cardiovascular Research Network PRESERVE Study. Circ Cardiovasc Qual Outcomes. 2013. 6(3): 333-42.
〔2〕Obokata M, Reddy Y, Borlaug BA. Diastolic Dysfunction and Heart Failure With Preserved Ejection Fraction: Understanding Mechanisms by Using Noninvasive Methods. JACC Cardiovasc Imaging. 2019.
〔3〕Ogawa T, Nitta K. Clinical Impact of Left Ventricular Diastolic Dysfunction in Chronic Kidney Disease. Contrib Nephrol. 2018. 195: 81-91.
〔4〕Escoli R, Carvalho MJ, Cabrita A, et al. Diastolic Dysfunction, an Underestimated New Challenge in Dialysis. Ther Apher Dial. 2019. 23(2): 108-117.
〔5〕Gazewood JD, Turner PL. Heart Failure with Preserved Ejection Fraction: Diagnosis and Management. Am Fam Physician. 2017. 96(9): 582-588.
〔6〕Sequeira V, Najafi A, McConnell M, et al. Synergistic role of ADP and Ca(2+) in diastolic myocardial stiffness. J Physiol. 2015. 593(17): 3899-916.
〔7〕Wan SH, Vogel MW, Chen HH. Pre-clinical diastolic dysfunction. J Am Coll Cardiol. 2014. 63(5): 407-16.
〔8〕Di Lullo L, Gorini A, Russo D, et al. Left Ventricular Hypertrophy in Chronic Kidney Disease Patients: From Pathophysiology to Treatment. Cardiorenal Med. 2015. 5(4): 254-66.
〔9〕Taylor D, Bhandari S, Seymour AM. Mitochondrial dysfunction in uremic cardiomyopathy. Am J Physiol Renal Physiol. 2015. 308(6): F579-87.
〔10〕van de Wouw J, Broekhuizen M, Sorop O, et al. Chronic Kidney Disease as a Risk Factor for Heart Failure With Preserved Ejection Fraction: A Focus on Microcirculatory Factors and Therapeutic Targets. Front Physiol. 2019. 10: 1108.
〔11〕Suematsu Y, Jing W, Nunes A, et al. LCZ696 (Sacubitril/Valsartan), an Angiotensin-Receptor Neprilysin Inhibitor, Attenuates Cardiac Hypertrophy, Fibrosis, and Vasculopathy in a Rat Model of Chronic Kidney Disease. J Card Fail. 2018. 24(4): 266-275.
〔12〕London GM. Left ventricular alterations and end-stage renal disease. Nephrol Dial Transplant. 2002. 17 Suppl 1: 29-36.
〔13〕Drechsler C, Pilz S, Obermayer-Pietsch B, et al. Vitamin D deficiency is associated with sudden cardiac death, combined cardiovascular events, and mortality in haemodialysis patients. Eur Heart J. 2010. 31(18): 2253-61.
〔14〕Wolf M, Shah A, Gutierrez O, et al. Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int. 2007. 72(8): 1004-13.
〔15〕Dorn GW 2nd. Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res. 2009. 81(3): 465-73.
〔16〕Hampl H, Riedel E. Cardiac disease in the dialysis patient: good, better, best clinical practice. Blood Purif. 2009. 27(1): 99-113.
〔17〕Miranda-Silva D, Wüst R, Concei??o G, et al. Disturbed cardiac mitochondrial and cytosolic calcium handling in a metabolic risk-related rat model of heart failure with preserved ejection fraction. Acta Physiol (Oxf). 2019 : e13378.
〔18〕Louch WE, Stokke MK, Sjaastad I, et al. No rest for the weary: diastolic calcium homeostasis in the normal and failing myocardium. Physiology (Bethesda). 2012. 27(5): 308-23.
〔19〕劉靜,林謙.高血壓左室舒張功能障礙與舒張性心衰關(guān)系研究進(jìn)展[J].中西醫(yī)結(jié)合心腦血管病雜志,2017,15(10):1190-1193.
〔20〕Gladden JD, Linke WA, Redfield MM. Heart failure with preserved ejection fraction. Pflugers Arch. 2014. 466(6): 1037-53.
〔21〕Vanholder R, Van Laecke S, Glorieux G. What is new in uremic toxicity. Pediatr Nephrol. 2008. 23(8): 1211-21.
〔22〕Periyasamy SM, Chen J, Cooney D, et al. Effects of uremic serum on isolated cardiac myocyte calcium cycling and contractile function. Kidney Int. 2001. 60(6): 2367-76.
〔23〕Lekawanvijit S. Cardiotoxicity of Uremic Toxins: A Driver of Cardiorenal Syndrome. Toxins (Basel). 2018. 10(9).
〔24〕Bongartz LG, Cramer MJ, Doevendans PA, et al.The severe cardiorenal syndrome: 'Guyton revisited'. Eur Heart J. 2005. 26(1): 11-7.
〔25〕Jourde-Chiche N, Dou L, Cerini C, et al. Vascular incompetence in dialysis patients--protein-bound uremic toxins and endothelial dysfunction. Semin Dial. 2011. 24(3): 327-37.
〔26〕Nardi E, Mulè G, Nardi C, et al. Is echocardiography mandatory for patients with chronic kidney disease. Intern Emerg Med. 2019. 14(6): 923-929.
〔27〕Verkaik M, Oranje M, Abdurrachim D, et al. High Fibroblast Growth Factor 23 concentrations in experimental renal failure impair calcium handling in cardiomyocytes. Physiol Rep. 2018. 6(7): e13591.
〔28〕Ersb?覬ll M, Raja AA, Warming PE, et al. Changes in left ventricular filling parameters before and after dialysis in patients with end stage renal disease. Int J Cardiovasc Imaging. 2019. 35(9): 1673-1681.
〔29〕Forrester SJ, Booz GW, Sigmund CD, et al. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev. 2018. 98(3): 1627-1738.
〔30〕Qi G, Jia L, Li Y, et al. Angiotensin II infusion-induced inflammation, monocytic fibroblast precursor infiltration, and cardiac fibrosis are pressure dependent. Cardiovasc Toxicol. 2011. 11(2): 157-67.
〔31〕Ter Maaten JM, Damman K, Verhaar MC, et al. Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail. 2016. 18(6): 588-98.
〔32〕Merkus D, Haitsma DB, Sorop O, et al. Coronary vasoconstrictor influence of angiotensin II is reduced in remodeled myocardium after myocardial infarction. Am J Physiol Heart Circ Physiol. 2006. 291(5): H2082-9.
〔33〕Burns JA, Sanchez C, Beussink L, et al. Lack of Association Between Anemia and Intrinsic Left Ventricular Diastolic Function or Cardiac Mechanics in Heart Failure With Preserved Ejection Fraction. Am J Cardiol. 2018. 122(8): 1359-1365.
〔34〕Westenbrink BD, Visser FW, Voors AA, et al. Anaemia in chronic heart failure is not only related to impaired renal perfusion and blunted erythropoietin production, but to fluid retention as well. Eur Heart J. 2007. 28(2): 166-71.
〔35〕Harada T, Obokata M, Kurosawa K, et al. Relationships of high cardiac output with ventricular morphology, myocardial energetics, and energy costs in hemodialysis patients with preserved ejection fraction. Int J Cardiovasc Imaging. 2019. 35(3): 469-479.
〔36〕Bucharles S, Barberato SH, Stinghen AE, et al. Hypovitaminosis D is associated with systemic inflammation and concentric myocardial geometric pattern in hemodialysis patients with low iPTH levels. Nephron Clin Pract. 2011. 118(4): c384-91.
〔37〕Nibbelink KA, Tishkoff DX, Hershey SD, et al. 1,25(OH)2-vitamin D3 actions on cell proliferation, size, gene expression, and receptor localization, in the HL-1 cardiac myocyte. J Steroid Biochem Mol Biol. 2007. 103(3-5): 533-7.
〔38〕Nolte K, Herrmann-Lingen C, Platschek L, et al. Vitamin D deficiency in patients with diastolic dysfunction or heart failure with preserved ejection fraction. ESC Heart Fail. 2019. 6(2): 262-270.
〔39〕Al Mheid I, Quyyumi AA. Vitamin D and Cardiovascular Disease: Controversy Unresolved. J Am Coll Cardiol. 2017. 70(1): 89-100.
〔40〕Eskander M, Kern MJ. Invasive Hemodynamics of Myocardial Disease: Systolic and Diastolic Dysfunction (and Hypertrophic Obstructive Cardiomyopathy). Interv Cardiol Clin. 2017. 6(3): 297-307.
〔41〕Plitt GD, Spring JT, Moulton MJ, et al.Mechanisms, diagnosis, and treatment of heart failure with preserved ejection fraction and diastolic dysfunction. Expert Rev Cardiovasc Ther. 2018. 16(8): 579-589.
〔42〕Pecoits-Filho R, Bucharles S, Barberato SH. Diastolic heart failure in dialysis patients: mechanisms, diagnostic approach, and treatment. Semin Dial. 2012. 25(1): 35-41.
赤峰學(xué)院學(xué)報(bào)·自然科學(xué)版2020年1期