張陽 韓忠華 柳斐 宋科 張科施 宋文萍
摘要:高超聲速寬速域飛行器需要從地面零速滑跑起飛,經(jīng)歷亞聲速起飛、跨聲速/超聲速爬升,直至高超聲速巡航等多個(gè)飛行階段,因此,除了需要保證高超聲速性能以外,還必須兼顧滿足工程需求的亞、跨和超聲速氣動(dòng)特性。首先,本文提出了一種基于代理模型的高效多目標(biāo)優(yōu)化新算法,結(jié)合新算法和RANS方程求解器、幾何參數(shù)化、網(wǎng)格自動(dòng)生成等技術(shù)發(fā)展了一套寬速域翼型多目標(biāo)優(yōu)化設(shè)計(jì)方法。然后,進(jìn)行了兼顧跨聲速與高超聲速氣動(dòng)性能的翼型多目標(biāo)氣動(dòng)優(yōu)化設(shè)計(jì),優(yōu)化獲得了包含58個(gè)翼型的Pareto最優(yōu)化解集。本文分析了Pareto前沿上的優(yōu)化翼型,對(duì)寬速域翼型協(xié)調(diào)跨聲速與高超聲速氣動(dòng)性能的機(jī)理進(jìn)行了總結(jié)。
關(guān)鍵詞:多目標(biāo)優(yōu)化算法;Pareto解集;寬速域;翼型設(shè)計(jì);高超聲速飛行器
中圖分類號(hào):V221.3文獻(xiàn)標(biāo)識(shí)碼:ADOI:10.19452/j.issn1007-5453.2020.11.003
高超聲速寬速域飛行器實(shí)際飛行中必然要經(jīng)歷亞聲速起飛、跨聲速/超聲速爬升,直到高超聲速巡航的多個(gè)飛行階段。其飛行速域之寬、空域之廣,對(duì)氣動(dòng)外形設(shè)計(jì)提出了巨大的挑戰(zhàn)。除了需要保證高超聲速性能以外,寬速域飛行器還必須兼顧滿足工程需求的亞、跨和超聲速氣動(dòng)特性。因此,具備優(yōu)良的寬速域氣動(dòng)性能是此類飛行器設(shè)計(jì)的基礎(chǔ)和體現(xiàn)其優(yōu)勢(shì)的決定性因素。然而,適應(yīng)各個(gè)速度階段氣動(dòng)性能的最佳氣動(dòng)外形/構(gòu)型往往是相互矛盾的,保證良好的氣動(dòng)性能所要求的外形/構(gòu)型也存在很大不同,使得以試湊法和反設(shè)計(jì)方法為代表的傳統(tǒng)設(shè)計(jì)方法難以滿足此類飛行器氣動(dòng)設(shè)計(jì)的嚴(yán)苛要求。因此,將計(jì)算流體力學(xué)(CFD)數(shù)值模擬與優(yōu)化算法結(jié)合,開展飛行器寬速域氣動(dòng)優(yōu)化設(shè)計(jì)方法研究顯得十分必要。
隨著高超聲速飛行器對(duì)寬速域氣動(dòng)性能的需求,近年來有學(xué)者開展了兼顧不同速域氣動(dòng)性能的寬速域翼型優(yōu)化設(shè)計(jì)研究[1-4]。然而據(jù)調(diào)研所知,這些寬速域翼型設(shè)計(jì)工作中大多數(shù)采用單目標(biāo)或加權(quán)系數(shù)多目標(biāo)的優(yōu)化設(shè)計(jì)方法找到了一個(gè)較優(yōu)的解。寬速域翼型氣動(dòng)設(shè)計(jì)是一個(gè)典型的多目標(biāo)設(shè)計(jì)問題,也是一個(gè)較新的領(lǐng)域,直接進(jìn)行多目標(biāo)優(yōu)化設(shè)計(jì)以獲得各不同目標(biāo)的Pareto前沿是很有必要的。這將有助于設(shè)計(jì)人員掌握寬速域流動(dòng)機(jī)理,理解各不同速域氣動(dòng)性能相互矛盾的機(jī)制,從而形成新的設(shè)計(jì)準(zhǔn)則,并找到更好的協(xié)調(diào)各速域氣動(dòng)性能的外形。因此,發(fā)展Pareto解集[5]多目標(biāo)優(yōu)化設(shè)計(jì)方法,構(gòu)造寬速域翼型優(yōu)化設(shè)計(jì)的多目標(biāo)Pareto最優(yōu)解集是十分有必要的。
代理優(yōu)化算法[6-8]通過建立優(yōu)化目標(biāo)關(guān)于設(shè)計(jì)變量的近似模型,能夠大大提高優(yōu)化設(shè)計(jì)效率。目前,代理優(yōu)化算法得到航空航天領(lǐng)域研究人員的廣泛重視,已應(yīng)用于各類飛行器的氣動(dòng)優(yōu)化設(shè)計(jì)問題中[9-15]。
近年來,代理模型被成功引入到翼型和復(fù)雜外形的多目標(biāo)氣動(dòng)優(yōu)化設(shè)計(jì)中[16-17],這些多目標(biāo)氣動(dòng)優(yōu)化設(shè)計(jì)方法大多采用如下思路:建立不同目標(biāo)的代理模型用以直接替代CFD分析,采用多目標(biāo)遺傳算法等傳統(tǒng)多目標(biāo)優(yōu)化算法在代理模型上進(jìn)行多目標(biāo)優(yōu)化,評(píng)估優(yōu)化獲得的前沿作為設(shè)計(jì)結(jié)果。該方法通過建立代理模型替代CFD分析能夠大大降低計(jì)算成本,然而,為了獲得足夠精確的代理模型,往往需要大量的樣本點(diǎn)用于建模,其優(yōu)化效率仍有待改進(jìn)。
21世紀(jì)以來,國內(nèi)外的研究人員在基于代理模型的多目標(biāo)進(jìn)化算法領(lǐng)域已經(jīng)開展了較深入研究,并取得了一些有意義的研究成果[18]。Knowles[19]提出了將高效全局優(yōu)化方法(EGO[20])與切比雪夫聚合方法相結(jié)合的ParEGO,該算法在建立不同目標(biāo)的代理模型以后,在每一次迭代中通過隨機(jī)選取的目標(biāo)權(quán)重系數(shù)將多目標(biāo)問題轉(zhuǎn)換為單目標(biāo)問題尋優(yōu),找到的點(diǎn)用以更新代理模型。Keane[21]和Emmerich[22]等提出了multi-EI和EHVI加點(diǎn)準(zhǔn)則,將原本用于單目標(biāo)優(yōu)化問題的期望改進(jìn)(EI)和概率改進(jìn)(PI)推廣到了多目標(biāo)優(yōu)化中。Beume[23]和Ponweiser[24]等發(fā)展了SMSEMOA和SMS-EGO算法,將最大化超體積作為子優(yōu)化目標(biāo)來指導(dǎo)加點(diǎn)。這些工作能夠提高傳統(tǒng)的無代理模型輔助的多目標(biāo)優(yōu)化算法的優(yōu)化效率,但是它們?cè)诿看蔚兄惶砑右粋€(gè)新增樣本點(diǎn)來更新代理模型,整個(gè)Pareto前沿不能在一次迭代中得到充分的探索。為此,張青富[25]等將MOEA/D[26]與代理模型相結(jié)合,提出了MOEA/D-EGO,Lin[27]和Silver[28]等采用類似思路發(fā)展了MOBO/D,sMOEA/ D,這些算法能夠在一次迭代中同時(shí)添加多個(gè)樣本點(diǎn),可進(jìn)一步提高優(yōu)化效率。但是,這些算法主要針對(duì)無約束優(yōu)化,而實(shí)際工程設(shè)計(jì)中大多數(shù)為帶約束問題。因此亟待發(fā)展帶約束處理能力的高效多目標(biāo)優(yōu)化算法。
本文發(fā)展了一套高超聲速飛行器寬速域翼型優(yōu)化設(shè)計(jì)新方法。首先介紹了課題組新提出的基于Kriging代理模型的多目標(biāo)進(jìn)化算法[29](SBMO),該算法能夠在建立代理模型后由多目標(biāo)加點(diǎn)準(zhǔn)則在一代中產(chǎn)生多個(gè)新樣本點(diǎn)促進(jìn)代理模型的高效進(jìn)化,并實(shí)現(xiàn)了約束處理。結(jié)合新算法和RANS方程求解器、幾何參數(shù)化、網(wǎng)格自動(dòng)生成等技術(shù),發(fā)展了一套高效全局的寬速域翼型氣動(dòng)優(yōu)化設(shè)計(jì)新方法。采用提出的多目標(biāo)優(yōu)化設(shè)計(jì)方法開展了兼顧跨聲速和高超聲速氣動(dòng)性能的寬速域翼型優(yōu)化設(shè)計(jì)研究。通過優(yōu)化設(shè)計(jì)得到了包含一系列優(yōu)化翼型的翼型簇。對(duì)Pareto最優(yōu)化解集中的翼型進(jìn)行研究,分析了寬速域翼型兼顧跨聲速與高超聲速氣動(dòng)性能的空氣動(dòng)力學(xué)原理。
1基于代理模型的多目標(biāo)氣動(dòng)優(yōu)化設(shè)計(jì)新方法
1.1 SBMO算法
SBMO通過對(duì)不同目標(biāo)建立代理模型,在尋找子代的過程中產(chǎn)生一系列不同的權(quán)重,將子代的搜索過程分解為一系列子優(yōu)化問題,從而大大減小了樣本點(diǎn)分析的次數(shù)。通過建立代理模型并分解組合的思路能夠在子優(yōu)化中直接采用單目標(biāo)約束處理方法。將SBMO算法與作者所在團(tuán)隊(duì)開發(fā)的SurroOpt[30]軟件平臺(tái)結(jié)合,發(fā)展了基于代理模型的多目標(biāo)氣動(dòng)優(yōu)化設(shè)計(jì)方法。圖1為多目標(biāo)優(yōu)化設(shè)計(jì)流程示意圖。以下分別對(duì)SBMO算法中使用的Kriging代理模型、多目標(biāo)問題分解策略和加點(diǎn)準(zhǔn)則進(jìn)行介紹。
1.2 Kriging代理模型[6,31]
目前,國內(nèi)外已經(jīng)發(fā)展了包括多項(xiàng)式響應(yīng)面(RSM)、Kriging模型、徑向基函數(shù)(RBFs)、神經(jīng)網(wǎng)絡(luò)(NN)、支持向量回歸(SVR)等多種代理模型方法。其中Kriging代理模型具有對(duì)非線性函數(shù)的良好近似能力和獨(dú)特的誤差估計(jì)功能,近年來受到了航空航天領(lǐng)域研究人員的廣泛重視。本文采用普通Kriging模型作為代理模型。假定優(yōu)化問題有d個(gè)設(shè)計(jì)變量,樣本點(diǎn)x處的響應(yīng)值為y。現(xiàn)有n個(gè)樣本點(diǎn)及其響應(yīng)值:
1.4多目標(biāo)加點(diǎn)準(zhǔn)則
采用分解聚合方法生成一系列的子問題后,需要構(gòu)造適當(dāng)?shù)募狱c(diǎn)準(zhǔn)則來選擇新的樣本點(diǎn)。下面介紹采用切比雪夫聚合方法構(gòu)造的最小化代理模型加點(diǎn)準(zhǔn)則(MSP加點(diǎn)準(zhǔn)則)和改善期望加點(diǎn)準(zhǔn)則(EI加點(diǎn)準(zhǔn)則)。
(1) MSP加點(diǎn)準(zhǔn)則
2寬速域翼型氣動(dòng)優(yōu)化設(shè)計(jì)方法
2.1 CFD數(shù)值模擬
準(zhǔn)確、高效并且魯棒的CFD求解器對(duì)于氣動(dòng)優(yōu)化設(shè)計(jì)至關(guān)重要。這里對(duì)寬速域氣動(dòng)優(yōu)化設(shè)計(jì)中采用的RANS方程求解器進(jìn)行驗(yàn)證,分別對(duì)RAE2822翼型和高超聲速方形彈體繞流進(jìn)行模擬,將結(jié)果與試驗(yàn)數(shù)據(jù)對(duì)比,從而驗(yàn)證所采用的CFD求解器對(duì)于從跨聲速到高超聲速流動(dòng)的求解準(zhǔn)確性。
(1)二維跨聲速流動(dòng)數(shù)值模擬驗(yàn)證
對(duì)RAE2822翼型在跨聲速下進(jìn)行CFD數(shù)值模擬,計(jì)算網(wǎng)格如圖2所示,計(jì)算狀態(tài)為馬赫數(shù)Ma=0.734,雷諾數(shù)Re= 6.5×105,α=2.79°。流場(chǎng)求解采用Roe離散格式和兩方程k-ωSST湍流模型。圖3為計(jì)算的翼型壓力系數(shù)分布與實(shí)難值的對(duì)比,表1為數(shù)值模擬獲得的力系數(shù)與試驗(yàn)值對(duì)比結(jié)果??梢?,數(shù)值模擬獲得的壓力系數(shù)分布與試驗(yàn)結(jié)果吻合良好,升力系數(shù)十分接近試驗(yàn)值,阻力系數(shù)與力矩系數(shù)計(jì)算值稍微偏大,但處于合理的范圍內(nèi)。
(2)方形彈體算例[32]
本文采用的是8階CST參數(shù)化方法,共18個(gè)設(shè)計(jì)變量。
3寬速域翼型氣動(dòng)優(yōu)化設(shè)計(jì)研究
以NACA64A-204翼型為基準(zhǔn)翼型,將跨聲速和高超聲速兩個(gè)設(shè)計(jì)狀態(tài)的升阻比關(guān)于基準(zhǔn)機(jī)翼的升阻比進(jìn)行歸一化作為優(yōu)化目標(biāo),將兩個(gè)設(shè)計(jì)狀態(tài)的升阻比和升力系數(shù)以及翼型厚度作為約束??缏曀僭O(shè)計(jì)狀態(tài):Ma=0.8,Re= 7.6×106,α=1.5°;高超聲速設(shè)計(jì)狀態(tài):Ma=6.0,Re=4.23×106,α=5°。采用本文發(fā)展的寬速域氣動(dòng)優(yōu)化設(shè)計(jì)方法,開展高超聲速飛行器寬速域翼型多目標(biāo)氣動(dòng)優(yōu)化設(shè)計(jì)。優(yōu)化問題的數(shù)學(xué)模型表述為:
在優(yōu)化過程中,通過LHS選取初始樣本點(diǎn)100個(gè),采用本文發(fā)展的SBMO優(yōu)化算法和組合加點(diǎn)準(zhǔn)則,每一代加點(diǎn)12個(gè)(其中EI加點(diǎn)兩個(gè),MSP加點(diǎn)10個(gè),EI采用權(quán)重系數(shù){(0,1), (1,0)},MSP的權(quán)重系數(shù)使用拉丁超立方抽樣在0~1之間隨機(jī)生成),總樣本點(diǎn)數(shù)為400。
圖6為Pareto多目標(biāo)寬速域氣動(dòng)優(yōu)化設(shè)計(jì)在優(yōu)化過程中所添加的所有樣本點(diǎn)在目標(biāo)空間的分布,其中藍(lán)色正方形為初始樣本點(diǎn),橙色三角形為加點(diǎn)過程新增樣本點(diǎn),紅色正方形為優(yōu)化最終獲得的近似Pareto前沿??梢?,優(yōu)化前沿快速向前推進(jìn),只經(jīng)過了400次樣本點(diǎn)評(píng)估就獲得了質(zhì)量較好的近似Pareto前沿。圖7為Pareto多目標(biāo)優(yōu)化獲得的結(jié)果在目標(biāo)空間的分布圖,結(jié)果表明,Pareto多目標(biāo)優(yōu)化設(shè)計(jì)只用了400次樣本點(diǎn)評(píng)估就獲得了包含58個(gè)優(yōu)化結(jié)果的非支配解集,優(yōu)化效率顯著提升。但Pareto多目標(biāo)優(yōu)化設(shè)計(jì)獲得的近似Pareto前沿上的分布性有待進(jìn)一步改進(jìn)。
為了更直觀地展示優(yōu)化結(jié)果,從近似Pareto前沿上選取最邊界的兩個(gè)翼型和中間的一個(gè)翼型進(jìn)行評(píng)估和分析,如圖8所示。圖9為選取的三個(gè)優(yōu)化翼型的幾何外形對(duì)比。其中opt1是Pareto前沿上高超聲速氣動(dòng)性能最好的翼型,opt2是超聲速和高超聲速氣動(dòng)性能得到較好權(quán)衡的翼型,opt3是Pareto前沿上跨聲速氣動(dòng)性能最好的翼型。從外形來看,選取的三個(gè)翼型的前緣半徑相比基準(zhǔn)翼型均減小。其中opt1與opt2翼型的最大厚度明顯后移,且下表面型線與基準(zhǔn)翼型相比有較大改變,呈現(xiàn)出前后緣附近向內(nèi)凹的特征。而opt3翼型的下表面前緣附近與基準(zhǔn)機(jī)翼比較相似,但在上表面前緣附近opt3翼型相比基準(zhǔn)翼型更向內(nèi)凹。
表2列出了基準(zhǔn)翼型和選取的三個(gè)優(yōu)化翼型的優(yōu)化目標(biāo)以及約束的對(duì)比。結(jié)果表明,三個(gè)優(yōu)化翼型的跨聲速和高超聲速升阻比都有所提升,所有約束嚴(yán)格滿足。其中,opt1側(cè)重提升高超聲速氣動(dòng)特性,其高超聲速升阻比提升了102%;opt3側(cè)重提升跨聲速氣動(dòng)特性,其跨聲速升阻比提升了27%。
圖10和圖11為跨聲速設(shè)計(jì)狀態(tài)下基準(zhǔn)翼型和三個(gè)優(yōu)化翼型的表面壓力分布對(duì)比和壓力云圖對(duì)比。三個(gè)優(yōu)化翼型均消除了基準(zhǔn)翼型上表面中部的激波,阻力系數(shù)相比基準(zhǔn)翼型都減小。opt1翼型的上表面前緣附近收縮太過劇烈,導(dǎo)致流動(dòng)在上表面前緣附近出現(xiàn)了一道較強(qiáng)的激波,不僅損失了升力還增加了阻力,其跨聲速升阻比在三個(gè)優(yōu)化翼型中最小。opt2翼型在上表面前緣雖然未形成明顯的激波,其阻力系數(shù)較小,但流動(dòng)在opt2翼型前緣附近顯著減速,壓力分布塌陷,導(dǎo)致升力不足,opt2翼型的跨聲速升阻比適中。opt3翼型上表面壓力分布在跨聲速下呈現(xiàn)出無激波形態(tài),其阻力系數(shù)較小,而且上表面壓力分布比較豐滿,較好地保持了升力系數(shù),其跨聲速升阻比是三個(gè)優(yōu)化翼型中最大的。圖12為三個(gè)優(yōu)化翼型的表面壓力分布對(duì)比壓力云圖對(duì)比,圖13為高超聲速設(shè)計(jì)狀態(tài)下基準(zhǔn)翼型。opt1與opt2翼型上表面前緣向內(nèi)凹,減小了頭部張角,有利于減小高超聲速狀態(tài)下的阻力。opt1與opt2翼型的下表面前、后緣均向內(nèi)凹,它們的下表面壓力分布在高超聲速下呈現(xiàn)出多級(jí)壓縮的特征:首先流動(dòng)接觸翼型前緣經(jīng)歷第一次壓縮,然后馬上膨脹,在翼型中部經(jīng)歷第二次壓縮,緊接著再次膨脹,最后在下表面尾緣經(jīng)歷最后一次壓縮。這種壓力分布的特點(diǎn)是:下表面前緣的膨脹波有利于削弱前緣激波,減小阻力,但會(huì)損失升力,而下表面中部與尾緣的加載彌補(bǔ)了升力的損失。在高超聲速下opt1與opt2翼型具有更高的升阻比,而opt3翼型前緣較鈍,高超聲速狀態(tài)下激波阻力較大,升阻比明顯更小一些。上述分析結(jié)果表明,相比于基準(zhǔn)翼型,Pareto多目標(biāo)寬速域氣動(dòng)優(yōu)化設(shè)計(jì)獲得的一系列優(yōu)化翼型在跨聲速和高超聲速設(shè)計(jì)狀態(tài)的升阻特性都得到了改善,并且優(yōu)化設(shè)計(jì)結(jié)果對(duì)不同馬赫數(shù)的氣動(dòng)特性各有側(cè)重,能夠在工程設(shè)計(jì)中給設(shè)計(jì)人員提供更多的決策選項(xiàng)。
4結(jié)論
本文提出了一種基于代理模型的多目標(biāo)優(yōu)化算法(SBMO)。以多目標(biāo)算法為基礎(chǔ)發(fā)展了寬速域翼型多目標(biāo)優(yōu)化設(shè)計(jì)方法,進(jìn)行了兼顧跨聲速和高超聲速氣動(dòng)性能的寬速域翼型多目標(biāo)優(yōu)化設(shè)計(jì)研究,得到一系列優(yōu)化翼型。本文的一些研究結(jié)論如下:
(1)SBMO多目標(biāo)優(yōu)化算法的效率顯著高于NSGA-II。在氣動(dòng)優(yōu)化設(shè)計(jì)的工程應(yīng)用中,尤其是采用昂貴的高可信度數(shù)值模擬時(shí),提出的SBMO多目標(biāo)優(yōu)化算法優(yōu)勢(shì)十分明顯,具有很好的應(yīng)用前景。
(2)翼型下表面前后緣向內(nèi)凹時(shí),高超聲速狀態(tài)下翼型下表面壓力分布會(huì)呈現(xiàn)出多級(jí)壓縮的特征,有利于在高超聲速下增升減阻。
未來還有許多需要改進(jìn)和值得研究的方向:(1)SBMO對(duì)多目標(biāo)(三目標(biāo)及以上)優(yōu)化問題的處理能力;(2)SBMO與MOEA/D-EGO等現(xiàn)有類似算法進(jìn)行對(duì)比;(3)更為高效魯棒的多目標(biāo)加點(diǎn)準(zhǔn)則;(4)提高優(yōu)化解集的均勻性;(5)SBMO在復(fù)雜外形氣動(dòng)優(yōu)化設(shè)計(jì)中的應(yīng)用研究。
參考文獻(xiàn)
[1]Ueno A S. CFD-based shape optimization of hypersonic vehicles considering transonic aerodynamic performance[R]. AIAA-2008-288,Reston:AIAA,2008.
[2]曹長強(qiáng),蔡晉生,段焰輝.超聲速翼型氣動(dòng)優(yōu)化設(shè)計(jì)[J].航空學(xué)報(bào), 2015, 36(12): 3774-3784. Cao Changqiang, Cai Jinsheng, Duan Yanhui. Aerodynamic design optimization of supersonic airfoils[J].Acta Aeronautica etAstronautica Sinica, 2015, 36(12): 3774-3784.(in Chinese)
[3]孫祥程,韓忠華,柳斐,等.高超聲速飛行器寬速域翼型/機(jī)翼設(shè)計(jì)與分析[J].航空學(xué)報(bào),2018,39(6): 121737. Sun Xiangcheng, Han Zhonghua, Liu Fei, et al. Design and analysis of hypersonic vehicle airfoil/wing at wide-range Mach numbers[J]. Acta Aeronauticaet Astronautica Sinica, 2018, 39(6): 121737. (in Chinese)
[4]張陽,韓忠華,柳斐,等.高超聲速飛行器寬速域翼型多目標(biāo)優(yōu)化設(shè)計(jì)研究[J].氣體物理,2019(4):26-40. Zhang Yang, Han Zhonghua, Liu Fei, et al. Multi-objective aerodynamic shape optimization of wide Mach-number range airfoil[J]. Physics of Gases, 2019(4): 26-40.(in Chinese)
[5]鄭金華,鄒娟.多目標(biāo)進(jìn)化優(yōu)化[M].北京:科學(xué)出版社,2017. Zheng Jinghua, Zou Jian. Multi-objective evolutionary optimization[M]. Beijing : Science Press, 2017. (in Chinese)
[6]韓忠華. Kriging模型及代理優(yōu)化算法研究進(jìn)展[J].航空學(xué)報(bào),2016,37(11):3197-3225. Han Zhonghua. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225.(in Chinese)
[7]李育超,齊嬋穎,高通鋒.基于Kriging代理模型的運(yùn)輸機(jī)機(jī)翼多學(xué)科優(yōu)化設(shè)計(jì)[J].航空科學(xué)技術(shù), 2018, 29(3): 20-24. Li Yuchao, Qi Chanying, Gao Tongfeng. Multi-disciplinary optimization of transport aircraft wing based on Kriging surrogate model [J]. Aeronautical Science & Technology, 2018, 29(3): 20-24. (in Chinese)
[8]宋文萍,朱震,張坤,等.耦合轉(zhuǎn)捩自動(dòng)判斷的機(jī)翼粘性繞流計(jì)算與優(yōu)化設(shè)計(jì)[J].航空科學(xué)技術(shù),2015,26(11):23-29. Song Wenping, Zhu Zhen, Zhang Kun, et al. Simulations of the viscous flow around swept wings and optimization design using the RANS solver with automatic transition prediction [J]. Aeronautical Science & Technology, 2015, 26(11): 23-29. (in Chinese)
[9]Han Zhonghua,Chen Jing,Zhang Keshi,et al. Aerodynamic shapeoptimizationofnatural-laminar-flowwingusing surrogate-based approach[J]. AIAA Journal,2018,56(7):2579-2593.
[10]Zhang Keshi,Han Zhonghua,Gao Zhongjian,et al. Constraint aggregation for large number of constraints in wing surrogatebased optimization[J].Structural and Multidisciplinary Optimization,2019,29(2):421-438.
[11]Wu M M,Han Z H,Nie H,et al. A transition prediction method for flow over airfoils based on high-order dynamic mode decomposition[J]. Chinese Journal of Aeronautics,2019,32(11):2408-2421.
[12]Xu C Z,Han Z H,Zhang K. S,et al. Surrogate-based optimization method applied to multidisciplinary design architectures[C]//31st Congress of the International Council of theAeronautic Sciences,2018.
[13]Han Z H,Abu-Zurayk M,Goertz S,et al. Surrogate-based aerodynamic shape optimization of a wing-body transport aircraft configuration[J]. Numerical Fluid Mechanics and Multidisciplinary Design,2018,138:257-282.
[14]Liu J,Song W P,Han Z H,et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural and Multidisci plinary Optimization,2017,55(3):925-943.
[15]韓忠華,張瑜,許晨舟,等.基于代理模型的大型民機(jī)機(jī)翼氣動(dòng)優(yōu)化設(shè)計(jì)[J].航空學(xué)報(bào),2019,40(1):522398. Han Zhonghua, Zhang Yu, Xu Chenzhou, et al. Aerodynamic shape optimization of large civil aircraft wings using surrogatebased model[J]. Acta Aeronautica et Astronautica Sincia, 2019, 40(1):522398. (in Chinese)
[16]周旺儀,白俊強(qiáng),喬磊,等.變彎翼型與增升裝置多目標(biāo)氣動(dòng)優(yōu)化設(shè)計(jì)研究[J].西北工業(yè)大學(xué)學(xué)報(bào),2018,36(1):83-90. Zhou Wangyi, Bai Junqiang, Qiao Lei, et al. A study of multiobjective aerodynamic optimization design for variable camber airfoils and high lift devices[J]. Journal of Northwestern Polytechnical University, 2018, 36 (1):83-90. (in Chinese)
[17]馬洋.基于代理模型和MOEA/D的飛行器氣動(dòng)外形優(yōu)化設(shè)計(jì)研究[D].長沙:國防科技大學(xué),2015. Ma Yang. Research on the aerodynamic shape optimization of vehicle based on surrogate model and MOEA/D[D]. Changsha: National University of Defense Technology, 2015.(in Chinese)
[18]Jin Yaochu,Wang Handing,Chugh T,et al. Data-driven evolutionary optimization:an overview and case studies[J]. IEEE Transactions on Evolutionary Computation,2018,23(3):442-458.
[19]Knowles J. A hybrid algorithm with on-line landscape approximation for expensive multi-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation,2006,10(1):50-66.
[20]Jones D R,Schonlau M,Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization,1998,13(4):455-492.
[21]Keane A J. Statistical improvement criteria for use in multiobjective design optimization[J]. AIAA Journal,2006,44(4):879-891.
[22]Emmerich M,Giannakoglou K,Naujoks B. Single and multiobjective evolutionary optimization assisted by Gaussian random field metamodels[J].IEEE Transactions on Evolutionary Computation,2006,10(4):421-439.
[23]BeumeN,NaujoksB,EmmerichM. SMS-EMOA:Multiobjective selection based on dominated hypervolume[J] European Journal of Operational Research,2007,181(3):1653-1669.
[24]Ponweiser W,Wagner T,Biermann D,et al. Multiobjective optimization on a limited budget of evaluations using modelassisted s-metric selection[C]//10th International Conference on Parallel Problem Solving from Nature,2008.
[25]Zhang Q F,Liu W,Tsang E,et al. Expensive multiobjective optimization by MOEA/D with Gaussian process model[J].IEEE Transactions on Evolutionary Computation,2010,14(3):456-474.
[26]Zhang Q F,Li H. MOEA/D:A multiobjective evolutionary algorithm based on decomposition[J] IEEE Transactions on Evolutionary Computation,2007,11(6):712-731.
[27]Lin X,Zhang Q F,Kwong S. An efficient batch expensive multiobjective evolutionary algorithm based on decomposition[C]//2017 IEEE Congress on Evolutionary Computation,2017.
[28]Silva R C P,Rahman M L T,Lowther D A.Surrogate-based MOEA/D for electric motor design with scarce function evaluations[C]//2017IEEECongressonEvolutionary Computation,2017.
[29]Han Z H,Liu F,Xu C Z,et al. Efficient multi-objective evolutionary algorithm for constrained global optimization of expensive functions[C]// IEEE Congress on Evolutionary Computation(CEC2019),2019.
[30]Han Z H. SurroOpt:A generic surrogate-based optimization code for aerodynamic and multidisciplinary design[C]// ICAS 2016 30th Congress of the International Council of the Aeronautical Sciences,2016.
[31]Krige D G A. Statistical approach to some basic mine valuations problems on the Witwatersrand[J]. Journal of the Chemical,Metallurgical and Mining Engineering Society of SouthAfrica,1951,52(6):119-139.
[32]Wilcox F,Birch T,Allen J. Force,surface pressure,and flowfield measurements on a slender missile configuration with square cross-section at supersonic speeds[C]// Applied Aerodynamics Conference and Exhibit,2004.
[33]Brenda M K,John E B. Fundamental parametric geometry representations for aircraft component shapes[R]. AIAA-2006-6948,Reston:AIAA,2006.
[34]Brenda M K. A universal parametric geometry representa- tion method -“CST”[R].AIAA-2007-62,Reston:AIAA,2007.
(責(zé)任編輯陳東曉)
作者簡(jiǎn)介
張陽(1996-)男,碩士研究生。主要研究方向:氣動(dòng)與多學(xué)科優(yōu)化設(shè)計(jì)。
E-mail:1559695483@qq.com
韓忠華(1977-)男,教授。主要研究方向:氣動(dòng)與多學(xué)科優(yōu)化設(shè)計(jì)。
Tel:13909235014
E-mail:hanzh@nwpu.edu.cn
Efficient Multi-Objective Shape Optimization Method of Hypersonic Wide-MachNumber-Range Airfoil
Zhang Yang1,2,Han Zhonghua1,2,*,Liu Fei1,2,Song Ke1,2,Zhang Keshi1,2,Song Wenping1,2
1. Institute of Aerodynamic and Multidisciplinary Design Optimization,Northwestern Polytechnical University,Xian
710072,China
2. National Key Laboratory of Science and Technology on Aerodynamic Design and Research,Northwestern
Rolytechnical University,Xian 710072,China
Abstract: The hypersonic wide-Mach-number-range vehicle needs to take off from ground with zero speed, go through transonic, supersonic climb, up to hypersonic cruise. Therefore, besides the hypersonic performance, it must also takes into account the subsonic, transonic and supersonic aerodynamic characteristics to meet the engineering requirements. First, a new algorithm based on Surrogate model is proposed for multi-objective optimization, and the numerical test instances of multi-objective optimization are tested, which shows that the efficiency of the algorithm is significantly improved compared with the traditional multi-objective optimization algorithm NSGA-II. By combining the new algorithm with RANS equation solver, shape parametrization method and automatic mesh generation technology, a method for wide-Mach-number-range airfoil optimization is proposed. Then, a multi-objective aerodynamic design optimization of airfoil is carried out, which takes the transonic and hypersonic aerodynamic performance into account. The Pareto optimal solution set consists of 58 airfoils. The optimized airfoils on the Pareto front are analyzed, and the mechanism of compromising transonic and hypersonic aerodynamic performance of wide-Mach-number-range airfoil is summarized.
Key Words: multi-objective optimization; Pareto solution set; wide-Mach-number-range; airfoil design; hypersonic vehicle