• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    KIN SP:A boundary element method based code for single pile kinematic bending in layered soil

    2018-03-01 03:16:33StefanoStaculNunzianteSqueglia

    Stefano Stacul,Nunziante Squeglia

    Department of Civil and Industrial Engineering,University of Pisa,Largo Lucio Lazzarino,Pisa,56122,Italy

    1.Introduction

    1.1.Literature overview

    In seismic areas,piles are commonly designed to resist inertial forces due to the superstructure.Nevertheless,it is important to consider the kinematic effects to properly design pile foundation.

    Arise of kinematic interaction phenomena is due to the seismically induced deformations of the soil that interacts with the pile.One of the main important effects of these deformations is the arise of significant strains in soft soil that induce bending moments(kinematic bending moments)on piles.

    Pile kinematic response has been studied,among others,by Blaney et al.(1976),Flores-Berrones and Whitman(1982),Kaynia and Kausel(1982),Dobry and O’Rourke(1983),Nogami et al.(1991),Kavvadas and Gazetas(1993),and Tabesh and Poulos(2001).These studies have focused on the motion of the pilehead and only more recently pile bending and curvature have been explored.

    Further studies proposed simplified formulations and methods to estimate the maximum kinematic bending moment at the interface of a two-layered soil and/or at the pile-head(Castelli and Maugeri,2009;Dezi et al.,2010;Dobry and O’Rourke,1983;Kavvadas and Gazetas,1993;Maiorano et al.,2009;Mylonakis,2001;Nikolaou et al.,2001;Sica et al.,2011)using beam on dynamic Winkler foundation(BDWF)approaches.

    On the other hand,some authors proposed methods able to study the single pile kinematic problem using continuum-based approaches,such as the boundary element method(BEM)(Tabesh and Poulos,2001;Liang et al.,2013),the finite element method(FEM)(Bentley and El Naggar,2000;De Sanctis et al.,2010;Di Laora et al.,2013;Di Laora and Rovithis,2015;Maiorano et al.,2007;Wu and Finn,1997a,b)or procedures based on the stiffness method and dynamic stiffness matrices of layered soils(Cairo and Dente,2007)and hybrid BEM-BDWF approaches(Kampitsis et al.,2013).

    Considering the available technical literature about the pile kinematic interaction,it can be outlined that the internal forces generated due to the seismic waves propagation in a pile are affected by the pile-soil relative stiffness(Ep/Es),the pile-head restraint condition(free-head,fixed-head),the thickness and the mechanical properties of the subsoil layers,and the seismic event used as input,while the pile slenderness ratio(L/D,whereLis the length,andDis the diameter)has a minor effect on layered soils with respect to the above aspects.It is well-established that for pile embedded in a layered soil deposit,the bending moment values along the pile-shaft increase at the interface between two adjacent soil-layers with different shear moduli(G)and that the bending moment increment becomes higher as the mechanical impedance increases.More recently,Di Laora et al.(2012)investigated the effect of pile-soil stiffness ratio,interface depth and stiffness contrast in static and transient dynamic conditions on pile bending.In this work,it was found that while the bending strain becomes maximum at resonance,the strain transmissibility function(εp/γ1),relating the peak pile bending strain to soil shear strain at the interface,increases with the excitation frequency.

    All the research works on this topic have demonstrated that kinematic bending moments can be responsible for pile damage,especially in the case of high stiffness contrast in a soil deposit profile(Fig.1).

    1.2.Simplified design methods

    Dobry and O’Rourke(1983)developed a BDWF method that assumes a linear elastic behaviour for the pile and the soil deposit,and the proposed equations are useful to estimate the maximum bending moment at the interface between two layers with different stiffnesses.In this method,it is assumed that the contact between pile and soil is perfect and the soil is subjected to a uniform static stress field.

    Nikolaou et al.(2001)on the basis of a parametric study using a BDWF method proposed simplified expressions to evaluate the bending moment at the interface between two soil layers with different stiffnesses in steady-state condition with a frequency approximately equal to the natural frequency of the soil deposit.These expressions are valid when the interface between the two soil layers is located at a depth greater than the pile active length(La).Lacan be estimated using the formulation suggested by Randolph(1981).

    Fig.1.Pile-soil system scheme:Free-head pile embedded in a two-layered soil with a high stiffness discontinuity.

    One of the weaknesses of the expressions proposed by Nikolaou et al.(2001)is that infinite bending moment is predicted for very slender piles and for layered soils having high stiffness contrast.

    Mylonakis(2001)proposed a simplified method for predicting the kinematic bending at the interface of a two-layered soil profile based on response analysis of a mechanistic model.The assumptions are the same as those in Dobry and O’Rourke(1983)method.The improvements are as follows:

    (1)The seismic excitation is a harmonic horizontal displacement imposed on the bedrock.

    (2)Both the radiation and material damping are considered.

    (3)The soil layers are thick,but not unbounded.

    The maximum kinematic bending moment is evaluated as

    whereEpis the pile elastic modulus,Ipis the area moment of inertia of the pile section,εpis the peak pile bending strain,γ1is the peak shear strain in the upper layer at the interface depth,ris the pile radius,andφis a coefficient that takes into account the effect of frequency.The parameterφcan be considered equal to 1 and in general it is less than 1.25(Mylonakis,2001).

    The ratio εp/γ1is a strain transmissibility function(Mylonakis,2001)expressed as

    wherecis equal to(G2/G1)1/4;G1,h1andG2,h2are the shear modulus and thickness of the upper and lower soil layer,respectively;Lis the pile length;Dis the pile diameter;andE1is the elastic modulus of the upper layer.

    More recently,Di Laora et al.(2012)found that the overall bending moment at the interface can be viewed as the superposition of two counteracting moments:a negative moment that the pile would experience in homogeneous soil having stiffness equal to that of the first layer,and a positive moment due to the restraining action of the increased soil stiffness below the interface.

    The possible drawback in Mylonakis expression lies in its difficulty in separating the contributions of the negative and positive mechanisms.

    Di Laora et al.(2012)presented a set of harmonic steady-state elastodynamic results obtained by a rigorous finite element analysis and proposed a new semi-analytical formula for evaluating the strain transmissibility function(εp/γ1)(Eq.(4)),and hence the pile bending,at an interface separating two soil layers:

    whereχis a regression coefficient that is found to be 0.93.Assumingχclose to unitycanprovide less satisfactory results in the pile bending estimate for shallow interfaces for fixed-head piles,due to the interplay among head and interface moment.

    1.3.Pile discretization effect on kinematic analysis

    In all the available continuum-based methods(BEM and FEM),the results are sensitive to the element size.Di Laora et al.(2013)observed that the computed bending moments tend to increase with decreasing element size and increasing accuracy.They found that an element size equal to 0.1Dcould provide a satisfactory accuracy.

    However,in most of the works mentioned previously,evenif the influence of element size was recognised and a proper sensitivity analysis was performed to select the pile element height able to guarantee the solution accuracy,no general suggestions have been proposed.

    For example,in the BEM proposed by Tabesh and Poulos(2001),the analyses refer to a pile with a slenderness ratio(L/D)equal to 20 with a diameterDranging between 0.3 m and 1.5 m,and the element size was kept constant to 0.75 m to compare the results with those obtained by Kavvadas and Gazetas(1993).

    In the work of Liang et al.(2013),the pile slenderness ratio was also equal to 20 and it was considered adequate to use 21 pile segments to obtain a good accuracy.However,the above discretization was not adequately justified.Kampitsis et al.(2013)performed the analyses with their hybrid BDWF-BEM model to discretize the column pile with beam elements of 1 m length.

    In this work,a computer code(called KIN SP)for the single pile kinematic analysis,based on the BEM,will be presented and validated.Then some results of a parametric study will be discussed,with the aim to suggest the minimum number of boundary elements to guarantee the accuracy of a BEM solution,for typical pilesoil relative stiffness values as a function of the pile diameter,the location of the interface of a two-layered soil profile,and the stiffness contrast.

    2.BEM based method for the kinematic analysis of a single pile(KIN SP)

    2.1.Model assumptions

    The method(computer code KIN SP,Stacul et al.,2017)for the kinematic analysis of a single pile described here is solved using the BEM.The kinematic analysis is preceded by a seismic ground response analysis performed in the time domain with the computer code ONDA(Lo Presti et al.,2006),which provides the soil relative displacements and relative velocities at the centreof eachpile block at each time step.In ONDA,the nonlinear soil behaviour is modelled using the Ramberg-Osgood constitutive law.KIN SP has been completely merged with the code ONDA to provide a standalone analysis tool.The analysis results presented here are limited to the kinematic bending moments.The following model assumptions are made:

    (1)The soil deposit has a linear elastic behaviour(the soil nonlinear behaviour is considered in the seismic ground response analysis performed with ONDA).

    (2)The soil elastic moduli are equivalent moduli corresponding to the secant moduli at shear strains equal to 65%of the maximum shear strains obtained in the free-field response analysis.

    (3)The stresses developed between the pile and the soil are normal to the pile axis.

    (4)Each pile block is subjected to a uniform horizontal stress.

    (5)The pile is modelled as a thin strip using the Euler-Bernoulli beam theory and is discretized innblocks.

    (6)The soil displacement induced by a uniform pressure acting over a pile block is computed by integrating the Mindlin equation(Mindlin,1936).

    (7)The equilibrium and the pile-soil displacements compatibility are assumed.

    In addition to the above assumptions,the proposed model assumes also that Mindlin solutions are valid both in nonhomogeneous soils and in dynamic conditions.Nevertheless,as stated by Tabesh and Poulos(2001),satisfactory results can be obtained for non-homogeneous soil by assuming in Mindlin equation an average value of soil modulus at the influencing and influenced points.Moreover,the Mindlin equation is not valid for dynamic loading,however,it can be still considered valid if the characteristic wavelength in the soil medium is long compared with the horizontal distance across the zone of higher influence resulting from interaction(Tabesh and Poulos,2001).

    2.2.The code KIN SP

    A linear elastic behaviour is assumed for the pile.This assumption neglects the actual behaviour of reinforced concrete pile sections such as the development of cracks,the tension stiffening effect and the post-yielding or“inelastic”phase.As observed in Morelli et al.(2017),the influence of tension stiffening becomes higher for reinforced concrete piles with diameters lower than 60 cm and reinforcement ratio lower than 1%.In order to introduce a more advanced constitutive model for reinforced concrete piles with cyclic degradation for dynamic analyses,the model proposed by Andreotti and Lai(2017)may be considered.

    The pile flexibility matrix(H)is obtained using the elastic beam theory,and each coefficient of this matrix can be computed using the following equations(Fig.2):

    In this way,the incremental horizontal displacements{Δy}of the pile blocks can be obtained:

    where{ΔPp}is a column vector,containing the incremental loads acting at each pile block,and{ΔPp}={Δp}(tD),where{Δp}is the column vector of the incremental uniform pressures acting on each pile block,tis the height of each pile block,andDis the pile diameter or the pile width;Δy0and Δθ0are the unknown incremental displacement and rotation at the pile-head,respectively;{z}is the column vector containing the depth of the centre of each pile block.

    Fig.2.Pile flexibility matrix using the auxiliary restraint method.

    The soil flexibility matrix(B)is obtained using the Mindlin solution and each coefficient of this matrix can be calculated using the following equation(Fig.3):

    The incremental horizontal displacements{Δs}of the soil can be obtained as

    where{ΔPs}is a column vector,containing the incremental loads acting on each pile-soil interface,and{ΔPs}={Δps}(tD),where{Δps}is the column vector of the incremental uniform pressures acting on each pile-soil interface;{Δx}is the column vector of the incremental soil displacements obtained in the ground response analysis using ONDA.

    The relationship between{ΔPp}and{ΔPs}is expressed as

    where M is the diagonal mass matrix of the pile;C is the diagonal damping matrix;{Δ¨y}and{Δ˙y}are the column vectors of the incremental accelerations and of the incremental velocities at the pile interface,respectively;{Δ˙x}is the column vector of the incremental soil velocities obtained in the free-field analysis with ONDA.

    The elements of the damping matrix are computed using the expression 5ρsVsDtas proposed by Kaynia(1988)for radiation damping in his Winkler method,in whichρsis the soil mass density,andVsis the soil shear wave velocity.The adoption of these coefficients is justified by the fact that they are rather conservative and are also frequency independent(Tabesh and Poulos,2001).

    Combining Eq.(9)with Eq.(6)and considering the compatibility between pile and soil incremental displacements,{Δy}={Δs},the following equation is obtained:

    Fig.3.Mindlin solution scheme.

    This system is solved using the Newmark-βmethod.In this way,the incremental acceleration and the incremental velocity are respectively defined as

    where{˙y}and{¨y}are the column vector of the velocity and of the acceleration at the end of the previous time step,respectively;and Δtis the time step.It is then possible to substitute{Δ¨y}and{Δ˙y}in Eq.(10).The compatibility equations are finally written as

    The system defined in Eq.(13)is expressed as function ofn+2 unknowns:nincremental loads acting at each pile-soil interface and the unknown incremental displacement Δy0and rotation Δθ0at the pile-head.The system in Eq.(13)is defined bynequations,and the other two equations required are the translational and rotational equilibrium equations.The system is solved at each time step and the results are plotted in terms of the envelope of the maximum bending moments along the pile shaft.

    3.Influence of the pile discretization in BEM based kinematic analysis

    As introduced in Section 1.2,the analysis results of BEM based approaches(like KIN SP),in terms of bending moments at the pilehead and at the interface of a two-layered soil,are influenced by many factors including the discretization of the problem domain.Here are presented some results of a parametric study with the aim to suggest the minimum number of boundary elements to guarantee the accuracy of a BEM solution for typical pile-soil relative stiffness values as a function of the pile diameter,the location of the interface of a two-layered soil profile and the stiffness contrast.

    The parametric study has been realised on a simplified two layered soil profile(Fig.4),with a total thickness of 30 m and overlying a bedrock with a shear wave velocity equal to 1200 m/s and a unit weight of 22 kN/m3.The soil unit weight and the Poisson’s ratio(ν)for both layers were considered equal to 19 kN/m3and 0.4,respectively,while the shear wave velocities(Vs1andVs2)and the layers thickness(h1andh2)of the upper and lower layers are summarised in Table 1.

    The pile had the following properties:the lengthL=20 m,and the elastic modulusEp=25 GPa.The pile-head was fixed,and three pile diameter values were used(D=0.6 m,1 m and 1.5 m).All the kinematic analyses were preceded by a ground response analysis using the computer code ONDA.The acceleration time histories in Figs.5-7 have been applied to the base of the soil deposit model.

    Fig.4.Reference model used for the KIN SP validation.

    Table 1Subsoil conditions adopted in the parametric study.

    The free-field response was computed in time domain considering linear elastic conditions and a soil damping βsequal to 10%.Each analysis has been repeated,using KIN SP,considering the following number of boundary elements:12,20,40,60,100 and 200.

    In Fig.8,for instance,the results obtained with KIN SP are reported in terms of maximum bending moments at the pile-head and at the interface between the two-layered soil for a pile diameter equal to 0.6 m and a stiffness contrastVs2/Vs1equal to 4 using the input motion A-TMZ000.

    It is noted that these plots are fitted by hyperbolic curves.This statement can be confirmed in Fig.9,where the same data are plotted using along thex-axis the number of boundary elements(n)and along they-axis the ratio betweennand the computed moment(M).

    This fact permits to evaluate,for each analysis case,the coefficientsaandbof the hyperbolic law rewritten in the following terms:

    The value assumed by 1/brepresents a limit value of the maximum bending moment(Mlim)related with a specific analysis case(Fig.8)for a number of boundary elements that tends to infinity.TheMlimhas not been considered as an exact solution but rather as a limit value for the maximum bending moment.Finally,the following expression was adopted to provide an estimate of the analysis result errors due to the discretization:

    Figs.10 and 11 plot some results of the parametric study,representing the error(defined in Eq.(15))in the estimation of the bending moments at the pile-head and at the interface of the two layered soil using the input motion A-TMZ000.

    Observing the parametric analysis results,the following remarks can be drawn:

    (1)The analysis error decreases with increasing pile diameter.

    (2)The error is larger for higher stiffness contrast.

    (3)The error in the evaluation of the maximum bending moments is lower when the interface between the two layers is located at higher depth.

    (4)In general,for typical pile diameters and pile-soil relative stiffness,a boundary element size lower than 0.33D(in m)can guarantee an error less than 10%in the evaluation of the maximum bending moments at the pile-head and at the interface of the two-layered soil.

    4.Validation of KIN SP

    Fig.5.Acceleration time history(left)and Fourier spectrum(right),A-TMZ000(scaled at 0.35 g).

    Fig.6.Acceleration time history(left)and Fourier spectrum(right),A-STU270(scaled at 0.35 g).

    Fig.7.Acceleration time history(left)and Fourier spectrum(right),E-NCB090(scaled at 0.35 g).

    Fig.8.Computed maximum kinematic bending moments as a function of the number of boundary elements.

    Fig.9.Relationship between n/M and n for the data presented in Fig.8.

    Fig.10.Error vs.number of boundary elements with varying stiffness contrast(Vs2/Vs1).

    The validation has been realised by comparing the KIN SP kinematic analysis results in terms of maximum bending moment with those computed using the simplified expressions suggested by Mylonakis(2001)and Di Laora et al.(2012)and in terms of bending moment envelope with those obtained by Aversa et al.(2009)using the quasi-three-dimensional(3D)finite element code VERSAT-P3D(Wu,2006).The VERSAT-P3D numerical model is able as KIN SP to obtain results considering a linear or a nonlinear soil response.

    Piles are modelled using the ordinary Eulerian beam theory.Bending of the piles occurs only in the direction of shaking.Dynamic soil-pile interaction is maintained by enforcing displacement compatibility between the pile and soils.An eight-node brick element is used to represent the soil and an eight-node beam is used to simulate the piles.Direct step-by-step integration using the Wilson-θmethod is employed in VERSAT-P3D to solve the equations of motion.

    An equivalent linear method is employed in VERSAT-P3D to model the nonlinear hysteretic behaviour of soil.The hysteretic behaviour of soil is approximated by a set of secant shear moduli and viscous damping ratios compatible with current levels of shear strain.To approximate the nonlinear behaviour of soil,the compatibility among the secant shear modulus,damping ratio,and shear strain is enforced at each time step during the integration of equations of motions.The VERSAT-P3D analysis results shown here have been obtained updating the shear moduli and damping ratios every 0.5 s based on the peak strain levels from the previous time interval(Maiorano et al.,2007).The damping is essentially of the Rayleigh type,which is both mass and stiffness dependent.The hysteretic damping ratio is prescribed as a function of element shear strain.

    All the simulations were performed considering a simplified soil deposit described in the following section,using the same acceleration time histories selected on the Italian accelerometric archive.The results obtained with KIN SP were realised considering 100 boundary elements on the basis of the parametric study presented in the Section 3.

    4.1.Reference soil deposit and pile properties for linear analyses

    The validation of the computer code KIN SP has been realised on a simplified two-layered soil profile with a total thickness of 30 m and overlying a bedrock with a shear wave velocity of 1200 m/s and a unit weight of 22 kN/m3(see Fig.4).The shear wave velocities of the upper(Vs1)and lower(Vs2)soil layers were those indicated in Table 1,while the soil unit weight and the Poisson’s ratio(ν)for both layers were considered equal to 19 kN/m3and 0.4,respectively.

    The pile had the following properties:the diameterD=0.6 m,1 m and 1.5 m;the lengthL=20 m;and the elastic modulusEp=25 GPa.The pile-head has been considered fixed against the rotation.

    4.2.Linear analysis results

    A preliminary ground response analysis was performed using the code ONDA.The acceleration time histories used in this work(identified by the codes A-TMZ000,A-STU270,and E-NCB090)have been selected from the database ITACA(Luzi et al.,2016),and the motions have been scaled to values ofarequal to 0.35 g(Figs.5-7)and applied to the base of the soil deposit model.

    The free-field response was computed in time domain considering linear elastic conditions and a soil dampingβsequal to 10%.The analysis results have been compared(Figs.12-14),in terms of maximum bending moment at the interface(Mint),with those obtained using the expressions suggested by Mylonakis(2001)and Di Laora et al.(2012).

    Fig.11.Error vs.number of boundary elements with varying pile diameter(D).

    In each subfigure of Figs.12-14,a total of 27 cases(3 pile diameters,3 stiffness contrasts and 3 interface depths)have been reported.The dotted lines represent a variation of±20%with respect to the continuous line.For all input motions,it can be noted that the KIN SP bending moments at the interface overestimate the values calculated using the solution proposed by Mylonakis(2001)and slightly underestimate those obtained with the formulation by Di Laora et al.(2012).

    Using the Mylonakis formulation(Eq.(1)),the coefficient φhas been evaluated by taking into account the strain transmissibility dependency on frequency as described in Mylonakis(2001).The differences between KIN SP and Mylonakis solutions can be justified by the fact that the latter has been deduced considering harmonic excitations and not real seismic motions.

    The KIN SP analysis results have been compared also in terms of bending envelope with those obtained by Aversa et al.(2009)using the quasi-3D finite element computer programme VERSAT-P3D.As shown in Figs.15-17,a good agreement can be observed between the results computed using these two different methods.

    In general,the bending envelope of VERSAT-P3D is well reproduced by KIN SP results,however,the maximum bending at the interface is underestimated by an average of 19%.These differences could be related to the different pile modelling and discretization adopted.Moreover,in KIN SP,the free-field and the kinematic interaction analyses are uncoupled,whereas in VERSAT-P3D,,the pile-soil interaction problem is coupled with the ground response analysis.

    Figs.15-17 also show the maximum bending moment at the interface computed using the solutions proposed by Mylonakis(2001)and Di Laora et al.(2012).

    Fig.12.Comparison between KIN SP and simplified expressions(Mylonakis,2001;Di Laora et al.,2012).Input motion:E-NCB090.

    Fig.13.Comparison between KIN SP and simplified expressions(Mylonakis,2001;Di Laora et al.,2012).Input motion:A-STU270.

    Fig.14.Comparison between KIN SP and simplified expressions(Mylonakis,2001;Di Laora et al.,2012).Input motion:A-TMZ000.

    4.3.Reference soil deposit and pile properties for nonlinear analyses

    The nonlinear analyses with KIN SP have been realised on a simplified two-layered soil profile with a total thickness of 30 m and overlying a bedrock with a shear wave velocity equal to 1200 m/s and a unit weight of 22 kN/m3.The shear wave velocities of the upper layer(Vs1)are equal to 100 m/s and 150 m/s,while the lower layer has aVs2equal to 400 m/s.The interface of the two soil layers is located at a depth of 15 m.The two resulting profiles can be classified as subsoil types D and C,respectively,according to EN 1998-1(2005)on the basis of the parameterVs,30,which is the average shear wave velocity of the first 30 m in depth.The soil unit weight and the Poisson’s ratio(ν)for both layers were considered equal to 19 kN/m3and 0.4,respectively.

    Fig.15.Comparison between KIN SP and VERSAT-P3D results(input motion:ATMZ000).

    Fig.16.Comparison between KIN SP and VERSAT-P3D results(input motion:ASTU270).

    Fig.17.Comparison between KIN SP and VERSAT-P3D results(input motion:ENCB090).

    The pile had the following properties:the diameterD=0.6 m,the lengthL=20 m,and the elastic modulusEp=30 GPa.The pilehead has been considered fixed against the rotation.Nonlinear analyses are carried out employing the soil data provided by Maiorano et al.(2007),which are shown in Fig.18 in terms ofGs/G0-γcurves.On the basis of these data,the parametersαandRof the Ramberg-Osgood model are obtained under the assumption that the reference strainγrefis 0.5%for the upper layer of soft clay and 0.067%for the lower layer of gravel.Specifically,values ofα=19.89 andR=2.33 are determined for the clay,andα=17.11 andR=2.09 for the gravel(Cairo et al.,2008).The reference strainγrefis defined as the ratio of the maximum soil shear resistance(τmax)to the shear modulus at small strain level(G0).The modulus reduction curve,using the Ramberg-Osgood model,is defined as

    whereGsis the secant shear modulus.

    Fig.18.Shear modulus reduction curves used in the analyses.IP represents the plasticity index.

    Fig.19.Comparison between KIN SP and VERSAT-P3D nonlinear analysis results(input motion:A-TMZ000)for subsoil type C.

    4.4.Nonlinear analysis results

    The acceleration time histories used in this work(identified by the codes A-TMZ000 and A-STU270)have been selected from the database ITACA(Luzi et al.,2016),and the motions have been scaled to values ofarequal to 0.35g(Figs.5 and 6)and applied to the base of the soil deposit model.

    The KIN SP analysis results have been compared in terms of bending envelope with those obtained by Maiorano et al.(2007)using the quasi-3D finite element computer programme VERSATP3D(Figs.19-21).

    As in the case of linear analyses,the bending envelope of VERSAT-P3D is well reproduced by KIN SP results.Figs.19 and 20 report the analysis results related with the input motion ATMZ000.In these cases,it can be observed that computed values of bending moments are in good agreement with those of VERSATP3D both at the interface and along the entire pile length.As shown in Fig.21,the results referring tothe input motion A-STU270 are qualitatively in agreement but not quantitatively.KIN SP overestimates the whole bending profile.These differences can be related to the different frequency contents of these two acceleration time histories(Figs.5 and 6)and to the approximated modelling of the nonlinear soil behaviour in VERSAT-P3D,in which the shear moduli and damping ratios are updated every 0.5 s(i.e.approximately every 50 or 100 points of the time history data,according to the sampling rate).

    Fig.20.Comparison between KIN SP and VERSAT-P3D nonlinear analysis results(input motion:A-TMZ000)for subsoil type D.

    Fig.21.Comparison between KIN SP and VERSAT-P3D nonlinear analysis results(input motion:A-STU270)for subsoil type C.

    5.Conclusions

    In this work,a BEM based computer code(called KIN SP)was presented,which is able to analyse the single pile kinematic problem.In the first section,the attention was focused on the influence of discretization on BEM analysis results,in terms of bending moments at the pile-head and at the interface of a two layered soil.

    A parametric study was carried out using the developed code KIN SP,with the aim to suggest the minimum number of boundary elements to guarantee the accuracy of a kinematic analysis using BEM.

    The parametric analyses suggest that for typical pile diameters and pile-soil relative stiffness,a boundary element size lower than 0.33Dcan guarantee a reasonable error in the evaluation of the maximum bending moments.Based on the parametric study shown here,it is outlined that the results obtained using BEM and that presented on previously developed works can be affected by an underestimation of the maximum bending moments at the pilehead and at the interface of a two-layered soil ranging between 20%and 50%if the typical discretization with 21 elements was considered.

    The proposed method was then validated considering both a linear and a nonlinear soil response.In the first case,the KIN SP results,in terms of bending envelope and maximum bending moment at the interface of a two-layered soil,have been compared with those obtained by simplified formulations(Mylonakis,2001;Di Laora et al.,2012)and a quasi-3D FEM code(VERSAT-P3D).In the second case,the comparison has been carried out only with the solutions by nonlinear FEM analyses.For the pile-soil configurations and input motions considered in the linear analyses,KIN SP overestimates the bending moment values obtained using the solution proposed by Mylonakis(2001),probably because the latter has been deduced considering harmonic excitations and not real seismic motions,while slightly underestimates those obtained with the formulation by Di Laora et al.(2012).

    In the case of linear analyses,the bending envelope of VERSATP3D is well produced by KIN SP and the differences in the maximum bending moments could be related to the different pile modelling and discretization adopted.

    In the case of nonlinear analyses,the agreement with VERSATP3D results is good,however,some differences were noted for a specific acceleration time history.These differences may be due to the frequency content of the input motion and to the approximated modelling of the nonlinear soil behaviour in VERSAT-P3D.

    Conflicts of interest

    The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    Andreotti G,Lai CG.A nonlinear constitutive model for beam elements with cyclic degradation and damage assessment for advanced dynamic analyses of geotechnical problems.Part I:theoretical formulation.Bulletin of Earthquake Engineering 2017;15(7):2785-801.

    Aversa S,de Sanctis L,Maiorano RMS.Approccio semplificato per la valutazione dei momenti di interazione cinematica nei pali di fondazione sotto azioni sismiche.In:XIII Convegno ANIDIS.Bologna:Associazione Nazionale Italiana Di Ingegneria Sismica;2009(in Italian).

    Bentley KJ,El Naggar MH.Numerical analysis of kinematic response of single piles.Canadian Geotechnical Journal 2000;37(6):1368-82.

    Blaney GW,Kausel E,Roesset JM.Dynamic stiffness of piles.In:Proceedings of the 2nd International conference on numerical methods in geomechanics,vol.2.New York:American Society of Civil Engineers;1976.p.1010-2.

    Cairo R,Dente G.Kinematic interaction analysis of piles in layered soils.In:Proceedings of the 14th European conference on soil mechanics and geotechnical engineering.IOS Press;2007.

    Cairo R,Conte E,Dente G.Nonlinear seismic response of single piles.In:Santini A,Moraci N,editors.2008 Seismic Engineering conference commemorating the 1908 Messina and Reggio Calabria earthquake.American Institute of Physics;2008.p.602-9.

    Castelli F,Maugeri M.Simplified approach for the seismic response of a pile foundation.Journal of Geotechnical and Geoenvironmental Engineering 2009;135(10):1440-51.

    De Sanctis L,Maiorano R,Aversa S.A method for assessing kinematic bending moments at the pile head.Earthquake Engineering&Structural Dynamics 2010;39(10):1133-54.

    Dezi F,Carbonari S,Leoni G.Kinematic bending moments in pile foundations.Soil Dynamics and Earthquake Engineering 2010;30(3):119-32.

    Di Laora R,Rovithis E.Kinematic bending of fixed-head piles in nonhomogeneous soil.Journal of Geotechnical and Geoenvironmental Engineering 2015;141(4).https://doi.org/10.1061/(ASCE)GT.1943-5606.0001270.

    Di Laora R,Mandolini A,Mylonakis G.Insight on kinematic bending of flexible piles in layered soil.Soil Dynamics and Earthquake Engineering 2012;43:309-22.

    Di Laora R,Mylonakis G,Mandolini A.Pile-head kinematic bending in layered soil.Earthquake Engineering&Structural Dynamics 2013;42(3):319-37.

    Dobry R,O’Rourke MJ.Discussion of“Seismic response of end-bearing piles”by Raul Flores-Berrones and Robert V.Whitman(April,1982).Journal of Geotechnical Engineering 1983;109(5):778-81.

    EN 1998-1.Eurocode 8:design of structures for earthquake resistance-part 1:general rules,seismic actions and rules for buildings.British Standards Institution;2005.

    Flores-Berrones R,Whitman RV.Seismic response of end-bearing piles.Journal of the Geotechnical Engineering Division,ASCE 1982;108(4):554-69.

    Kampitsis AE,Sapountzakis EJ,Giannakos SK,Gerolymos NA.Seismic soil-pilestructure kinematic and inertial interaction-a new beam approach.Soil Dynamics and Earthquake Engineering 2013;55:211-24.

    Kavvadas M,Gazetas G.Kinematic seismic response and bending of free-head piles in layered soil.Geotechnique 1993;43(2):207-22.

    Kaynia AM.Dynamic interaction of single piles under lateral and seismic loads.Esteghlal Journal of Engineering 1988;6:5-26(in Persian).

    Kaynia AM,Kausel E.Dynamic stiffness and seismic response of pile groups.Research report R82-03.University of Western Ontario,Massachussets Institute of Technology;1982.

    Liang F,Chen H,Guo WD.Simplified boundary element method for kinematic response of single piles in two-layer soil.Journal of Applied Mathematics 2013.https://doi.org/10.1155/2013/241482.

    Lo Presti DC,Lai C,Puci I.ONDA:computer code for nonlinear seismic response analyses of soil deposits.Journal of Geotechnical and Geoenvironmental Engineering 2006;132(2):223-36.

    Luzi L,Pacor F,Puglia R.Italian Accelerometric Archive version 2.1.Istituto Nazionale di Geofisica e Vulcanologia,Dipartimento della Protezione Civile Nazionale.2016.https://doi.org/10.13127/ITACA/2.1.

    Maiorano RMS,Aversa S,Wu G.Effects of soil non-linearity on bending moments in piles due to seismic kinematic interaction.In:Proceedings of the 4th International conference on earthquake geotechnical engineering. Thessaloniki,Greece;2007.p.25-8.

    Maiorano RMS,de Sanctis L,Aversa S,Mandolini A.Kinematic response analysis of piled foundations under seismic excitation.Canadian Geotechnical Journal 2009;46(5):571-84.

    Mindlin RD.Force at a point in the interior of a semi-infinite solid.Physics 1936;7(5):195-202.

    Morelli F,Amico C,Salvatore W,Squeglia N,Stacul S.Influence of tension stiffening on the flexural stiffness of reinforced concrete circular sections.Materials 2017;10(6):669.

    Mylonakis G.Simplified model for seismic pile bending at soil layer interfaces.Soils and Foundations 2001;41(4):47-58.

    Nikolaou S,Mylonakis G,Gazetas G,Tazoh T.Kinematic pile bending during earthquakes:analysis and fields measurements.Geotechnique 2001;51(5):425-40.

    Nogami T,Jones HW,Mosher RL.Seismic response analysis of pile-supported structure:assessment of commonly used approximations. In:Proceedings of the 2nd International conferences on recent advances in geotechnical earthquake engineering and soil dynamics.University of Missouri-Rolla;1991.p.931-40.

    Randolph MF.The response of flexible piles to lateral loading.Geotechnique 1981;31(2):247-59.

    Sica S,Mylonakis G,Simonelli AL.Transient kinematic pile bending in two-layer soil.Soil Dynamics and Earthquake Engineering 2011;31(7):891-905.

    Stacul S,Lo Presti D,Squeglia N.KIN SP 1.0(KINematic interaction analysis of Single Pile):user’smanualversion 1.0.2017.https://doi.org/10.13140/RG.2.2.15632.61444.

    Tabesh A,Poulos H.Pseudostatic approach for seismic analysis of single piles.Journal of Geotechnical and Geoenvironmental Engineering 2001;127(9):757-65.

    Wu G.VERSAT-P3D version 2006:quasi-3D dynamic finite element analysis of single piles and pile groups.Wutec Geotechnical International Canada;2006.

    Wu G,Finn WDL.Dynamic elastic analysis of pile foundations using finite element method in the frequency domain.Canadian Geotechnical Journal 1997a;34(1):34-43.

    Wu G,Finn WDL.Dynamic nonlinear analysis of pile foundations using finite element method in the time domain. Canadian Geotechnical Journal 1997b;34(1):44-52.

    免费日韩欧美在线观看| 亚洲成人av在线免费| 叶爱在线成人免费视频播放| 久久这里只有精品19| 黄色怎么调成土黄色| 亚洲综合精品二区| 香蕉精品网在线| 另类亚洲欧美激情| 一级,二级,三级黄色视频| 国产97色在线日韩免费| 9191精品国产免费久久| 伊人久久大香线蕉亚洲五| 亚洲成av片中文字幕在线观看 | 热re99久久国产66热| 美女视频免费永久观看网站| 国产av一区二区精品久久| 叶爱在线成人免费视频播放| 最近最新中文字幕免费大全7| 久久午夜综合久久蜜桃| 少妇 在线观看| 久久久久久久亚洲中文字幕| 久久久久久久久久久免费av| 少妇被粗大猛烈的视频| 欧美日韩视频高清一区二区三区二| 最近2019中文字幕mv第一页| 久久久精品免费免费高清| 精品国产一区二区三区久久久樱花| 最黄视频免费看| www.熟女人妻精品国产| 2018国产大陆天天弄谢| 亚洲内射少妇av| 国产精品免费大片| 国产成人a∨麻豆精品| 超碰97精品在线观看| 18+在线观看网站| 高清黄色对白视频在线免费看| 国产成人免费观看mmmm| 国语对白做爰xxxⅹ性视频网站| 欧美日韩亚洲高清精品| 欧美激情极品国产一区二区三区| 亚洲天堂av无毛| 久久人人爽av亚洲精品天堂| 激情视频va一区二区三区| 欧美变态另类bdsm刘玥| 视频在线观看一区二区三区| 国产人伦9x9x在线观看 | 日本午夜av视频| 在线观看国产h片| 国产成人aa在线观看| 久久精品熟女亚洲av麻豆精品| 人体艺术视频欧美日本| 爱豆传媒免费全集在线观看| 亚洲四区av| 亚洲国产毛片av蜜桃av| 久久99一区二区三区| 久久久久视频综合| 国产精品嫩草影院av在线观看| www.精华液| 我要看黄色一级片免费的| 极品少妇高潮喷水抽搐| 免费观看在线日韩| 可以免费在线观看a视频的电影网站 | 国产片内射在线| 午夜激情av网站| 日韩一区二区视频免费看| 天天操日日干夜夜撸| 国产男人的电影天堂91| 一级a爱视频在线免费观看| 精品人妻在线不人妻| 美女大奶头黄色视频| 国产精品三级大全| 欧美成人午夜精品| 十八禁网站网址无遮挡| 日本av免费视频播放| 美女xxoo啪啪120秒动态图| 亚洲精品在线美女| 亚洲久久久国产精品| 两性夫妻黄色片| 丰满迷人的少妇在线观看| 韩国av在线不卡| 精品人妻在线不人妻| 亚洲av中文av极速乱| 亚洲精品国产色婷婷电影| 亚洲五月色婷婷综合| 国产成人午夜福利电影在线观看| 街头女战士在线观看网站| 在线观看美女被高潮喷水网站| 国产精品久久久久久久久免| 午夜福利在线免费观看网站| 可以免费在线观看a视频的电影网站 | 啦啦啦啦在线视频资源| 老汉色av国产亚洲站长工具| 久久这里只有精品19| 日韩欧美精品免费久久| 美女午夜性视频免费| 国产女主播在线喷水免费视频网站| 日韩av免费高清视频| 欧美精品亚洲一区二区| 久久亚洲国产成人精品v| 午夜av观看不卡| 中文字幕av电影在线播放| 亚洲美女搞黄在线观看| 肉色欧美久久久久久久蜜桃| 国产男女内射视频| 三级国产精品片| 免费在线观看完整版高清| 中文欧美无线码| 久久青草综合色| 自线自在国产av| 国产男女超爽视频在线观看| 又粗又硬又长又爽又黄的视频| 午夜激情av网站| a级片在线免费高清观看视频| 91国产中文字幕| 啦啦啦中文免费视频观看日本| 国产精品久久久久久久久免| 香蕉丝袜av| 午夜激情久久久久久久| a 毛片基地| 成人午夜精彩视频在线观看| 中文欧美无线码| 中文字幕av电影在线播放| 十八禁高潮呻吟视频| 亚洲人成77777在线视频| 亚洲精品乱久久久久久| 精品少妇一区二区三区视频日本电影 | 男女午夜视频在线观看| 精品福利永久在线观看| 国产精品女同一区二区软件| 久久精品国产a三级三级三级| 成人亚洲欧美一区二区av| 日日撸夜夜添| 九色亚洲精品在线播放| 亚洲欧美成人精品一区二区| 日韩精品有码人妻一区| 老司机亚洲免费影院| 两个人免费观看高清视频| 久久精品亚洲av国产电影网| 亚洲国产欧美网| 午夜影院在线不卡| 日产精品乱码卡一卡2卡三| 欧美另类一区| 香蕉精品网在线| 精品国产露脸久久av麻豆| 又粗又硬又长又爽又黄的视频| 亚洲精品第二区| 国产在线视频一区二区| 少妇的丰满在线观看| av女优亚洲男人天堂| 亚洲欧美成人精品一区二区| 日韩伦理黄色片| 春色校园在线视频观看| 亚洲人成网站在线观看播放| 中文天堂在线官网| 国产片内射在线| 欧美成人午夜精品| 久久这里有精品视频免费| 欧美黄色片欧美黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 国产在线视频一区二区| 日韩中字成人| 国产人伦9x9x在线观看 | 久热这里只有精品99| 久久免费观看电影| 青春草亚洲视频在线观看| 天堂俺去俺来也www色官网| 亚洲少妇的诱惑av| 尾随美女入室| 麻豆av在线久日| 深夜精品福利| 成人午夜精彩视频在线观看| 国产xxxxx性猛交| 亚洲三区欧美一区| 久久精品熟女亚洲av麻豆精品| 最近中文字幕2019免费版| 久久精品久久久久久噜噜老黄| 欧美日韩视频高清一区二区三区二| 亚洲精品日本国产第一区| 亚洲国产精品国产精品| 免费播放大片免费观看视频在线观看| 国产亚洲欧美精品永久| 看免费av毛片| 99热全是精品| 日本欧美视频一区| 人体艺术视频欧美日本| 欧美精品一区二区免费开放| 亚洲av电影在线观看一区二区三区| 欧美精品亚洲一区二区| 少妇的逼水好多| 亚洲欧美一区二区三区黑人 | 中文乱码字字幕精品一区二区三区| 女人高潮潮喷娇喘18禁视频| av视频免费观看在线观看| 久久鲁丝午夜福利片| 欧美日韩成人在线一区二区| 黑人猛操日本美女一级片| 亚洲欧美清纯卡通| 韩国精品一区二区三区| 人人妻人人爽人人添夜夜欢视频| 男女边摸边吃奶| 亚洲伊人久久精品综合| 精品少妇内射三级| 在线观看www视频免费| 少妇被粗大的猛进出69影院| 美女大奶头黄色视频| 久久青草综合色| 美女午夜性视频免费| 亚洲熟女精品中文字幕| 在线 av 中文字幕| 亚洲在久久综合| 亚洲成国产人片在线观看| 丰满饥渴人妻一区二区三| 99精国产麻豆久久婷婷| 在线观看美女被高潮喷水网站| 国产亚洲av片在线观看秒播厂| 婷婷色麻豆天堂久久| 热re99久久国产66热| 欧美变态另类bdsm刘玥| 一本—道久久a久久精品蜜桃钙片| 99热全是精品| 久久精品国产亚洲av高清一级| 日本爱情动作片www.在线观看| 国产一区有黄有色的免费视频| 成人手机av| 一本大道久久a久久精品| 高清视频免费观看一区二区| 国产精品免费大片| 国产野战对白在线观看| 国产一区二区三区av在线| 日本欧美国产在线视频| 国产精品.久久久| 国产亚洲欧美精品永久| 国产黄色视频一区二区在线观看| av免费观看日本| 亚洲国产欧美在线一区| 午夜福利视频精品| 日韩中文字幕欧美一区二区 | 男的添女的下面高潮视频| 18禁裸乳无遮挡动漫免费视频| 精品少妇内射三级| 九九爱精品视频在线观看| 欧美黄色片欧美黄色片| 麻豆av在线久日| 成人影院久久| 亚洲精品第二区| 男女无遮挡免费网站观看| 大陆偷拍与自拍| 日韩不卡一区二区三区视频在线| 国产亚洲最大av| 最近2019中文字幕mv第一页| 久久久欧美国产精品| 亚洲精品自拍成人| 男女国产视频网站| 亚洲精品中文字幕在线视频| 叶爱在线成人免费视频播放| 免费观看无遮挡的男女| 亚洲,欧美,日韩| 欧美日韩亚洲国产一区二区在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 人妻系列 视频| 狠狠婷婷综合久久久久久88av| 天堂8中文在线网| 欧美在线黄色| 亚洲伊人久久精品综合| 纯流量卡能插随身wifi吗| 伦理电影大哥的女人| 亚洲av.av天堂| 性色av一级| 捣出白浆h1v1| 国产成人精品婷婷| videos熟女内射| 欧美日韩一级在线毛片| 建设人人有责人人尽责人人享有的| 肉色欧美久久久久久久蜜桃| 国产免费一区二区三区四区乱码| 精品酒店卫生间| 亚洲欧洲精品一区二区精品久久久 | 麻豆精品久久久久久蜜桃| 在线看a的网站| 国产成人免费无遮挡视频| 美女中出高潮动态图| 天天操日日干夜夜撸| 丰满乱子伦码专区| www日本在线高清视频| 日韩欧美一区视频在线观看| freevideosex欧美| 青春草亚洲视频在线观看| 亚洲美女搞黄在线观看| 一级毛片黄色毛片免费观看视频| 国产成人精品婷婷| 人妻系列 视频| 90打野战视频偷拍视频| av又黄又爽大尺度在线免费看| 久久精品夜色国产| 99国产精品免费福利视频| 搡女人真爽免费视频火全软件| 2021少妇久久久久久久久久久| 赤兔流量卡办理| 亚洲欧洲国产日韩| 国产 精品1| 成人免费观看视频高清| 日日爽夜夜爽网站| 亚洲精品美女久久av网站| 青春草亚洲视频在线观看| 久久这里有精品视频免费| 中文字幕色久视频| 高清在线视频一区二区三区| 久久99精品国语久久久| 男男h啪啪无遮挡| 极品少妇高潮喷水抽搐| 久久久久久久久久久久大奶| 久久人人爽av亚洲精品天堂| 自线自在国产av| 永久免费av网站大全| 中文字幕最新亚洲高清| 欧美精品人与动牲交sv欧美| 中文字幕色久视频| 九色亚洲精品在线播放| 国产探花极品一区二区| 成人国产av品久久久| 成人国语在线视频| 国产黄色视频一区二区在线观看| 国产不卡av网站在线观看| 美女大奶头黄色视频| 美女高潮到喷水免费观看| 国产精品av久久久久免费| 亚洲 欧美一区二区三区| 婷婷色综合www| 成人午夜精彩视频在线观看| 最新中文字幕久久久久| 亚洲国产色片| 免费高清在线观看日韩| 国产精品 欧美亚洲| 午夜福利影视在线免费观看| 国产色婷婷99| 成人手机av| 国产老妇伦熟女老妇高清| 欧美黄色片欧美黄色片| 26uuu在线亚洲综合色| 老司机影院成人| 亚洲第一青青草原| 亚洲美女视频黄频| 下体分泌物呈黄色| 国产一区二区激情短视频 | 亚洲情色 制服丝袜| 丁香六月天网| 国产黄色免费在线视频| 热re99久久国产66热| 精品人妻在线不人妻| 免费播放大片免费观看视频在线观看| 成年人午夜在线观看视频| 99re6热这里在线精品视频| 久久久久国产一级毛片高清牌| 久热久热在线精品观看| 在线看a的网站| 丰满迷人的少妇在线观看| 亚洲三级黄色毛片| 欧美中文综合在线视频| 精品一品国产午夜福利视频| 黑人猛操日本美女一级片| 久久久精品免费免费高清| 国产精品欧美亚洲77777| 亚洲三级黄色毛片| 激情五月婷婷亚洲| 国产成人一区二区在线| 午夜免费鲁丝| 国产白丝娇喘喷水9色精品| 久久国产亚洲av麻豆专区| 亚洲国产日韩一区二区| 色播在线永久视频| 国产精品av久久久久免费| av电影中文网址| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品日本国产第一区| 国产成人精品久久二区二区91 | 免费看av在线观看网站| 中文欧美无线码| 婷婷成人精品国产| 少妇人妻 视频| 亚洲av在线观看美女高潮| 日本vs欧美在线观看视频| 亚洲少妇的诱惑av| 777米奇影视久久| 国产xxxxx性猛交| 国产亚洲欧美精品永久| 少妇的逼水好多| av天堂久久9| 午夜福利,免费看| 综合色丁香网| 大香蕉久久网| 国产在视频线精品| 成人毛片a级毛片在线播放| 亚洲精品日本国产第一区| 精品福利永久在线观看| 国产日韩欧美视频二区| 成人黄色视频免费在线看| 999精品在线视频| 中文字幕人妻熟女乱码| 十八禁高潮呻吟视频| 中国三级夫妇交换| 男女无遮挡免费网站观看| 成年女人毛片免费观看观看9 | 成年美女黄网站色视频大全免费| 中文字幕最新亚洲高清| 韩国av在线不卡| 香蕉丝袜av| 亚洲精品久久午夜乱码| 国产淫语在线视频| 日韩不卡一区二区三区视频在线| 侵犯人妻中文字幕一二三四区| 久久女婷五月综合色啪小说| 青春草亚洲视频在线观看| 久久国产精品男人的天堂亚洲| 视频区图区小说| 麻豆乱淫一区二区| 永久网站在线| 精品少妇内射三级| 欧美+日韩+精品| 国产亚洲午夜精品一区二区久久| 日韩制服丝袜自拍偷拍| 如日韩欧美国产精品一区二区三区| a级毛片黄视频| 欧美日韩综合久久久久久| 久久久久久久精品精品| 久久精品aⅴ一区二区三区四区 | 亚洲四区av| 久久精品国产亚洲av高清一级| 午夜激情av网站| 亚洲精品,欧美精品| 女人被躁到高潮嗷嗷叫费观| 亚洲av.av天堂| 男人添女人高潮全过程视频| 制服人妻中文乱码| 欧美激情极品国产一区二区三区| 亚洲精品国产av成人精品| 人成视频在线观看免费观看| 精品国产超薄肉色丝袜足j| 成人手机av| 男人舔女人的私密视频| 亚洲综合色惰| 久久久精品免费免费高清| 国产综合精华液| 岛国毛片在线播放| av不卡在线播放| 亚洲精品自拍成人| 午夜精品国产一区二区电影| 日韩三级伦理在线观看| kizo精华| 嫩草影院入口| 欧美精品一区二区大全| 蜜桃国产av成人99| 亚洲伊人久久精品综合| 成年动漫av网址| 日韩av免费高清视频| 国产亚洲av片在线观看秒播厂| 婷婷色麻豆天堂久久| 如日韩欧美国产精品一区二区三区| 国产av国产精品国产| 欧美激情 高清一区二区三区| 国产男女内射视频| 欧美97在线视频| 亚洲av福利一区| 亚洲美女搞黄在线观看| 亚洲人成电影观看| 精品久久久精品久久久| 国产精品麻豆人妻色哟哟久久| 久久这里只有精品19| 亚洲美女搞黄在线观看| 这个男人来自地球电影免费观看 | 日日爽夜夜爽网站| 人妻一区二区av| 久久久久久久久免费视频了| 国产成人一区二区在线| 免费av中文字幕在线| 免费看不卡的av| 中文字幕最新亚洲高清| 热99久久久久精品小说推荐| 国产精品三级大全| 久久久久久久亚洲中文字幕| 国产一区二区在线观看av| 99久久人妻综合| 99香蕉大伊视频| 国产精品久久久久久久久免| 午夜日本视频在线| 97人妻天天添夜夜摸| 日韩av在线免费看完整版不卡| 少妇人妻精品综合一区二区| 欧美精品一区二区大全| 成年人午夜在线观看视频| 91午夜精品亚洲一区二区三区| 丝袜脚勾引网站| 日韩av不卡免费在线播放| 不卡av一区二区三区| 亚洲第一区二区三区不卡| 国产精品熟女久久久久浪| 国产成人精品久久久久久| 国产精品久久久久成人av| 精品国产乱码久久久久久男人| 国语对白做爰xxxⅹ性视频网站| 亚洲av电影在线进入| 国产免费视频播放在线视频| 大香蕉久久网| 久久青草综合色| 大香蕉久久网| 黄色毛片三级朝国网站| 国产探花极品一区二区| 精品第一国产精品| 熟女av电影| 亚洲av电影在线观看一区二区三区| 午夜免费男女啪啪视频观看| 欧美国产精品一级二级三级| 亚洲三级黄色毛片| 又粗又硬又长又爽又黄的视频| 国产色婷婷99| 一边亲一边摸免费视频| 一区福利在线观看| 国产亚洲午夜精品一区二区久久| 午夜福利乱码中文字幕| 欧美中文综合在线视频| 另类亚洲欧美激情| 黑人欧美特级aaaaaa片| 国产毛片在线视频| 久久久久久久精品精品| 久久精品人人爽人人爽视色| av国产久精品久网站免费入址| 人人妻人人澡人人爽人人夜夜| 卡戴珊不雅视频在线播放| 亚洲,欧美,日韩| 久久久久人妻精品一区果冻| 天天躁狠狠躁夜夜躁狠狠躁| 女人精品久久久久毛片| av在线app专区| 久久久久国产一级毛片高清牌| 美女午夜性视频免费| √禁漫天堂资源中文www| 久久久欧美国产精品| 搡老乐熟女国产| 深夜精品福利| 久久青草综合色| 国产成人精品福利久久| 亚洲 欧美一区二区三区| 大香蕉久久网| 大片免费播放器 马上看| 国产成人精品在线电影| 丰满少妇做爰视频| 亚洲av日韩在线播放| 777久久人妻少妇嫩草av网站| 麻豆av在线久日| 在线观看www视频免费| 婷婷色综合大香蕉| 天天躁夜夜躁狠狠躁躁| 少妇人妻久久综合中文| 久久久久久久亚洲中文字幕| 大片电影免费在线观看免费| 国产av一区二区精品久久| 久久热在线av| 国产成人精品福利久久| 久久精品国产综合久久久| 永久网站在线| 亚洲欧美精品综合一区二区三区 | 日韩三级伦理在线观看| 久久精品aⅴ一区二区三区四区 | 香蕉精品网在线| 亚洲国产av影院在线观看| 日本91视频免费播放| 欧美日韩视频高清一区二区三区二| 亚洲欧美一区二区三区黑人 | xxx大片免费视频| 国产在线免费精品| 欧美精品亚洲一区二区| 久久久久久伊人网av| 1024香蕉在线观看| 日日摸夜夜添夜夜爱| 肉色欧美久久久久久久蜜桃| 国产成人aa在线观看| 91国产中文字幕| 国产欧美日韩一区二区三区在线| 最近最新中文字幕免费大全7| 日韩电影二区| 欧美精品av麻豆av| 看十八女毛片水多多多| 一本大道久久a久久精品| 成人毛片a级毛片在线播放| 国产精品国产三级国产专区5o| 成人手机av| 999久久久国产精品视频| 国产成人91sexporn| 欧美97在线视频| 久久热在线av| 成人亚洲欧美一区二区av| 国产 精品1| 午夜av观看不卡| 亚洲少妇的诱惑av| 欧美中文综合在线视频| 亚洲,欧美,日韩| 精品卡一卡二卡四卡免费| 成年美女黄网站色视频大全免费| 九色亚洲精品在线播放| 如日韩欧美国产精品一区二区三区| 久久精品国产鲁丝片午夜精品| 日韩av免费高清视频| 久久av网站| 午夜福利视频精品| av网站免费在线观看视频| 丰满饥渴人妻一区二区三| 99热国产这里只有精品6| 天天影视国产精品| 国产日韩一区二区三区精品不卡| 日韩熟女老妇一区二区性免费视频| 在线 av 中文字幕| 免费高清在线观看视频在线观看| 中文字幕亚洲精品专区| 一级片'在线观看视频| 亚洲久久久国产精品| 高清欧美精品videossex|