• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy-Delay Tradeoff for Online Offloading Based on Deep Reinforcement Learning in Wireless Powered Mobile-Edge Computing Networks

    2020-02-01 08:56:18WANGZhonglinCAOHankaiZHAOPing趙萍RAOWei饒為
    關(guān)鍵詞:趙萍

    WANGZhonglin,CAOHankai,ZHAOPing(趙萍),RAOWei(饒為)

    1 College of Finance and Information, Ningbo University of Finance and Economics, Ningbo 315000, China 2 College of Information Science and Technology, Donghua University, Shanghai 201620, China 3 Tencent Media Lab, Shenzhen 518000, China

    Abstract: Benefited from wireless power transfer (WPT) and mobile-edge computing (MEC), wireless powered MEC systems have attracted widespread attention. Specifically, we design an online offloading scheme based on deep reinforcement learning that maximizes the computation rate and minimizes the energy consumption of all wireless devices (WDs). Extensive results validate that the proposed scheme can achieve better tradeoff between energy consumption and computation delay.

    Key words: mobile-edge computing (MEC); wireless power transfer (WPF); computation offloading; energy consumption; deep reinforcement learning

    Introduction

    Computation latency and energy consumption in wireless powered mobile-edge computing (MEC) systems have attracted a growing research interest in both academia and industry[1-3]. Several existing works[4-9]considered the MEC systems mainly powered by batteries, and optimized the energy consumption and the computation delay. However, these works either studied wireless power transfer (WPT) and MEC separately, or only focused on MEC, and thereby did not combine the advantages of both WPT and MEC. Latest works[10-13]have focused on the wireless powered MEC systems. However, Youetal.[10]considered the single-user wireless powered MEC system, and thus the system was not applicable in practical applications where a number of users were involved. Wangetal.[11]focused on the partial offloading cases where the tasks could be partitioned and a subset of the tasks were offloaded, ignoring the binary offloading cases. Huangetal.[12]only optimized the computation delay in the wireless powered MEC system, without considering the energy consumption. Additionally, Yangetal.[13]only optimized the energy consumption of the wireless powered MEC system, without considering the computation delay.

    To address the problems above, in this paper, we consider the wireless powered MEC system consisting of one access point (AP) and multiple wireless devices (WDs) which follow the binary offloading, and jointly optimize the energy consumption and computation delay, rather than only optimize the computation delay. As shown in Fig. 1, each WD is powered by the energy transmit beamforming from the AP, and uses the harvested energy to locally compute the task or offload the task to the AP. To jointly optimize the energy consumption and the computation delay in such a wireless powered MEC system, we propose an online computation offloading scheme based on deep reinforcement learning that maximizes the computation rate and minimizes the energy consumption of all WDs.

    Fig. 1 An illustration of wireless powered MEC system consisting of one AP and multiple WDs

    We make the following main contributions:

    (1) We do the first attempt towards the wireless powered MEC system consisting of one AP and multiple WDs which follow the binary offloading, and jointly optimize the energy consumption and computation delay.

    (2) We formalize the task offloading in such a wireless powered MEC system as an maximization problem, and propose an online offloading algorithm based on deep reinforcement learning to solve the problem, achieving the optimal tradeoff between computation delay and energy consumption.

    (3) We implement the proposed online offloading scheme, and the extensive numerical results validate that our work outperforms the existing work[12], providing faster computation rates and less energy consumption.

    The remainder of this paper is organized as follows. Section 1 introduces the system model and problem formulation. Section 2 presents the proposed online offloading scheme. Section 3 evaluates the performance of the proposed scheme. Section 4 concludes the whole paper.

    1 System Model and Problem Formulation

    1.1 System model

    Consider a wireless powered MEC system consisting of one AP andNWDs denoted by WDi,i={1, 2, …,N}. AP can transmit wireless energy to WDs, receive offloaded tasks from WDs, and send the corresponding results back to WDs. As described in existing works[11-13], since the computing power of the AP is much higher than that of a WD, the time that an offloaded task is computed at the AP is ignored. Since the size of the result returned by the AP, in practice, is often much smaller than that of the task, we also ignore the time it takes for the AP to return the result. It is further assumed that energy transmission and task offloading operate over the same frequency band, so the two phases need to be implemented successively[14]. A WD is composed of an energy-acquire module, a compute module, and a communication module. These modules are independent, and thus they can work at the same time. All WDs have no other external power sources, so they can only use the energy harvested in the energy transmission phase. The system adopts a binary offloading policy, where the task is either computed by a WD locally or offloaded to an AP. The time is divided into a fixed lengthT. In each frame, the AP first assigns timeaTto transmit wireless energy to each WD, and then assigns timeτiTto receive the task offloaded from each WD.aandτiare scale factors. Assume that the offloading time for a specific WD which does not offload tasks is 0. The time constraint is then formulated as

    (1)

    Denote the size of a task to be processed by theith WD in a time frame asDi, which follows a normal distribution with fixed expectations and variances.

    1.2 Local computing mode

    (2)

    whereφis the number of cycles needed to process one bit of task. Regardless of whether the WD gains enough energy in a time frame to complete the processing of the task of sizeDi, we assume that it will schedule the CPU frequency according to the policy of maximizing the computation rate, and then discard the task that exceeds the maximum computing capability.

    (3)

    In a time frame, the CPU frequency of a WD remains constant while the task is processed. Therefore, it can be considered that the instantaneous power a WD consumes remains constant in a time frame. The energy consumed by theith WD in a time frameEL, i, consumedcan be presented as

    (4)

    1.3 Edge computing mode

    Assume that in the edge computing mode, the main energy consumption is resulted from the task offloading process of WDs. To maximize the computation capability, a WD in the edge computing mode fully exhausts the harvested energy to offload tasks. Lethidenote the wireless channel gain betweenith WD and the AP,vudenotes the communication overhead ratio,Bdenotes the communication bandwidth, andN0denotes the received noise power. The maximum size of a processable task is

    (5)

    Thus, the maximum computation rate is

    (6)

    For edge computing, it is important to keep the connections between the WDs and the AP stable. Therefore, ifDi≤Di, max, theith WD will spend the additional energy to enhance the channel gain. Thus, we haveEE, i, consumed=EE, i, received.

    1.4 Problem formulation

    Among all the input parameters, only the parameterhivaries with time, while other parameters remain time invariant. Letxirepresent the action of theith WD, specifically,xi=0 for local computation, andxi=1 for edge computation. WDs may have different priorities, denoted by a weight factorωi. In different cases, the emphasis of optimization varies, so we denote the configurable weight of energy terms asρ. Setτ={τi|i∈N} andx={xi|i∈N}. We have the computation rate objectr(h,x,a,τ), the energy consumption objecte(h,x,a,τ) and the overall optimization objectQ(h,x,a,τ) as follows:

    (7)

    (8)

    Q(h,x,a,T)=r(h,x,a,T)+ρe(h,x,a,T),

    s.t.xi∈{0,1},i={1, 2, …,N},

    (9)

    Thus our goal is,

    s.t.xi∈{0,1},i={1, 2, …,N},

    a≥0,τi≥0,hi≥0,

    (10)

    whereP1 is a mixed integer programming problem, which is difficult to solve. However,P1 can be separated into two sub-problemsP2 andP3.

    P2: givenh, findx.

    P3: givenhandx, finde*andτ*.

    π:h→x*.

    (11)

    SetM0={i|xi=0} andM1={i|xi=1}. GivenM0andM1, we have

    (12)

    Lemma1Q(h,a,τ) is a convex function.

    ProofThe Hessian of -Q(h,a,τ) is

    2Q(h,a,τ)=

    (13)

    where

    (14)

    The corresponding dual function is

    (15)

    and the dual problem is

    (16)

    Therefore, algorithms with low time complexity can be applied to figure out parametersv,a, andτ.

    2 Online Offloading Algorithm

    Fig. 2 Proposed online offloading algorithm

    3 Performance Evaluation

    In this part, we will investigate the performance of our work in terms of the computation rate and energy consumption.

    3.1 Experimental setup

    3.1.1Parametersettings

    3.1.2Metrics

    We use the metrics, including the energy consumption (J), and the computation rate (bit/s). Moreover, we also investigate the impact of the parameterρon both the energy consumption and the computation rate, aiming to study the energy-delay tradeoff.

    3.1.3Existingworkforcomparison

    We compare the proposed online offloading algorithm (hereafter Our) with the latest work[12](hereafter DROO). Since the existing work DROO did not consider the energy consumption when designing the offloading scheme, we only compare the computation rate of Our and DROO in the following.

    3.2 Result analysis

    It can be seen from Fig. 3 that the energy consumption drops significantly faster than the computation rate when a larger weight |ρ| is applied to the energy consumption term. Thus, it is reasonable to consider adding an energy consumption term to the optimization goal. Although the energy consumption significantly decreases, the computation rate is not much affected.

    Fig. 3 Normalized average computation rate and energy consumption

    Fig. 4 Energy consumption and computation rate varying from time frame 5 030 to 5 040: (a) impact of parameter on energy consumption; (b) impact of parameter on computation rate

    4 Conclusions

    In this paper, we consider the wireless powered MEC system consisting of one AP and multiple WDs which follow the binary offloading, and jointly optimize the energy consumption and the computation delay. Specifically, we first formalize the offloading as an optimization problem, and then design an online computation offloading scheme based on deep reinforcement learning that maximizes the computation rate and minimizes the energy consumption of all WDs. Finally, we validate the performance of the proposed scheme, and the extensive results validate that it can achieve the better tradeoff between energy consumption and computation delay, providing faster computation rates and less energy consumption.

    猜你喜歡
    趙萍
    記駐村第一書記趙萍的一天
    Preserving Data Privacy in Speech Data Publishing
    免費的遠方
    翠苑(2020年3期)2020-07-04 02:38:33
    《形式上的鈍感》
    兄弟
    主動上門的保姆
    上海故事(2017年7期)2017-07-31 23:55:39
    失語
    群眾滿意的好法官
    兵團工運(2016年5期)2016-02-01 07:11:43
    80歲老夫妻的離婚系列官司
    Notes on the reduviid subfamily Phymatinae (Hemiptera:Heteroptera:Reduviidae)from Guizhou Province,China
    色视频在线一区二区三区| 免费大片18禁| 91久久精品国产一区二区成人| 综合色丁香网| 一本久久精品| 久久精品久久久久久久性| 一级毛片aaaaaa免费看小| 欧美日韩综合久久久久久| 国产精品无大码| 免费不卡的大黄色大毛片视频在线观看| 少妇的逼好多水| 亚洲色图综合在线观看| 日本黄色片子视频| 国产探花在线观看一区二区| 精品熟女少妇av免费看| 九九久久精品国产亚洲av麻豆| av一本久久久久| 一本一本综合久久| 久久久久久久国产电影| 亚洲,欧美,日韩| 亚洲欧美精品自产自拍| 国产精品国产三级国产av玫瑰| 在线观看美女被高潮喷水网站| 一本一本综合久久| av黄色大香蕉| 亚洲成色77777| 亚洲熟女精品中文字幕| 综合色av麻豆| 国产精品99久久99久久久不卡 | 欧美区成人在线视频| 成人黄色视频免费在线看| 丰满乱子伦码专区| 亚洲国产精品成人久久小说| 日韩欧美一区视频在线观看 | 亚洲内射少妇av| 久久午夜福利片| 中文字幕制服av| 91狼人影院| 亚洲精品乱码久久久久久按摩| 亚洲av.av天堂| 91精品伊人久久大香线蕉| 国产精品一二三区在线看| 午夜免费观看性视频| 亚洲欧美一区二区三区黑人 | 亚洲经典国产精华液单| 久久精品国产自在天天线| 一级毛片久久久久久久久女| 国产精品伦人一区二区| 精品少妇黑人巨大在线播放| 身体一侧抽搐| 久久久久久久午夜电影| 欧美日韩国产mv在线观看视频 | 国产精品99久久久久久久久| 一区二区三区精品91| 欧美另类一区| 99热这里只有是精品在线观看| 午夜精品一区二区三区免费看| 女人久久www免费人成看片| 亚洲自拍偷在线| 国产高清国产精品国产三级 | 免费黄频网站在线观看国产| 永久网站在线| 亚洲欧洲日产国产| 久久精品夜色国产| 日韩在线高清观看一区二区三区| 亚洲精品久久久久久婷婷小说| 啦啦啦在线观看免费高清www| 国产精品久久久久久av不卡| 亚洲国产精品国产精品| 99精国产麻豆久久婷婷| 免费电影在线观看免费观看| 最后的刺客免费高清国语| 99久久人妻综合| 五月开心婷婷网| 黄片wwwwww| 嫩草影院新地址| 日本黄色片子视频| 国产毛片在线视频| 午夜福利在线在线| 亚洲最大成人av| 亚洲欧美日韩另类电影网站 | 亚洲丝袜综合中文字幕| 国产永久视频网站| 精品一区在线观看国产| 国产乱来视频区| 亚洲精品一二三| 国产精品国产三级专区第一集| 国产成人福利小说| 色视频在线一区二区三区| 99久国产av精品国产电影| 日韩一区二区三区影片| 精品人妻一区二区三区麻豆| 日日啪夜夜爽| 国产毛片在线视频| 波野结衣二区三区在线| 男人舔奶头视频| 亚洲美女视频黄频| 亚洲av成人精品一二三区| 亚洲国产欧美在线一区| 久久ye,这里只有精品| 天美传媒精品一区二区| 久久精品久久精品一区二区三区| 午夜福利视频精品| 国产精品99久久99久久久不卡 | 一级毛片电影观看| 少妇裸体淫交视频免费看高清| 人妻夜夜爽99麻豆av| 特大巨黑吊av在线直播| 精品久久久噜噜| 五月开心婷婷网| 日产精品乱码卡一卡2卡三| 各种免费的搞黄视频| 国产黄片视频在线免费观看| 熟女人妻精品中文字幕| 国产91av在线免费观看| 久久久欧美国产精品| 美女脱内裤让男人舔精品视频| 日韩一本色道免费dvd| 日日撸夜夜添| 免费观看无遮挡的男女| 欧美xxxx性猛交bbbb| 免费看日本二区| 亚洲av在线观看美女高潮| 国产 一区 欧美 日韩| 亚洲在线观看片| 欧美潮喷喷水| 色综合色国产| 久久热精品热| 亚洲欧美成人综合另类久久久| xxx大片免费视频| 亚洲,一卡二卡三卡| av女优亚洲男人天堂| 免费黄网站久久成人精品| 国产成人a区在线观看| 国产伦理片在线播放av一区| 亚洲欧美精品自产自拍| 欧美日韩精品成人综合77777| 色吧在线观看| 久久久精品欧美日韩精品| 一本一本综合久久| 久久久久网色| 国产一级毛片在线| 亚洲人成网站在线观看播放| 国产男女超爽视频在线观看| 精品久久久久久久久亚洲| 我要看日韩黄色一级片| 午夜爱爱视频在线播放| 中文在线观看免费www的网站| 国产精品99久久久久久久久| 免费大片黄手机在线观看| 亚洲精品aⅴ在线观看| 日韩中字成人| 精品久久国产蜜桃| 国产在视频线精品| 免费看日本二区| 国产亚洲av片在线观看秒播厂| 精品酒店卫生间| 91aial.com中文字幕在线观看| 亚洲综合色惰| 亚洲欧美日韩卡通动漫| 午夜福利视频1000在线观看| 麻豆精品久久久久久蜜桃| 国产综合懂色| 久久亚洲国产成人精品v| av在线蜜桃| 精品国产三级普通话版| 亚洲av福利一区| 久久午夜福利片| 中文字幕制服av| 国产伦在线观看视频一区| 天堂中文最新版在线下载 | 啦啦啦在线观看免费高清www| 色视频在线一区二区三区| 国产黄色视频一区二区在线观看| 晚上一个人看的免费电影| 久久久久久久亚洲中文字幕| 免费看光身美女| 欧美三级亚洲精品| 国产精品福利在线免费观看| av一本久久久久| 下体分泌物呈黄色| 国产亚洲av片在线观看秒播厂| 国产成人a区在线观看| 午夜激情福利司机影院| 亚洲国产欧美人成| 中国国产av一级| 国产乱来视频区| 日韩成人伦理影院| 亚洲av日韩在线播放| 国产一区亚洲一区在线观看| 黑人高潮一二区| 一个人观看的视频www高清免费观看| 99久久精品国产国产毛片| 在线亚洲精品国产二区图片欧美 | 国产午夜精品一二区理论片| www.色视频.com| 91狼人影院| 国产欧美日韩一区二区三区在线 | 性插视频无遮挡在线免费观看| 能在线免费看毛片的网站| 五月天丁香电影| av在线老鸭窝| 亚洲欧美日韩东京热| 日本-黄色视频高清免费观看| 欧美日韩视频精品一区| 青青草视频在线视频观看| 国产美女午夜福利| 国产成人a区在线观看| 精品熟女少妇av免费看| 大片电影免费在线观看免费| 午夜福利视频精品| 久久久久性生活片| 欧美高清性xxxxhd video| 国产成人精品福利久久| 欧美日韩在线观看h| 超碰av人人做人人爽久久| 久久精品久久久久久久性| 亚洲国产精品999| 亚洲成人中文字幕在线播放| 听说在线观看完整版免费高清| 亚洲综合精品二区| 亚洲av不卡在线观看| 69人妻影院| 日韩 亚洲 欧美在线| 成人美女网站在线观看视频| 男女边摸边吃奶| 亚洲色图综合在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲三级黄色毛片| 夜夜看夜夜爽夜夜摸| 国内揄拍国产精品人妻在线| 麻豆国产97在线/欧美| 好男人视频免费观看在线| 日本黄色片子视频| 精品一区二区三卡| 欧美xxⅹ黑人| 丰满人妻一区二区三区视频av| 国产男人的电影天堂91| 亚洲国产最新在线播放| 亚洲人成网站在线播| 久久精品国产亚洲av涩爱| 汤姆久久久久久久影院中文字幕| 一边亲一边摸免费视频| 国产片特级美女逼逼视频| 国产欧美日韩精品一区二区| 三级国产精品欧美在线观看| 国国产精品蜜臀av免费| 国产黄色视频一区二区在线观看| 久久久欧美国产精品| 国产午夜精品久久久久久一区二区三区| 欧美少妇被猛烈插入视频| 韩国av在线不卡| 久久久久久久久久成人| 一区二区av电影网| 一本一本综合久久| 精品人妻一区二区三区麻豆| 日本-黄色视频高清免费观看| 免费播放大片免费观看视频在线观看| 久久人人爽av亚洲精品天堂 | 国产成人a∨麻豆精品| 成人鲁丝片一二三区免费| 国产成人午夜福利电影在线观看| 男的添女的下面高潮视频| 国产精品三级大全| 亚洲高清免费不卡视频| 丰满人妻一区二区三区视频av| 亚洲最大成人av| 国产免费视频播放在线视频| 国产精品一二三区在线看| 亚洲精品一二三| av播播在线观看一区| 日本av手机在线免费观看| 国产爽快片一区二区三区| 国产精品.久久久| 久久久久精品久久久久真实原创| 一级二级三级毛片免费看| 啦啦啦啦在线视频资源| 特级一级黄色大片| 国产一区二区三区av在线| 国精品久久久久久国模美| 中文字幕亚洲精品专区| 国产白丝娇喘喷水9色精品| 亚洲国产精品专区欧美| 亚洲av免费高清在线观看| 国产在线男女| 日韩欧美精品v在线| 欧美激情在线99| 内地一区二区视频在线| 亚洲欧美精品自产自拍| 在线观看国产h片| 亚洲精品中文字幕在线视频 | 三级经典国产精品| 插逼视频在线观看| 三级国产精品欧美在线观看| 国产一区二区在线观看日韩| 国产综合精华液| 极品教师在线视频| 三级经典国产精品| 国产成年人精品一区二区| 禁无遮挡网站| 三级国产精品片| 麻豆精品久久久久久蜜桃| 精品国产露脸久久av麻豆| 综合色av麻豆| 国产精品嫩草影院av在线观看| 免费人成在线观看视频色| 麻豆成人av视频| 欧美bdsm另类| 精品久久久久久久末码| 国产人妻一区二区三区在| 插阴视频在线观看视频| 涩涩av久久男人的天堂| 久久女婷五月综合色啪小说 | 国产 一区精品| 91久久精品国产一区二区成人| 成人亚洲精品av一区二区| 色5月婷婷丁香| 亚洲av男天堂| 亚洲精品日本国产第一区| a级一级毛片免费在线观看| 2021天堂中文幕一二区在线观| 一级二级三级毛片免费看| 久久久久久久国产电影| 高清午夜精品一区二区三区| 中文精品一卡2卡3卡4更新| 狂野欧美白嫩少妇大欣赏| 色5月婷婷丁香| 九九久久精品国产亚洲av麻豆| 一区二区三区乱码不卡18| 国产探花在线观看一区二区| 男女边摸边吃奶| 一二三四中文在线观看免费高清| 久久精品国产鲁丝片午夜精品| 肉色欧美久久久久久久蜜桃 | 日韩视频在线欧美| 欧美日韩在线观看h| 丰满少妇做爰视频| 日韩在线高清观看一区二区三区| 日本午夜av视频| 大香蕉97超碰在线| 免费看不卡的av| 免费av毛片视频| 免费在线观看成人毛片| 十八禁网站网址无遮挡 | 日日啪夜夜爽| 亚洲第一区二区三区不卡| 久久影院123| tube8黄色片| 精品人妻视频免费看| 听说在线观看完整版免费高清| 久久久久精品久久久久真实原创| 日本爱情动作片www.在线观看| 美女视频免费永久观看网站| 高清午夜精品一区二区三区| 男女国产视频网站| 大片免费播放器 马上看| 天美传媒精品一区二区| 国产精品伦人一区二区| 免费av不卡在线播放| 亚洲怡红院男人天堂| 精品午夜福利在线看| 国产成人aa在线观看| 97超碰精品成人国产| 69人妻影院| 久久精品国产亚洲网站| 久久久a久久爽久久v久久| 网址你懂的国产日韩在线| 免费高清在线观看视频在线观看| 午夜免费鲁丝| 成年女人在线观看亚洲视频 | 97在线视频观看| 亚洲av不卡在线观看| 久久女婷五月综合色啪小说 | 一级黄片播放器| 18+在线观看网站| 国产淫语在线视频| 免费看a级黄色片| 亚洲欧美精品自产自拍| 日韩不卡一区二区三区视频在线| 日本猛色少妇xxxxx猛交久久| 爱豆传媒免费全集在线观看| 日本欧美国产在线视频| 午夜精品一区二区三区免费看| 国产免费一级a男人的天堂| 在线观看三级黄色| 久久久色成人| 男女那种视频在线观看| 1000部很黄的大片| 亚洲综合色惰| 毛片女人毛片| 欧美成人午夜免费资源| 交换朋友夫妻互换小说| 欧美性猛交╳xxx乱大交人| 性色av一级| 免费看不卡的av| 七月丁香在线播放| 国产亚洲精品久久久com| 中文在线观看免费www的网站| 麻豆久久精品国产亚洲av| 国产一区二区亚洲精品在线观看| 午夜精品国产一区二区电影 | 99热国产这里只有精品6| 建设人人有责人人尽责人人享有的 | 国产真实伦视频高清在线观看| 亚洲av一区综合| 亚洲精品一区蜜桃| 成年女人看的毛片在线观看| av免费在线看不卡| 亚洲最大成人手机在线| 18+在线观看网站| 精品久久国产蜜桃| 成年av动漫网址| 高清午夜精品一区二区三区| 青春草亚洲视频在线观看| 免费黄频网站在线观看国产| 亚洲精品日韩av片在线观看| 在线免费十八禁| 在线a可以看的网站| 亚洲最大成人av| 夜夜爽夜夜爽视频| 高清日韩中文字幕在线| 三级国产精品片| av在线蜜桃| 国产精品爽爽va在线观看网站| av在线app专区| 国内少妇人妻偷人精品xxx网站| 一级毛片电影观看| av黄色大香蕉| 日韩人妻高清精品专区| 美女内射精品一级片tv| 国产一区有黄有色的免费视频| 不卡视频在线观看欧美| 少妇被粗大猛烈的视频| 性色avwww在线观看| 又黄又爽又刺激的免费视频.| 中文天堂在线官网| 久久影院123| 欧美一级a爱片免费观看看| 少妇人妻一区二区三区视频| 久久6这里有精品| 午夜免费男女啪啪视频观看| 精品人妻视频免费看| 国产精品嫩草影院av在线观看| 少妇的逼水好多| 亚洲国产av新网站| 三级国产精品片| 制服丝袜香蕉在线| 国精品久久久久久国模美| 亚洲人成网站在线观看播放| 久久久午夜欧美精品| 六月丁香七月| 成人高潮视频无遮挡免费网站| 九色成人免费人妻av| 久久久久久久大尺度免费视频| 男女边摸边吃奶| 国产片特级美女逼逼视频| .国产精品久久| 女人十人毛片免费观看3o分钟| 欧美一级a爱片免费观看看| 日韩中字成人| 性色av一级| 男人舔奶头视频| 欧美xxxx黑人xx丫x性爽| 麻豆成人av视频| 亚洲av电影在线观看一区二区三区 | 九草在线视频观看| 亚洲av一区综合| 97超碰精品成人国产| 欧美性感艳星| 岛国毛片在线播放| 亚洲av免费高清在线观看| 婷婷色麻豆天堂久久| 国产精品蜜桃在线观看| 免费电影在线观看免费观看| av国产免费在线观看| 91精品国产九色| 亚洲av.av天堂| 可以在线观看毛片的网站| 久久综合国产亚洲精品| 国产老妇女一区| 亚洲欧美一区二区三区国产| eeuss影院久久| 老师上课跳d突然被开到最大视频| 18禁裸乳无遮挡动漫免费视频 | 日本av手机在线免费观看| 亚洲成人av在线免费| 国产 精品1| 午夜亚洲福利在线播放| 99精国产麻豆久久婷婷| 国产中年淑女户外野战色| 日韩伦理黄色片| 真实男女啪啪啪动态图| 一级毛片电影观看| 亚洲色图av天堂| 中文乱码字字幕精品一区二区三区| 日韩av在线免费看完整版不卡| 啦啦啦啦在线视频资源| av免费在线看不卡| 国产精品不卡视频一区二区| 大片免费播放器 马上看| 日韩欧美 国产精品| 建设人人有责人人尽责人人享有的 | 日韩人妻高清精品专区| 一级av片app| 七月丁香在线播放| 在线播放无遮挡| 六月丁香七月| 亚洲激情五月婷婷啪啪| 丝瓜视频免费看黄片| 九色成人免费人妻av| 91狼人影院| 午夜老司机福利剧场| 22中文网久久字幕| 女的被弄到高潮叫床怎么办| 国产欧美另类精品又又久久亚洲欧美| 亚洲人成网站在线观看播放| 男男h啪啪无遮挡| 午夜福利高清视频| 香蕉精品网在线| 黑人高潮一二区| 国产成人一区二区在线| 99久久精品国产国产毛片| 一区二区三区精品91| videos熟女内射| 日韩强制内射视频| 在线a可以看的网站| 下体分泌物呈黄色| 免费播放大片免费观看视频在线观看| 国产成人a区在线观看| 免费大片18禁| 国产老妇女一区| 日韩一区二区三区影片| 五月伊人婷婷丁香| 如何舔出高潮| 菩萨蛮人人尽说江南好唐韦庄| 老女人水多毛片| 欧美性感艳星| 亚洲第一区二区三区不卡| 成人鲁丝片一二三区免费| 亚洲伊人久久精品综合| 国产高清三级在线| 免费不卡的大黄色大毛片视频在线观看| 青春草国产在线视频| 黄片无遮挡物在线观看| 建设人人有责人人尽责人人享有的 | 日韩强制内射视频| 十八禁网站网址无遮挡 | 国产毛片a区久久久久| 校园人妻丝袜中文字幕| 在线播放无遮挡| 听说在线观看完整版免费高清| 免费av观看视频| 97在线视频观看| 久久精品国产亚洲av天美| av国产免费在线观看| 狂野欧美激情性bbbbbb| 麻豆久久精品国产亚洲av| 69av精品久久久久久| 国产伦理片在线播放av一区| 亚洲最大成人av| 另类亚洲欧美激情| 亚洲欧洲日产国产| 日韩一区二区视频免费看| 国产av不卡久久| 亚洲四区av| av在线老鸭窝| 丰满人妻一区二区三区视频av| 亚洲图色成人| www.色视频.com| 国产综合懂色| 日韩不卡一区二区三区视频在线| 91精品国产九色| 久久99精品国语久久久| 韩国av在线不卡| 中文欧美无线码| 亚洲人成网站在线播| 日韩精品有码人妻一区| 内地一区二区视频在线| 免费av毛片视频| 国产成人a区在线观看| 在线观看三级黄色| 小蜜桃在线观看免费完整版高清| 欧美国产精品一级二级三级 | 免费不卡的大黄色大毛片视频在线观看| 国产大屁股一区二区在线视频| 高清日韩中文字幕在线| 大又大粗又爽又黄少妇毛片口| 国产一区亚洲一区在线观看| 小蜜桃在线观看免费完整版高清| 亚洲最大成人av| 亚洲欧美日韩东京热| 日日摸夜夜添夜夜爱| 全区人妻精品视频| 99久久精品国产国产毛片| 亚洲av中文av极速乱| 亚洲国产成人一精品久久久| 我的女老师完整版在线观看| 久久这里有精品视频免费| 综合色丁香网| 夫妻性生交免费视频一级片| 禁无遮挡网站| 男的添女的下面高潮视频| 男人狂女人下面高潮的视频| 亚洲伊人久久精品综合| 成年女人在线观看亚洲视频 | 在线播放无遮挡| 国产免费视频播放在线视频| 国产伦在线观看视频一区| 国产黄片美女视频| 男女边吃奶边做爰视频| 国产午夜精品一二区理论片| 久久精品久久精品一区二区三区| 亚洲性久久影院| 18禁在线播放成人免费| 成人免费观看视频高清|