劉鑫 ,呂迎雪 ,李江峰 ,張文忠 ,丁廣佳
(1.中廣核工程有限公司核電安全監(jiān)控技術(shù)與裝備國(guó)家重點(diǎn)實(shí)驗(yàn)室,深圳中廣核工程設(shè)計(jì)有限公司,廣東 深圳 518172;2.中交天津港灣工程研究院有限公司,天津 300222;3.中國(guó)交建海岸工程水動(dòng)力重點(diǎn)實(shí)驗(yàn)室,天津 300222)
2011年3月福島第一核電站因受海嘯侵襲發(fā)生事故后,國(guó)內(nèi)核電廠進(jìn)行了安全排查,對(duì)地震海嘯等外部災(zāi)害進(jìn)行了復(fù)核評(píng)估。由于我國(guó)沿海自然條件特點(diǎn),以往國(guó)內(nèi)對(duì)海嘯的關(guān)注和研究相對(duì)較少,對(duì)海嘯與構(gòu)筑物作用方面缺少資料和工程技術(shù)經(jīng)驗(yàn)。海嘯波本質(zhì)上是一種長(zhǎng)波,具有明顯的單一波峰形狀,其波高及水深相對(duì)于波長(zhǎng)來(lái)說(shuō)均為小值,屬于淺水長(zhǎng)波。由于孤立波的波形與傳播特性與海嘯波類似,并且其波形函數(shù)簡(jiǎn)單易于數(shù)學(xué)解析,因此常以孤立波模擬海嘯傳播變形。同時(shí)海嘯模型試驗(yàn)研究也隨著造波系統(tǒng)可以準(zhǔn)確模擬孤立波而得到了快速發(fā)展,由孤立波傳播的變形試驗(yàn)為相關(guān)的數(shù)值模擬提供了重要的基礎(chǔ)資料。
國(guó)外Hall&Watts[1]最早在實(shí)驗(yàn)室研究了孤立波沿緩坡傳播后波浪的變形,Synolakis(1987年)[2]根據(jù)1頤20的斜坡試驗(yàn)結(jié)果得出孤立波最大爬坡高度的估算公式。Hsiao等(2008)[3]根據(jù)試驗(yàn)結(jié)果利用最小二乘法歸納出斜坡在一定傾角范圍內(nèi)破碎孤立波爬高,國(guó)內(nèi)張文忠[4]通過(guò)物理模型試驗(yàn)提出了兩種坡率的海嘯波爬坡公式。“311地震”發(fā)生以后,日本的研究學(xué)者針對(duì)防海嘯防波堤護(hù)面及基床的穩(wěn)定性開(kāi)展了一系列研究工作,Mikami等(2012)[5]首先對(duì)海嘯中不同結(jié)構(gòu)形式的防波堤破壞情況進(jìn)行了實(shí)地調(diào)查。Esteban等(2012a)[6]提出了護(hù)面塊體抗海嘯波的設(shè)計(jì)參數(shù)計(jì)算公式,但是這個(gè)公式只是通過(guò)日本東北部的2個(gè)港口的分析得出,因此公式應(yīng)用有局限性。Hanzawa等(2012)[7]以及 Kato等(2012)[8]也提出了計(jì)算海嘯波作用下的護(hù)面塊體的設(shè)計(jì)公式,這個(gè)公式里考慮了流速及越浪的影響,但其中參數(shù)獲取較困難,較難應(yīng)用。
根據(jù)工程上的需要,針對(duì)兩種坡度、不同護(hù)面塊體的斜坡式防波堤結(jié)構(gòu)斷面進(jìn)行了海嘯波作用物理模型試驗(yàn),得到了不同水深波高工況下海嘯波沿斜坡堤的爬高數(shù)據(jù),并將試驗(yàn)結(jié)果與前人的經(jīng)驗(yàn)公式進(jìn)行了對(duì)比,加入了糙滲系數(shù),提出了改進(jìn)的海嘯波沿斜坡堤爬高的經(jīng)驗(yàn)公式,為以后工程上的實(shí)際應(yīng)用提供參考依據(jù)。
海嘯波對(duì)斜坡堤斷面物理模型試驗(yàn)是在中交天津港灣工程研究院有限公司水工研究所的無(wú)反射造波機(jī)試驗(yàn)水槽中進(jìn)行。水槽的長(zhǎng)度、寬度、高度分別為68.0 m、1.0 m和1.6 m。造波機(jī)系統(tǒng)由造波板、伺服電機(jī)、造波機(jī)控制器、計(jì)算機(jī)控制系統(tǒng)和數(shù)據(jù)采集、分析系統(tǒng)組成。該造波機(jī)系統(tǒng)是2005年6月從日本三井造船株式會(huì)社引進(jìn),是國(guó)內(nèi)成功引進(jìn)的第一座無(wú)反射造波機(jī)成套設(shè)備。該系統(tǒng)可以在0.5耀4.5 s的周期范圍內(nèi)模擬不同譜型的不規(guī)則波和特定形式的非線性波,并可以在水槽中生成孤立波模擬海嘯。
無(wú)反射造波水槽一端安有造波機(jī),尾端鋪設(shè)大塊石進(jìn)行消波。本次試驗(yàn)在水槽中為測(cè)量海嘯波在斜坡堤上的爬高變形過(guò)程及最大爬坡高度,在沿水槽方向布設(shè)了13支波高計(jì),其中4支波高計(jì)安裝在防波堤堤腳前及堤身上方,8支波高計(jì)安放在靜水位以下的堤前緩坡地形上方,1支波高計(jì)安放在造波機(jī)前方的平底地形區(qū)域。海嘯波作用到防波堤上的爬高位置采用波高計(jì)測(cè)量及目測(cè)同步進(jìn)行,互相校核其觀測(cè)結(jié)果。圖1給出了試驗(yàn)布置示意圖。
圖1 海嘯波沿斜坡堤爬高試驗(yàn)儀器及模型布置圖Fig.1 Instrument and model layout of tsunami wave run-up on sloping breakwater
本次試驗(yàn)研究選取了11個(gè)有代表性的斜坡堤斷面,分別考慮了1頤1.5和1頤2的護(hù)面坡度,護(hù)面結(jié)構(gòu)選取了489 g扭王字塊體、115 g扭王字塊體、80~100 g大塊石、40~50 g大塊石以及柵欄板等形式。表1為各斷面的結(jié)構(gòu)形式說(shuō)明,圖2為試驗(yàn)的無(wú)防浪墻斜坡堤斷面示意圖。
表1 試驗(yàn)斜坡堤結(jié)構(gòu)形式Table 1 Type list of test sloping breakwater
圖2 無(wú)防浪墻斜坡堤斷面示意圖Fig.2 Schematic diagram of sloping breakwater without wall
為了在防波堤堤前得到更大范圍的波高水深比,所有斜坡堤均安放在1/50斜坡后方的平臺(tái)上,平臺(tái)高度為30 cm,堤前水深d設(shè)計(jì)了3種工況,分別為0.2 m、0.3 m及0.45 m,對(duì)應(yīng)的造波板前水深分別為0.5 m,0.6 m和0.75 m。定義防波堤前海嘯波高為H,不同水深下堤前波高水深比范圍可達(dá)到0.07~1.24范圍內(nèi),每個(gè)試驗(yàn)斷面分別進(jìn)行了28組試驗(yàn),試驗(yàn)工況詳見(jiàn)表2。
表2 試驗(yàn)水深、波高工況組合Table 2 Test conditions of water depth and wave height
本次試驗(yàn)采用水槽中生成孤立波來(lái)模擬海嘯波,目前孤立波的試驗(yàn)?zāi)M普遍采用Goring(1978)的造波板運(yùn)動(dòng)計(jì)算方法[4]。理論波形與造波機(jī)實(shí)際造出的試驗(yàn)波形對(duì)比見(jiàn)圖3。
另外孤立波的波速及流速在試驗(yàn)前也分別進(jìn)行了驗(yàn)證,且與理論值符合較好,整體看,本次試驗(yàn)可以正確模擬孤立波。
圖3 試驗(yàn)波形及理論波形對(duì)比圖Fig.3 Comparative diagram of test wave shape and theoretical wave shape
圖4、圖5分別給出坡度為1頤1.5以及1頤2的斜坡堤斷面無(wú)量綱爬高測(cè)量結(jié)果,并且與Synolakis(1987年)[2]理論推導(dǎo)海嘯波爬坡高度公式進(jìn)行了對(duì)比,其中定義R為海嘯波爬坡高度。根據(jù)臨界破碎估算公式計(jì)算出臨界破碎的堤前波高水深比,即1頤1.5坡度和1頤2坡度臨界破碎波高水深比分別為0.52和0.38。由圖中結(jié)果可以看出在波高水深比小于臨界破碎值時(shí),斜坡堤上爬坡與Synolakis(1987年)[2]提出的公式估算值整體趨勢(shì)基本一致,均略有偏小,這種情況應(yīng)該是本研究不同護(hù)面層的糙滲系數(shù)影響所致。
圖4 坡度為1頤1.5斜坡堤海嘯波最大無(wú)量綱爬高Fig.4 Tsunami maximum dimensionless climbing height of seawall with a slope of 1頤1.5
圖5 坡度為1頤2斜坡堤海嘯波最大無(wú)量綱爬高Fig.5 Tsunami maximum dimensionless climbing height of seawall with a slope of 1頤2
由圖4、圖5可以看出海嘯波爬高的實(shí)測(cè)結(jié)果在波浪臨界破碎前后的規(guī)律不甚相同,研究學(xué)者把爬高經(jīng)驗(yàn)公式分為波浪非破碎以及破碎兩種情況。在現(xiàn)實(shí)中通常疊加天文高潮情況下海嘯爬高漫頂?shù)奈:Ω?,這時(shí)通常波高水深比較小,不會(huì)發(fā)生破碎,因此本研究采用波浪未破碎的爬高數(shù)據(jù)進(jìn)行擬合,得到海嘯波沿斜坡堤最大的爬高擬合公式。
本文利用Synolakis(1987年)[2]提出的爬高估算公式與本次試驗(yàn)中未發(fā)生越浪的數(shù)據(jù)進(jìn)行相關(guān)性分析,見(jiàn)圖6,經(jīng)計(jì)算判定系數(shù)為0.880 8。
圖6 Synolakis(1987年)公式與本次試驗(yàn)數(shù)據(jù)相關(guān)性分析Fig.6 Correlation analysis between Synolakis(1987 年)formula and test data of this paper
可以看到本次試驗(yàn)數(shù)據(jù)比Synolakis的估算公式略偏小,但整體規(guī)律較一致。試驗(yàn)觀察不同護(hù)面形式的無(wú)量綱化爬高由小到大排序?yàn)椋?89 g扭王字塊體<115 g扭王字塊體<柵欄板(80~100 g塊石)<40~50 g塊石。可以發(fā)現(xiàn)不同種類的護(hù)面塊體對(duì)爬高有明顯影響,故本文在Synolakis推算的爬高函數(shù)形式基礎(chǔ)上,增加了一個(gè)描述護(hù)面塊體的糙滲系數(shù)K駐。經(jīng)過(guò)最小二乘法的非線性擬合得到海嘯波沿不同護(hù)面結(jié)構(gòu)形式的斜坡堤最大爬高經(jīng)驗(yàn)公式,其形式為:
式中:d為堤前水深;H為堤前海嘯波高;茁為斜坡的坡度角。經(jīng)過(guò)擬合其判定系數(shù)可達(dá)到0.932,K駐對(duì)于扭王字塊體、柵欄板、塊石分別取0.47、0.50和0.55[2],擬合的相關(guān)性分析見(jiàn)圖7。
圖7 本文擬合公式與本次試驗(yàn)數(shù)據(jù)相關(guān)性分析Fig.7 Correlation analysis between fitting formula and test data in this paper
經(jīng)過(guò)數(shù)據(jù)分析,發(fā)現(xiàn)對(duì)于斜坡堤坡度角在1.5~2的斷面來(lái)說(shuō),堤前波高水深比小于0.3的情況下,Synolakis(1987年)[2]的估算公式更接近實(shí)測(cè)值,本次擬合公式比實(shí)測(cè)值偏大;但是隨著波高水深比的增大本次試驗(yàn)擬合的結(jié)果更接近實(shí)測(cè)值,因此在工程設(shè)計(jì)使用時(shí),應(yīng)根據(jù)實(shí)際海嘯波情況選擇適當(dāng)?shù)墓浪惴椒ā?/p>
本次研究在無(wú)反射造波水槽中產(chǎn)生孤立波模擬海嘯,作用在斜坡式防波堤,得到了扭王字塊、柵欄板和大塊石3種護(hù)面結(jié)構(gòu),1頤1.5以及1頤2兩種坡度下的試驗(yàn)數(shù)據(jù)。經(jīng)分析得到以下主要結(jié)論:
1)堤前波高水深比小于臨界破碎值時(shí),斜坡堤上爬坡高度與Synolakis(1987年)[2]提出的公式估算值整體趨勢(shì)基本一致,但均略有偏小。
2)通過(guò)最小二乘法擬合海嘯波沿斜坡堤爬高的試驗(yàn)數(shù)據(jù),考慮不同護(hù)面的糙滲系數(shù)影響,提出了新的海嘯波沿斜坡堤最大爬高的估算公式,其判定系數(shù)為0.932。
3)本次研究的斜坡堤斷面組數(shù)還比較少,下一階段需要更多的水槽試驗(yàn)對(duì)不同坡度、更多類型護(hù)面塊體、不同重量的結(jié)構(gòu)斷面進(jìn)行研究,對(duì)本文新提出的公式進(jìn)行逐步修正。