• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on Robust Cooperative Dual Equilibrium with Ellipsoidal Asymmetric Strategy Uncertainty

    2020-01-07 06:31:26LUOGuiMei

    LUO Gui-Mei

    (School of Financial Mathematics and Statistics,Guangdong University of Finance,Guangzhou,Guangdong, 510521, P.R. China)

    Abstract: In this paper, we investigate robust cooperative dual equilibria with two players in which each player minimizes the opponent’s cost and can not evaluate his own strategy while may estimate an asymmetric bounded set of the mixed strategy. Using dual theory and robust optimization technique, we obtain a result that the counterpart of the primitive uncertainty with ellipsoidal norm for each player can be formulated as a second-order cone programming (SOCP) and solving the corresponding equilibrium can be converted to solving a second-order cone complementarity problem (SOCCP). Then we present a numerical experiment to illustrate the behavior of robust cooperative dual equilibrium.

    Key words:Robust cooperative dual equilibrium;Asymmetric strategy uncertainty;SOCP;SOCCP

    §1. Introduction

    Bimatrix game is the formal study of decision-making where two players make choices that potentially affect the interests of his opponent. In[14-15],John Nash first introduced the notion of an equilibrium (Nash equilibrium) of a non-cooperate, simultaneous-move, one-shot, finite games with complete information. However, in real-world, game-theoretic situations, players are often uncertain of the structure of the game, such as player’s own strategies [16, 18]. When each player’s strategy set depends on the other players’ strategies and at the same time, each player acts in his own selfish interest, Facchinei et al. [8-9]and Pang etc. Fukushima [17]studied general Nash equilibrium using quasi-variational inequalities or variational inequalities. In[1], Aghassi and Bertsimas introduced robust optimization equilibria and established existence theorems for this equilibria. Robust optimization is emerging as a leading methodology to address optimization problems under uncertainty. Ben-Tal and Nemirovski [2-3, 5, 7]and other researchers investigated the robust counterparts under different uncertainty sets. Wiesemann etc. [19]introduced standardized ambiguity sets which contain all probably distributions with prescribed conic representable confidence sets and with mean values residing on an affine manifold. Bertsimas et al. [4]proposed a novel schema for utilizing data to construct uncertainty sets for robust optimization using statistical hypothesis tests. In this paper, we consider a cooperative dual equilibrium (DE) [6]with uncertainty in which each player unselfishly responds to the DE strategy for the other player so as to minimize the cost of the other player.

    In what follows, from the structure of strategy uncertainty, we consider a two-person game,in which each player attempts to minimize his opponent’s cost where each opponent’s strategy belongs to a mixed strategies set and his own strategy is uncertain while can be estimated to be included in an asymmetric closed and bounded set. In this situation, the model essentially reduces to the following programming:

    and

    and

    A pair of strategies (z,y) is called a robust cooperative dual equilibrium for problems (1.1) and(1.2) if z is the optimal solution to (1.3) and y is the optimal solution to (1.4) simultaneously.Accordingly,(1.3)and(1.4)are called robust counterparts of(1.1)and(1.2). However,problems(1.3) and (1.4) are generally semi-infinite programming problems and usually computationally intractable. How to deal with an uncertainty set is very important in the solution to these problems. In what follows, we assume that the uncertain strategy sets can be estimated at some asymmetric bounded sets. When the elements of the mixed strategy sets are ellipsoidal uncertainty, the robust counterparts for each player can be formulated as a second-order cone programming and the corresponding robust cooperative dual optimization equilibrium can be converted to a second-order cone complementarity problem (SOCCP) [5, 11]as follows:

    where K is a ?-dimensional closed convex cone defined by K=K?1×K?2×···×K?mwith ?j?dimensional second-order cones K?j={(x1,x2)∈and ? =?1+···+?m,G, H ∈, C ∈andd∈The major contributions of the paper are as follows.

    (a) The equilibrium is based on the viewpoint of cooperation which is different from the traditional non-cooperative case such as [12].

    (b) The asymmetric uncertain set better captures the essence of the underlying random variables comparing to symmetric uncertainty.

    (c) Using robust technique, the intractable primitive problem including asymmetric uncertainty for each player can be converted to a computable SOCP. Then the dual equilibrium of cooperation between two players can be formulated as a SOCCP defined in (1.5). From this point, the work is an extension of that in [5]where the asymmetric uncertainty only in unilateral activities not in bimatrix games was considered. At the same time, it generalizes the work in [12]in which only symmetric games was investigated.

    The paper is organized as follows. Section 2 investigates the robust counterpart and the corresponding equilibrium when each player can be certain of his own cost matrix and can not estimate his own’s strategies exactly while the strategies are estimated to be contained in an asymmetric ellipsoidal uncertain set. Some numerical experiments are presented in Section 3.

    §2. Asymmetric Ellipsoidal Uncertainty in Players Own Strategy

    In this section,we focus our attention on the tractability of problems(1.3)and(1.4). To this end, it is necessary to deal with the inner optimization problems which rely on the structures of Yuand Zurespectively. In what follows, we investigate a general uncertainty set, namely,asymmetric ellipsoidal uncertainty. We first consider (1.3). For each ?y∈Yu, we let

    whereydenotes the nominal value ofl = 1,··· ,L are random vectors,yl∈Rnare known directions of data perturbation for,l = 1,··· ,L, L may be small, modeling situations involving a small collection of primitive uncertainties, or large, potentially as large as the number of entries in the data. Let= max{0,= max{0,?. ThenUnder these assumptions, the asymmetric uncertain set (2.1) under l2-norm can be written as

    where P1= diag(p11,··· ,p1L) and Q1= diag(q11,··· ,q1L) with p1l,q1l> 0,l = 1,··· ,L are forward and backward deviation related to the random variable △hj,j=1,2,σ0is a parameter controlling the tradeoff between robustness and optimality. The conditionsandensureto be a mixed strategy.

    It is easy to obtain that whenis given as (2.2), then the robust counterpart of (1.1) can be formulated as an SOCP. To this end, we first introduce the following lemma.

    Lemma 2.1(Chen, Sim and Sun [5]) Let

    Then π?=wheret=(t1,...,tN1)T, tj=max{aj,bj,0},j ∈N1.

    Theorem 2.1If player one’s strategy set is given as (2.2), then the robust counterpart of (1.1) can be formulated as an SOCP over varies (z,α,r,γ,f) ∈as follows.

    where Y =(y1y2···yL)∈denotes the matric of perturbation directions.

    ProofFor the worst case, (1.1)can be expressed as(1.3). When Yuis given as(2.2), the inner optimization problem of (1.3) can be written as

    where

    Under some mild condition, such as the existence of Slater points [10], the zero duality gap is guaranteed by strong conic duality theorem, and the third equality comes from direct transformation of vectorsrespectively and the last equality follows from Lemma 2.1 and

    with μ1=y1TAz+y1Tf +αy1Ten,..., μL=yLTAz+yLTf +αyLTen.

    Therefore,(1.3)can be converted to the following SOCP over(z,α,γ,f)∈

    It is easy to show that (2.5) can be rewritten as (2.3) combining with (2.4), that is, the robust counterpart of (1.1) can be formulated as (2.3).

    Similar to (2.2), if ZUis constructed as follows:

    Then the robust counterpart of (1.2) can be formulated as an SOCP over varies∈

    where Z =(z1z2··· zK)∈

    In what follows, we focus on the KKT conditions for problems (2.3) and (2.7). It is easy to show that the KKT conditions for (2.3) can be written as

    where u1,v1∈, η,σ ∈are the Lagrangian multipliers.

    similarly, the KKT conditions for (2.7) can be expressed as

    where u2,v2∈, φ,ρ ∈are the Lagrangian multipliers.

    Consequently, the problem to find a pair of strategies (z,y) satisfying problems (2.3) and(2.7) simultaneously can be converted to the problem to find (z,y) satisfying the KKT conditions (2.8) and (2.9) simultaneously. The latter can be further formulated to an SOCCP (1.5)whereare two partitioned matrices as follows:

    dT=(0 1 σ00 1 ρ0),qandrare two ?-dimensional zero vectors.

    Therefore, for mixed strategy sets with asymmetric ellipsoidal uncertainty, we obtain the following result.

    Theorem 2.2Let mixed strategy sets be given as (2.2) and (2.6) withnorm respectively, then solving the robust cooperative dual equilibrium for problems (1.1) and (1.2)can be formulated as an SOCCP as above.

    §3. Numerical Experiments

    In the previous sections, we have shown that the robust cooperative dual equilibrium problems for the bimatrix game with asymmetric strategy uncertainty can be formulated as an SOCCP. In this section, we present a numerical experiment for robust cooperative dual equilibrium. We only consider the case where each player’s own strategies are uncertain with L=K =3 and m=n=3. While doing numerical experiments, we adopt the algorithm in [?]to solve the SOCCP in Theorem 2.2. Consider the bimatrix game with cost matrices:

    We select the matrices of perturbation directions as

    For simplicity, we select the matrices of deviation measures as P1= I3,Q1= 2I3,M1=0.5I3and N1= I3. Particularly, if the control parameters σ0and ρ0are equal to zeros, the corresponding model reduces to the primitive situation,that is,there is no perturbation in their strategies and the two player adopt pure strategies. In this situation, the strategies for player one and player two are=(0 1 0) and(1 0 0) and the corresponding cost values are 20 and ?40 respectively. The robust cooperative dual equilibrium for various σ0and ρ0are listed in Table 1. The meaning of the columns in Table 1 is listed below:

    Table 1: Robust cooperative dual equilibrium with asymmetric uncertainty under l2?norm

    From table 1, we see that (a) There is little change about the strategies for player one when control parameters vary from 0.1 to 2. This implies that the cooperative dual equilibrium model is almost robust for player one. (b) As the parameters increase continuously, the cost values are not always steady increase while alternately change which implies that the parameters σ0and ρ0and the direction matrices play important roles in controlling the robustness and optimality. (c)How to choose an appropriate parameter or direction matrix between robustness and optimality is an important while significantly hard work. (d) The work can be applied to the optimal reinsurance. For example,suppose that the two players one and two denote insurer and reinsurer respectively and suppose that they reach a premium agreement with respect to some types of insurance and the corresponding price. The insurer pays the premium to the reinsurer to transfer some risk. The reinsurer receives premium from the insurer to take the corresponding risk transferred from the insurer. Therefore, ˉyTrAˉzrdenotes the insurance premium with sign plus (omitted) which the insurer pays to the reinsurer and ˉyTrBˉzrdenotes the insurance premium with sign minus which the reinsurer obtains from the insurer. In this situation, we can choose the cost matrix A for insurer as above and let B = ?A be the cost matrix for reinsurer.

    少妇人妻久久综合中文| 久热这里只有精品99| 欧美日韩综合久久久久久| 精品人妻视频免费看| 男女边吃奶边做爰视频| 日本一二三区视频观看| 国产v大片淫在线免费观看| kizo精华| 大话2 男鬼变身卡| 亚洲av男天堂| 亚洲欧美日韩卡通动漫| 建设人人有责人人尽责人人享有的 | 国产精品一区www在线观看| 日日啪夜夜爽| 网址你懂的国产日韩在线| 亚洲精品日韩av片在线观看| 男女国产视频网站| 国产 精品1| 男人添女人高潮全过程视频| 成年女人看的毛片在线观看| 国产成人免费观看mmmm| 欧美xxxx黑人xx丫x性爽| 国产欧美日韩一区二区三区在线 | av国产精品久久久久影院| 建设人人有责人人尽责人人享有的 | 亚洲精品一区蜜桃| 看十八女毛片水多多多| 男女下面进入的视频免费午夜| 午夜免费鲁丝| 久久精品久久久久久久性| 国产又色又爽无遮挡免| 国产乱人视频| 少妇的逼好多水| 日本欧美国产在线视频| 国产色爽女视频免费观看| 国产高清不卡午夜福利| 精品久久久久久电影网| 男男h啪啪无遮挡| 一级av片app| 伦精品一区二区三区| av在线观看视频网站免费| 激情五月婷婷亚洲| 少妇人妻精品综合一区二区| 欧美变态另类bdsm刘玥| 亚洲精品日韩在线中文字幕| 亚洲内射少妇av| 老司机影院成人| 久久久久久久亚洲中文字幕| 精品熟女少妇av免费看| 各种免费的搞黄视频| 最近手机中文字幕大全| 亚洲av成人精品一区久久| 精品熟女少妇av免费看| 国产一区亚洲一区在线观看| 日本欧美国产在线视频| 午夜精品一区二区三区免费看| 欧美日韩一区二区视频在线观看视频在线 | 嫩草影院入口| 日本三级黄在线观看| 少妇高潮的动态图| 精品人妻视频免费看| 亚洲精品久久午夜乱码| 久热久热在线精品观看| 人妻制服诱惑在线中文字幕| 成人国产麻豆网| av卡一久久| 亚洲精品乱码久久久v下载方式| 色综合色国产| 少妇丰满av| 午夜福利视频精品| 女的被弄到高潮叫床怎么办| 岛国毛片在线播放| 国产伦精品一区二区三区视频9| 国产国拍精品亚洲av在线观看| 国产亚洲最大av| 久久6这里有精品| 国产精品嫩草影院av在线观看| 国产中年淑女户外野战色| 国产亚洲一区二区精品| 真实男女啪啪啪动态图| 小蜜桃在线观看免费完整版高清| 五月开心婷婷网| 成人毛片60女人毛片免费| 亚洲精品成人久久久久久| 色吧在线观看| 免费大片18禁| 精品久久久精品久久久| 啦啦啦啦在线视频资源| 久久久久久久亚洲中文字幕| 一个人看的www免费观看视频| 亚洲欧美成人综合另类久久久| av卡一久久| 中文字幕人妻熟人妻熟丝袜美| 全区人妻精品视频| 18禁裸乳无遮挡动漫免费视频 | 日产精品乱码卡一卡2卡三| 欧美性猛交╳xxx乱大交人| 久久99热6这里只有精品| 十八禁网站网址无遮挡 | 日产精品乱码卡一卡2卡三| 免费大片18禁| 成年av动漫网址| av福利片在线观看| 各种免费的搞黄视频| 午夜福利视频1000在线观看| 51国产日韩欧美| 欧美另类一区| av国产精品久久久久影院| 国产精品熟女久久久久浪| 欧美 日韩 精品 国产| 国产探花在线观看一区二区| 日韩国内少妇激情av| 国产男女超爽视频在线观看| 91午夜精品亚洲一区二区三区| 婷婷色综合大香蕉| 国产av不卡久久| 我要看日韩黄色一级片| 国产免费一区二区三区四区乱码| 97精品久久久久久久久久精品| 亚洲图色成人| 午夜视频国产福利| 大陆偷拍与自拍| 免费看a级黄色片| 亚洲精品色激情综合| 69av精品久久久久久| 18禁裸乳无遮挡免费网站照片| 成年免费大片在线观看| 亚洲三级黄色毛片| av福利片在线观看| 少妇被粗大猛烈的视频| 日本av手机在线免费观看| 国产精品国产三级国产专区5o| 精品一区二区三卡| 国产黄频视频在线观看| 国精品久久久久久国模美| 日日啪夜夜爽| 久久热精品热| 视频中文字幕在线观看| 久久精品国产a三级三级三级| 制服丝袜香蕉在线| 我要看日韩黄色一级片| 内地一区二区视频在线| 国产免费一级a男人的天堂| 男女国产视频网站| 狠狠精品人妻久久久久久综合| 全区人妻精品视频| 男女国产视频网站| 亚洲精品国产av蜜桃| 99视频精品全部免费 在线| 精品久久久久久久久av| 超碰97精品在线观看| 国产精品一区二区在线观看99| 亚洲av免费在线观看| 最近的中文字幕免费完整| 99re6热这里在线精品视频| 九九久久精品国产亚洲av麻豆| 国产亚洲精品久久久com| 成人午夜精彩视频在线观看| 亚洲天堂av无毛| 精品久久久久久久末码| 成年女人在线观看亚洲视频 | 国产片特级美女逼逼视频| 免费av观看视频| 日韩中字成人| 美女cb高潮喷水在线观看| 久久这里有精品视频免费| 中文欧美无线码| 美女内射精品一级片tv| 成年女人在线观看亚洲视频 | 最近最新中文字幕大全电影3| 交换朋友夫妻互换小说| 校园人妻丝袜中文字幕| 中文在线观看免费www的网站| 亚洲av欧美aⅴ国产| 国产精品女同一区二区软件| 久久精品国产鲁丝片午夜精品| 亚洲精品aⅴ在线观看| 久久人人爽av亚洲精品天堂 | 亚洲成人av在线免费| 少妇的逼好多水| 香蕉精品网在线| 一级毛片黄色毛片免费观看视频| 国产亚洲最大av| 蜜桃久久精品国产亚洲av| 亚洲av日韩在线播放| 国产综合精华液| 亚洲精品一区蜜桃| 亚洲av中文av极速乱| 欧美激情在线99| 男人添女人高潮全过程视频| av国产免费在线观看| 最近手机中文字幕大全| 人妻一区二区av| 久久久久久久久大av| 国产黄色视频一区二区在线观看| 国产精品.久久久| 国产一区亚洲一区在线观看| 美女视频免费永久观看网站| 亚洲欧美精品自产自拍| 天美传媒精品一区二区| 久久精品国产鲁丝片午夜精品| 91午夜精品亚洲一区二区三区| 男男h啪啪无遮挡| 久热这里只有精品99| 晚上一个人看的免费电影| 欧美日韩综合久久久久久| 亚洲精品国产色婷婷电影| 欧美极品一区二区三区四区| 91久久精品电影网| 国产精品久久久久久av不卡| 午夜免费观看性视频| 久久久久精品久久久久真实原创| 国产成人aa在线观看| 久久久久久久久久久免费av| 久久久久久国产a免费观看| 亚洲av不卡在线观看| 身体一侧抽搐| 青青草视频在线视频观看| 老女人水多毛片| 蜜臀久久99精品久久宅男| 国产成人a∨麻豆精品| 欧美变态另类bdsm刘玥| 菩萨蛮人人尽说江南好唐韦庄| 男人爽女人下面视频在线观看| 国产探花极品一区二区| 99热网站在线观看| 狂野欧美激情性bbbbbb| 欧美日韩综合久久久久久| 18禁在线播放成人免费| 日韩视频在线欧美| 少妇人妻 视频| 下体分泌物呈黄色| 国产精品一区二区三区四区免费观看| 精品熟女少妇av免费看| 中国国产av一级| 乱码一卡2卡4卡精品| 日本与韩国留学比较| 午夜福利视频1000在线观看| 天天一区二区日本电影三级| 欧美另类一区| 久久久a久久爽久久v久久| 亚洲欧美精品专区久久| 久久久久网色| 网址你懂的国产日韩在线| 综合色av麻豆| 国产综合懂色| 日本色播在线视频| 乱系列少妇在线播放| 国产高清不卡午夜福利| 欧美日韩视频高清一区二区三区二| 精品久久久噜噜| 黄片wwwwww| 国产美女午夜福利| 插逼视频在线观看| 免费观看性生交大片5| 亚洲丝袜综合中文字幕| 99热网站在线观看| 久热久热在线精品观看| 亚洲一区二区三区欧美精品 | 亚洲精品久久久久久婷婷小说| 一区二区三区乱码不卡18| 特级一级黄色大片| 男女国产视频网站| 亚洲av成人精品一区久久| 在线观看一区二区三区| 青春草国产在线视频| 在线看a的网站| 91精品伊人久久大香线蕉| 中国美白少妇内射xxxbb| 欧美精品国产亚洲| av线在线观看网站| 91aial.com中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 夫妻性生交免费视频一级片| 日本av手机在线免费观看| 国产在线男女| 亚洲av免费在线观看| 免费黄网站久久成人精品| 久久久亚洲精品成人影院| 春色校园在线视频观看| 亚洲成色77777| 天美传媒精品一区二区| 国产午夜精品一二区理论片| 亚洲自偷自拍三级| 国产在线一区二区三区精| 国产精品无大码| 日韩 亚洲 欧美在线| 欧美三级亚洲精品| 亚洲高清免费不卡视频| 天天一区二区日本电影三级| 成人漫画全彩无遮挡| 午夜精品一区二区三区免费看| 精品国产三级普通话版| 亚洲成人一二三区av| 22中文网久久字幕| 禁无遮挡网站| 欧美最新免费一区二区三区| 啦啦啦中文免费视频观看日本| 午夜免费男女啪啪视频观看| 看非洲黑人一级黄片| 最近的中文字幕免费完整| 亚洲欧美精品自产自拍| 久久午夜福利片| 十八禁网站网址无遮挡 | 一本色道久久久久久精品综合| 在线亚洲精品国产二区图片欧美 | 熟妇人妻不卡中文字幕| 国产黄色免费在线视频| 水蜜桃什么品种好| 身体一侧抽搐| 国产亚洲av嫩草精品影院| 色综合色国产| 91在线精品国自产拍蜜月| 日韩在线高清观看一区二区三区| 色哟哟·www| 国产一区有黄有色的免费视频| eeuss影院久久| 国产乱来视频区| 亚洲av欧美aⅴ国产| 大香蕉97超碰在线| 日本免费在线观看一区| videossex国产| 日韩,欧美,国产一区二区三区| 国产成人福利小说| 联通29元200g的流量卡| 国产亚洲91精品色在线| 极品少妇高潮喷水抽搐| 亚洲精品亚洲一区二区| 亚洲精品国产av成人精品| 国产毛片在线视频| 亚洲一级一片aⅴ在线观看| 日本色播在线视频| 久久韩国三级中文字幕| 嘟嘟电影网在线观看| 国产免费福利视频在线观看| 午夜亚洲福利在线播放| 蜜桃久久精品国产亚洲av| 自拍偷自拍亚洲精品老妇| 亚洲精品日本国产第一区| 国产黄片美女视频| 成人特级av手机在线观看| 真实男女啪啪啪动态图| 亚洲成人精品中文字幕电影| 超碰av人人做人人爽久久| 插阴视频在线观看视频| www.av在线官网国产| 一级毛片电影观看| 亚洲欧美一区二区三区国产| 免费看光身美女| 国产精品久久久久久精品电影| 最近2019中文字幕mv第一页| 三级男女做爰猛烈吃奶摸视频| xxx大片免费视频| 久久久久性生活片| 在线天堂最新版资源| 狂野欧美激情性xxxx在线观看| 欧美日韩亚洲高清精品| 国产黄片美女视频| 水蜜桃什么品种好| 黄色一级大片看看| 国产精品三级大全| 国产爽快片一区二区三区| 午夜日本视频在线| 99久久中文字幕三级久久日本| 狂野欧美白嫩少妇大欣赏| 麻豆成人av视频| 免费av毛片视频| 一级毛片我不卡| 免费看光身美女| 九色成人免费人妻av| 欧美日韩亚洲高清精品| 你懂的网址亚洲精品在线观看| 亚洲最大成人av| 中文在线观看免费www的网站| 亚洲精品,欧美精品| 18禁裸乳无遮挡免费网站照片| 大香蕉久久网| 欧美性感艳星| 天堂网av新在线| 久久精品国产自在天天线| 免费黄色在线免费观看| 黄色日韩在线| 18禁在线播放成人免费| 国产大屁股一区二区在线视频| 深夜a级毛片| videossex国产| 国产伦理片在线播放av一区| 国产亚洲最大av| tube8黄色片| 亚洲自拍偷在线| 麻豆成人午夜福利视频| 亚洲经典国产精华液单| 欧美少妇被猛烈插入视频| 国产中年淑女户外野战色| 国产女主播在线喷水免费视频网站| 亚洲色图综合在线观看| 最近最新中文字幕大全电影3| 神马国产精品三级电影在线观看| 黄色视频在线播放观看不卡| 十八禁网站网址无遮挡 | 国产综合懂色| 久久久亚洲精品成人影院| 国产av国产精品国产| 中国美白少妇内射xxxbb| 久久国产乱子免费精品| 乱系列少妇在线播放| 国产成人一区二区在线| av又黄又爽大尺度在线免费看| 欧美极品一区二区三区四区| 国产精品一区二区性色av| 99久久精品国产国产毛片| 99精国产麻豆久久婷婷| 99九九线精品视频在线观看视频| 可以在线观看毛片的网站| 中国三级夫妇交换| 亚洲av不卡在线观看| 国产精品国产三级专区第一集| 性色avwww在线观看| 尾随美女入室| 国产男女内射视频| 日本一本二区三区精品| 精品人妻视频免费看| 99热6这里只有精品| 制服丝袜香蕉在线| 欧美zozozo另类| 国产探花在线观看一区二区| 97超视频在线观看视频| 又爽又黄无遮挡网站| 纵有疾风起免费观看全集完整版| videossex国产| 一个人看视频在线观看www免费| 夫妻午夜视频| 男女那种视频在线观看| 欧美日韩视频精品一区| 日本欧美国产在线视频| av.在线天堂| 18禁在线无遮挡免费观看视频| 欧美人与善性xxx| 国产一区二区亚洲精品在线观看| 国产乱人偷精品视频| 深夜a级毛片| 午夜激情福利司机影院| 国产av码专区亚洲av| av卡一久久| 黄色配什么色好看| 99九九线精品视频在线观看视频| 可以在线观看毛片的网站| 97超视频在线观看视频| 高清毛片免费看| 国产真实伦视频高清在线观看| 简卡轻食公司| 成年女人看的毛片在线观看| 一区二区三区免费毛片| 久久久久国产网址| 深爱激情五月婷婷| 另类亚洲欧美激情| 精品久久国产蜜桃| 欧美97在线视频| 亚洲精品乱久久久久久| 极品少妇高潮喷水抽搐| 男女下面进入的视频免费午夜| 女人被狂操c到高潮| 国产亚洲5aaaaa淫片| 精品久久久精品久久久| 啦啦啦啦在线视频资源| 午夜精品国产一区二区电影 | 舔av片在线| 成人亚洲精品一区在线观看 | 黄色配什么色好看| 国产综合精华液| a级一级毛片免费在线观看| 最近最新中文字幕免费大全7| 欧美成人午夜免费资源| 欧美日韩精品成人综合77777| 久久精品久久久久久久性| 一区二区三区精品91| 久久精品夜色国产| 22中文网久久字幕| 久久久久精品性色| 制服丝袜香蕉在线| 日本一二三区视频观看| 天堂中文最新版在线下载 | 日韩电影二区| 啦啦啦在线观看免费高清www| videos熟女内射| 免费电影在线观看免费观看| 九九爱精品视频在线观看| 精品国产乱码久久久久久小说| 91精品国产九色| 免费观看a级毛片全部| 亚洲精品456在线播放app| 国产午夜精品久久久久久一区二区三区| 最近的中文字幕免费完整| 91午夜精品亚洲一区二区三区| 国产成人aa在线观看| 男女啪啪激烈高潮av片| 最近2019中文字幕mv第一页| 日日啪夜夜撸| 啦啦啦啦在线视频资源| 亚洲欧美日韩无卡精品| 如何舔出高潮| 欧美bdsm另类| 久久精品国产鲁丝片午夜精品| 亚洲国产av新网站| 18禁在线无遮挡免费观看视频| videos熟女内射| av国产免费在线观看| 极品教师在线视频| 亚洲自拍偷在线| 国产91av在线免费观看| 99久久精品一区二区三区| 国产精品国产三级国产av玫瑰| 又黄又爽又刺激的免费视频.| 啦啦啦在线观看免费高清www| 秋霞伦理黄片| 青春草亚洲视频在线观看| 伦精品一区二区三区| 在线观看免费高清a一片| 网址你懂的国产日韩在线| av国产久精品久网站免费入址| 波野结衣二区三区在线| 最近手机中文字幕大全| 交换朋友夫妻互换小说| 99热6这里只有精品| 免费观看a级毛片全部| 亚洲精品一区蜜桃| 一级毛片 在线播放| 高清在线视频一区二区三区| 九九久久精品国产亚洲av麻豆| 国精品久久久久久国模美| 九九爱精品视频在线观看| 精品一区二区免费观看| 又黄又爽又刺激的免费视频.| 国产黄a三级三级三级人| 午夜免费观看性视频| 在线观看国产h片| 国产成人一区二区在线| 国精品久久久久久国模美| 国产老妇女一区| 日韩免费高清中文字幕av| av专区在线播放| 欧美bdsm另类| 亚洲av在线观看美女高潮| 亚洲性久久影院| 成人漫画全彩无遮挡| 国产精品一区二区三区四区免费观看| 欧美成人a在线观看| 三级男女做爰猛烈吃奶摸视频| 午夜福利视频1000在线观看| 国产女主播在线喷水免费视频网站| 亚洲成人久久爱视频| 免费看a级黄色片| 亚洲av不卡在线观看| 亚洲综合色惰| 国产日韩欧美在线精品| 久久久久久国产a免费观看| 日日摸夜夜添夜夜添av毛片| 在线观看国产h片| 国产欧美亚洲国产| 能在线免费看毛片的网站| 国产午夜福利久久久久久| 中文乱码字字幕精品一区二区三区| 亚洲精品亚洲一区二区| 国产精品久久久久久精品古装| 国内揄拍国产精品人妻在线| 丝袜喷水一区| 亚洲内射少妇av| 人妻一区二区av| 在线观看免费高清a一片| 在线天堂最新版资源| 午夜爱爱视频在线播放| 亚洲欧美精品专区久久| 九九爱精品视频在线观看| 黑人高潮一二区| 赤兔流量卡办理| 日本爱情动作片www.在线观看| 精品国产一区二区三区久久久樱花 | 岛国毛片在线播放| 18禁裸乳无遮挡免费网站照片| 成人毛片60女人毛片免费| 久久精品国产亚洲网站| 欧美bdsm另类| 国产一区有黄有色的免费视频| 久久久精品94久久精品| 亚洲欧美日韩东京热| 国语对白做爰xxxⅹ性视频网站| 纵有疾风起免费观看全集完整版| 三级国产精品片| 日韩精品有码人妻一区| 亚洲在线观看片| 我要看日韩黄色一级片| 99久久九九国产精品国产免费| 国产亚洲精品久久久com| 久久久午夜欧美精品| 久久久久久久国产电影| 国产精品人妻久久久影院| 国产成人午夜福利电影在线观看| 一区二区三区四区激情视频| 夜夜看夜夜爽夜夜摸| 人妻系列 视频| 欧美bdsm另类| 国产精品麻豆人妻色哟哟久久| 综合色av麻豆| 国产白丝娇喘喷水9色精品| 国产淫片久久久久久久久| 国内少妇人妻偷人精品xxx网站| 国产精品国产三级国产专区5o| 日韩中字成人| 极品教师在线视频| 少妇人妻 视频| 国产在线男女| 欧美zozozo另类| 亚洲色图av天堂| 久久久久九九精品影院| 最近中文字幕2019免费版|