• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The roles of traditional Chinese herbal medications in regulating mitochondrial activity to reverse cancer

    2020-01-05 18:47:24LichaoSunGuihuaTianHongcaiShang
    TMR Modern Herbal Medicine 2020年2期

    Lichao Sun, Guihua Tian, Hongcai Shang*

    REVIEW

    The roles of traditional Chinese herbal medications in regulating mitochondrial activity to reverse cancer

    Lichao Sun1,2*, Guihua Tian1, Hongcai Shang1*

    1Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China;2State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China.

    Cancer was gradually regarded as a metabolic disease, which might be linked to impairment of mitochondrial function. There are really some essential differences between the mitochondria of normal and cancer cells, which might become promising target for cancer chemotherapy. According to western pharmacology, a known target was needed for drug development. Unfortunately, the number of therapeutic agents relating to the mitochondrion are severely limited because of lacking of knowledge about mitochondrial biology. Unlike the “Western Medicine”, some traditional Chinese herbal medicine (TCHM) might be prone to targeting mitochondria despite the lack of precise molecular mechanisms. If it is the case, we might be able to screen and identify active anti-cancer drugs from traditional Chinese therapeutics by using mitochondrial functional assay. In this review, we would give an overview of the effect of TCHM on the mitochondrion, and the challenges and breakthroughs remaining in cancer treatment.

    Traditional Chinese herbal medicine, Mitochondria, Metabolism, Cancer, Therapy

    Background

    Cancer is among the leading causes of death worldwide, and the number of new cases continues to increase [1]. Despite recent advances in therapeutic strategies, cancer cells would develop resistance to chemotherapies and radiotherapy, making the identification of new therapies essential to improve the survival rates of cancer patients. The mitochondrion was the major energy source for cells, and was also implicated in the regulation of programmed cell death, reactive oxygen species (ROS) generation, and calcium homeostasis [2, 3]. Recent studies have indicated that mitochondrion in tumor cells are defective when compared with ones from normal cells, which would lead to metabolic reprogramming in cancer cells[4]. In the 1920s, Dr. Otto Warburg found that cancer cells preferred glycolysis rather than oxidative metabolism to meet their energy demand regardless of whether oxygen was present [5]. Further understanding the metabolic alterations of cancer cells through mitochondrial dysfunction, may identify candidate targets for the development of novel anticancer agents. Clinical data demonstrated that some traditional Chinese herbal medicine (TCHM) possessed anticancer properties by regulating the mitochondrial function [6]. Therefore, it is reasonable to assume that identification of active components from TCHM through the mitochondrial pathway would pave the way for mitochondria-targeted cancer therapy.

    Metabolic features of cancer cells

    Mitochondria are involved in coordinating the metabolic process, energetic production and apoptosis modulation [7]. Structure and function of mitochondria are closely related. Abnormalities in mitochondrial structures could potentially affect the function of oxidative phosphorylation (OXPHOS), and disrupt the metabolic homeostasis [9]. Cancer cells always employed the unique metabolic modification to facilitate their proliferation, invasion and metastasis. The following points are the difference between mitochondria in cancer cells and normal cells [8].

    Dysfunction of OXPHOS

    Physiologically, normal cells could consume oxygen by the electron transport chain (ETC) and produce 70% of adenosine triphosphate (ATP) through OXPHOS. In most solid tumor cells, a metabolic switch towards glycolysis was used to meet energy requirements, which is known as the Warburg effect [10]. Furthermore, the intermediate metabolites of glycolytic pathway are essential for the synthesis of nucleotides, lipids, amino acids and NADPH, which could meet the biosynthetic requirements of cancer cells [11].

    Enhancement of ROS generation

    In normal cells, mitochondria are a major source of ROS including superoxide anion, hydroxyl radical and hydrogen peroxide, which are the by-product of mitochondrial metabolism [12]. Those short-lived ROS took part in mitochondrial signal transduction in immune modulation, autophagy and differentiation [13, 14]. Unfortunately, persistent ROS stress would result in damage to DNA, protein or lipids, which would contribute to carcinogenesis. In cancer cells, high levels of ROS could induce proteases activation genome instability and mutagenesis to facilitate cancer progression [15].

    Disturbance of cholesterol metabolism

    Cholesterol is not only needed for cellular functions, but also as the precursor for synthesis of steroid hormones [16]. In normal cells, mitochondria are cholesterol-poor organelles compared to other plasma membranes. Cancer cells would reprogram the cholesterol metabolism to support uncontrolled cell growth by enhancing cholesterol loading and changing membrane dynamics in mitochondria [17, 18]. Cholesterol-enriched mitochondria may partially stimulate aerobic glycolysis by hypoxia inducible factor-1α (HIF1α) stabilization, develop chemotherapy resistance and protect cancer cells from mitochondrial-mediated apoptosis [19, 20].

    Targeting mitochondrial metabolism treatment

    Since a great number of solid tumor derived from the mitochondria dysfunction, we boldly speculate that targeting mitochondrial energy metabolism could be effective in overcoming cancer. Increasing evidences demonstrated that some TCHM including Qi-invigorating, Activating Blood Circulation to Dissipate Blood Stasis andYang-invigorating possessed potent anti-cancer activity by targeting the mitochondrial energetic function. Then, we could identify mitochondrially active compounds from TCHM by using mitochondrial functional assay to eliminate cancer.

    Qi-invigorating therapy

    According to traditional Chinese medicine (TCM) principles, Qi refers to the basic motive force that constitutes the body and maintains human life activities [21]. The mitochondria is the major site of ATP production, which is the core of all life’s activities. It is reasonable that Qi and bioenergy are closely related. Studies have demonstrated that Qi-invigorating Chinese medicine includes Renshen (), Huangqi ()and Baizhu () exerted the anti-tumor activity by affecting mitochondrial ROS-related signaling pathways. Ginsenosides are a class of pharmacologically active components extracted from the Renshen. Among them, Ginsenoside Rh2 (GRh2) has been identified as an anti-tumor agent. Ge et al found that GRh2 could lead to H1299 cell apoptosis by inducing ROS production [22]. GRh2 could also cause mitochondrial damages and mediate ROS-induced mitochondria-dependent apoptosis in hepatocellular carcinoma cell line HepG2 and human leukaemia Jurkat cells [23, 24]. Astragalus polysaccharides (APS), one of the bioactive components extracted from Huangqi (), could induce the mitochondria-mediated apoptosis and inhibit the mammalian target of rapamycin (mTOR) signaling pathway in lung cancer cell H1299 [25]. It has been reported that the release of cytochrome c from the inner mitochondrial membrane and its permeabilization could trigger the apoptosis [26]. APS4, a novel cold-water-soluble polysaccharide from Huangqi, could lead to mitochondria-dependent apoptosis by promoting cytochrome c release and the collapse of mitochondrial membrane potential [27].

    B-cell lymphoma-2 (Bcl-2, an apoptosis inhibitor) and B-cell lymphoma-2-associated X protein (Bax, an apoptosis promoter) played key roles in mitochondrial related apoptosis pathway[28]. Atractylenolide I (ATR-I) from Baizhu () also exerted anticancer properties on several types of cancer cell lines. ATR-I suppressed bladder cancer cell growth via Bax activation and triggered the release of cytochrome c from the mitochondria into cytosol[29]. Incolon cancer,Atractylenolide I (AT-I) inhibited pro-survival Bcl-2 in HT-29 cells [30]. Similarly, Atractylenolide Ⅲ (ATL-Ⅲ) also lead to apoptosis by inducing Bax translocation in human lung carcinoma A549 cell [31].

    Activating Blood Circulation to Dissipate Blood Stasis therapy

    Activating Blood Circulation to Dissipate Blood Stasis (ABCDBS) TCM has anti-inflammation and anti-tumor activities by regulating the mitochondrial function.An active compound extracting from Chuanxiong (), Tetramethylpyrazine (TMPZ) could inhibit cell viability and induce mitochondrial-apoptosis by stimulating AMP-activated protein kinase (AMPK) in gastric cancer and liver cancer cells [32-34]. Salvianic acid A (SAA) is another kind of ABCDBS renowned TCM. Wang et al developed a novel conjugate of SAA and TMPZ, named DT-010, could inhibit the growth of breast cancer cell lines by suppressing mitochondrial complex Ⅱ [35].

    Chronic inflammation have been recognized as important factors for carcinogenesis, which could suppress mitochondrial respiratory chain[36]. Bissell MJ et al described that chronic inflammation could induce acute mitochondrial failure by enhancing the TGF-β expression in cancer tissues [37]. Hydroxysafflor yellow A (HSYA), extracting from the safflower, could significantly reverse the effects of chronic inflammation induced by Lipopolysaccharide (LPS) on A549 and H1299 cells [38]. Meanwhile, HSYA effectively protected the liver cells from alcohol-induced injury by TGF-β inhibition[39]. Mitochondria dynamics is closely associated with cancer progression and apoptosis [41]. Tanshinone ⅡA (Tan ⅡA), which is isolated from the roots of Danshen (), also exhibited significantly antitumor activity by regulating mitochondria homeostasis. It could promote mitochondrial fission by activating JNK-Mff signaling pathways to inhibit the proliferation of colorectal cancer cell SW837 [42]. Moreover, Tan ⅡA could increase IL-2-mediated cell death in SW480 colorectal cancer cells by promoting mitochondrial fission via activating the Mst1-Hippo pathway [43].

    Yang-invigorating therapy

    Some Yang-tonic traditional Chinese herbs have been found to involve in regulating mitochondrial function by stimulating electron transport and producing antioxidant defense components[44]. Fuzi(), which is the processed lateral roots of Aconitum carmichaeli Debx., is well known for its anti-inflammatory effects and acute toxicity. Benzoylaconine (BAC), a representative alkaloids from Fuzi, couldincrease mitochondrial mass and induce mitochondrial biogenesis in HepG2 cells through activating AMPK signal pathway[45]. But further study was needed to study the effect of Fuzi derivates on cancer cells. The extracts of Buguzhi () could disrupt the ETC and induce apoptosis in the murine TA3/Ha mammary adenocarcinoma cell line [46]. In addition, Buguzhi could inhibit colorectal or gastric cancer cell growth and induce mitochondrial-mediated apoptosis [47, 48]. Increase in mitochondrial calcium induces the permeability of the outer mitochondrial membrane, mitochondrial dysfunction and apoptosis [49]. Rougui (),a widely used food spice, has shown the anti-tumor activity by affecting mitochondrial calcium signaling. Aqueous cinnamon extract (ACE-c) could leading to apoptosis in human cervical cancer cell line (SiHa) through increasing intracellular calcium flux and disruption of mitochondrial membrane potential [50]. It could be used as a potential chemopreventive medicine. Chlorogenic acid (CGA) from Duzhong () exerted antitumor effect via mitochondrial- mediated apoptosis in cancer [51]. For example, CGA could directly interact with PKC, which would be translocated from the cytosol to the plasma membrane, and induced apoptosis in human breast cancer MDAMB-231 and MCF-7 cells. Cancer stem cell (CSC) was responsible for the origin of cancers, tumor recurrence, and drug resistance [52, 53]. Interestingly, CGA could lead to apoptosis of cancer stem like cells from lung cancer cells A549 by down-regulation of Bcl2 and up-regulation Bax andCaspase-3 [54]. In liver cancer, CGA, as a novel chemosensitizers, couldsensitize to the effects of 5-fluorouracil on HepG2 and Hep3B by activating mitochondria-dependent apoptosis pathway [55].

    Future

    Altered cellular metabolism is one of the hallmarks of cancer[56]. The best-known metabolic abnormality in many types of cancer is Warburg effect. Mitochondria is a specialized organelle for the production of the energy substance ATP by OXPHOS, calcium flux and apoptosis. Mitochondrial dysfunctionhas been associated with carcinogenesis[57]. At the molecular level, abnormal mitochondrion displayed the following changes including loss of mitochondrial membrane potential, alterations of electron transport chain and transportation of metabolites. In turn, these changes could led to cell metabolism disorders and boost excessive free radical production. It is possible that normalization of mitochondrial function might suppress tumorigenesis[58]. Therefore, mitochondria have emerged as attractive candidate cancer targets.

    TCHM have a long history of clinical testing and reliable therapeutic efficacy. It has been regarded as an important source of development of new drugs for human diseases. A rapidly growing number of literatures proposed that TCHM could directly or indirectly use mitochondria as the target to regulate mitochondrial functions to perform their pharmaceutical efficacy in coronary artery disease, diabetes and neurodegenerative diseases[59, 60] For cancer treatment, the extracts of TCHM could sensitize the cancer cells to chemotherapy/radiotherapy and prevent cancer recurrence and metastasis, and prolong cancer patients’ survival[61, 62]. Remarkably, some TCHM might regulate the function of mitochondria via enhancement of mitochondrial oxidative phosphorylation, or modulation of mitochondrial-mediated apoptosis, and reduction of excess free radicals, although lacking of precise molecular mechanisms.Therefore, TCHM might be the valuable pool for identification of the candidate mitochondria-targeting medicine for cancer therapy.

    In the future, it is necessary to use mitochondrial functional assay to screen and identify novel candidate modulators to treat cancer. Furthermore, it might reveal previously unrecognized mitochondrial pathways which would play key roles in carcinogenesis.

    1. Bray F, Ferlay J, Soerjomataram I ,et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2018,68:394-424.

    2. Valero T. Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des 2014,20:5507-5509.

    3. Marchi S, Patergnani S, Missiroli S ,et al. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 2018,69:62-72.

    4. Jackson M, Serada N, Sheehan M ,et al. Mitochondrial genome and functional defects in osteosarcoma are associated with their aggressive phenotype. PloS one 2018,13:e0209489-e0209489.

    5. Otto AM. Warburg effect(s)-a biographical sketch of Otto Warburg and his impacts on tumor metabolism. Cancer & metabolism 2016,4:5-5.

    6. Dai S-X, Li W-X, Han F-F ,et al. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database. Scientific reports 2016,6:25462-25462.

    7. Tzameli I. The evolving role of mitochondria in metabolism. Trends in Endocrinology & Metabolism 2012,23:417-419.

    8. Palmer CS, Osellame LD, Stojanovski D ,et al. The regulation of mitochondrial morphology: Intricate mechanisms and dynamic machinery. Cellular Signalling 2011,23:1534-1545.

    9. Shapovalov Y, Hoffman D, Zuch D, et al. Mitochondrial dysfunction in cancer cells due to aberrant mitochondrial replication. The Journal of biological chemistry 2011,286:22331-22338.

    10. Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. International Journal of Radiation Biology 2019,95:912-919.

    11. Tekade RK, Sun X. The Warburg effect and glucose-derived cancer theranostics. Drug Discovery Today 2017,22:1637-1653.

    12. Ismail T, Kim Y, Lee H ,et al. Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression. International journal of molecular sciences 2019,20:4407.

    13. Lam GY, Huang J, Brumell JH. The many roles of NOX2 NADPH oxidase-derived ROS in immunity. Seminars in Immunopathology 2010,32:415-430.

    14. Cao Y, Fang Y, Cai J ,et al. ROS functions as an upstream trigger for autophagy to drive hematopoietic stem cell differentiation. Hematology 2016,21:613-618.

    15. Galadari S, Rahman A, Pallichankandy S ,et al. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radical Biology and Medicine 2017,104:144-164.

    16. Smith RL, Soeters MR, Wüst RCI ,et al. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocrine reviews 2018,39:489-517.

    17. Xiao X, Tang J-J, Peng C ,et al. Cholesterol Modification of Smoothened Is Required for Hedgehog Signaling. Molecular Cell 2017,66:154-162.e110.

    18. Baulies A, Montero J, Matías N ,et al. The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading. Redox Biology 2018,14:164-177.

    19. Montero J, Morales A, Llacuna L ,et al. Mitochondrial Cholesterol Contributes to Chemotherapy Resistance in Hepatocellular Carcinoma. Cancer Research 2008,68:5246-5256.

    20. Matsumoto K, Imagawa S, Obara N ,et al. 2-oxoglutarate downregulates expression of vascular endothelial growth factor and erythropoietin through decreasing hypoxia-inducible factor-1α and inhibits angiogenesis. Journal of Cellular Physiology 2006,209:333-340.

    21. Wang X-M, Li X-B, Peng Y. Impact of Qi-invigorating traditional Chinese medicines on intestinal flora: A basis for rational choice of prebiotics. Chinese Journal of Natural Medicines 2017,15:241-254.

    22. Ge G, Yan Y, Cai H. Ginsenoside Rh2 Inhibited Proliferation by Inducing ROS Mediated ER Stress Dependent Apoptosis in Lung Cancer Cells. Biological and Pharmaceutical Bulletin 2017,40:2117-2124.

    23. Chen F, Deng Z, Xiong Z ,et al. A ROS-mediated lysosomal–mitochondrial pathway is induced by ginsenoside Rh2 in hepatoma HepG2 cells. Food & Function 2015,6:3828-3837.

    24. Xia T, Wang Y-N, Zhou C-X ,et al. Ginsenoside Rh2 and Rg3 inhibit cell proliferation and induce apoptosis by increasing mitochondrial reactive oxygen species in human leukemia Jurkat cells. Molecular medicine reports 2017,15:3591-3598.

    25. Zhou Y, Hong T, Tong L ,et al. Astragalus polysaccharide combined with 10-hydroxycamptothecin inhibits metastasis in non-small cell lung carcinoma cell lines via the MAP4K3/mTOR signaling pathway. Int J Mol Med 2018,42:3093-3104.

    26. Kalpage HA, Bazylianska V, Recanati MA ,et al. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2019,33:1540-1553.

    27. Yu J, Ji H, Dong X ,et al. Apoptosis of human gastric carcinoma MGC-803 cells induced by a novel Astragalus membranaceus polysaccharide via intrinsic mitochondrial pathways. International Journal of Biological Macromolecules 2019,126:811-819.

    28. Yang J, Liu X, Bhalla K ,et al. Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked. Science 1997,275:1129.

    29. Yu R, Yu B-X, Chen J-F ,et al. Anti-tumor effects of Atractylenolide I on bladder cancer cells. Journal of experimental & clinical cancer research : CR 2016,35:40-40.

    30. Chan KWK, Chung HY, Ho WS. Anti-Tumor Activity of Atractylenolide I in Human Colon Adenocarcinoma In Vitro. Molecules 2020,25.

    31. Kang T-H, Bang J-Y, Kim M-H ,et al. Atractylenolide Ⅲ, a sesquiterpenoid, induces apoptosis in human lung carcinoma A549 cells via mitochondria-mediated death pathway. Food and Chemical Toxicology 2011,49:514-519.

    32. Yi B, Liu D, He M ,et al. Role of the ROS/AMPK signaling pathway in tetramethylpyrazine-induced apoptosis in gastric cancer cells. Oncology letters 2013,6:583-589.

    33. Huang HH, Liu FB, Ruan Z ,et al. Tetramethylpyrazine (TMPZ) triggers S-phase arrest and mitochondria-dependent apoptosis in lung cancer cells. Neoplasma 2018,65:367-375.

    34. Bi L, Yan X, Chen W ,et al. Antihepatocellular Carcinoma Potential of Tetramethylpyrazine Induces Cell Cycle Modulation and Mitochondrial-Dependent Apoptosis: Regulation of p53 Signaling Pathway in HepG2 Cells In Vitro. Integrative cancer therapies 2016,15:226-236.

    35. Wang L, Zhang X, Cui G ,et al. A novel agent exerts antitumor activity in breast cancer cells by targeting mitochondrial complex Ⅱ. Oncotarget 2016,7:32054-32064.

    36. Dela Cruz CS, Kang M-J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2018,41:37-44.

    37. Bissell MJ, Hines WC. Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nature medicine 2011,17:320-329.

    38. Jiang M, Zhou L-Y, Xu N ,et al. Hydroxysafflor yellow A inhibited lipopolysaccharide-induced non-small cell lung cancer cell proliferation, migration, and invasion by suppressing the PI3K/AKT/mTOR and ERK/MAPK signaling pathways. Thoracic cancer 2019,10:1319-1333.

    39. He Y, Liu Q, Li Y ,et al. Protective effects of hydroxysafflor yellow A (HSYA) on alcohol-induced liver injury in rats. Journal of Physiology and Biochemistry 2015,71:69-78.

    40. Liu L, Si N, Ma Y ,et al. Hydroxysafflor-Yellow A Induces Human Gastric Carcinoma BGC-823 Cell Apoptosis by Activating Peroxisome Proliferator-Activated Receptor Gamma (PPARγ). Medical science monitor : international medical journal of experimental and clinical research 2018,24:803-811.

    41. Morciano G, Giorgi C, Balestra D ,et al. Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death. Molecular biology of the cell 2016,27:20-34.

    42. Jieensinue S, Zhu H, Li G ,et al. Tanshinone ⅡA reduces SW837 colorectal cancer cell viability via the promotion of mitochondrial fission by activating JNK-Mff signaling pathways. BMC Cell Biology 2018,19:21.

    43. Qian J, Fang D, Lu H ,et al. Tanshinone ⅡA promotes IL2-mediated SW480 colorectal cancer cell apoptosis by triggering INF2-related mitochondrial fission and activating the Mst1-Hippo pathway. Biomedicine & Pharmacotherapy 2018,108:1658-1669.

    44. Ko KM, Leon TYY, Mak DHF ,et al. A characteristic pharmacological action of ‘Yang-invigorating’ Chinese tonifying herbs: Enhancement of myocardial ATP-generation capacity. Phytomedicine 2006,13:636-642.

    45. Deng XH, Liu JJ, Sun XJ ,et al. Benzoylaconine induces mitochondrial biogenesis in mice via activating AMPK signaling cascade. Acta Pharmacol Sin 2019,40:658-665.

    46. Ja?a F, Faini F, Lapier M ,et al. Tumor cell death induced by the inhibition of mitochondrial electron transport: The effect of 3-hydroxybakuchiol. Toxicology and Applied Pharmacology 2013,272:356-364.

    47. Limper C, Wang Y, Ruhl S ,et al. Compounds isolated from Psoralea corylifolia seeds inhibit protein kinase activity and induce apoptotic cell death in mammalian cells. Journal of Pharmacy and Pharmacology 2013,65:1393-1408.

    48. Park GH, Sung JH, Song HM ,et al. Anti-cancer activity of Psoralea fructus through the downregulation of cyclin D1 and CDK4 in human colorectal cancer cells. BMC Complementary and Alternative Medicine 2016,16:373.

    49. Pfeiffer DR, Gunter TE, Eliseev R ,et al. Release of Ca2+ from mitochondria via the saturable mechanisms and the permeability transition. IUBMB Life 2001,52:205-212.

    50. Koppikar SJ, Choudhari AS, Suryavanshi SA ,et al. Aqueous cinnamon extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC cancer 2010,10:210-210.

    51. Ong KW, Hsu A, Tan BKH. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochemical Pharmacology 2013,85:1341-1351.

    52. Sun L, Burnett J, Gasparyan M ,et al. Novel cancer stem cell targets during epithelial to mesenchymal transition in PTEN-deficient trastuzumab-resistant breast cancer. Oncotarget 2016,7:51408-51422.

    53. Halim NHA, Zakaria N, Satar NA ,et al. Isolation and Characterization of Cancer Stem Cells of the Non-Small-Cell Lung Cancer (A549) Cell Line. In: Stem Cell Heterogeneity: Methods and Protocols. K Turksen, ed. (Springer New York, New York, NY). 2016, pp. 371-388.

    54. Yamagata K, Izawa Y, Onodera D ,et al. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol Cell Biochem 2018,441:9-19.

    55. Yan Y, Li J, Han J ,et al. Chlorogenic acid enhances the effects of 5-fluorouracil in human hepatocellular carcinoma cells through the inhibition of extracellular signal-regulated kinases. Anti-cancer drugs 2015,26:540-546.

    56. Thakur C, Chen F. Connections between metabolism and epigenetics in cancers. Semin Cancer Biol 2019,57:52-58.

    57. Orang AV, Petersen J, McKinnon RA ,et al. Micromanaging aerobic respiration and glycolysis in cancer cells. Molecular Metabolism 2019,23:98-126.

    58. Elliott RL, Jiang XP, Head JF. Mitochondria organelle transplantation: introduction of normal epithelial mitochondria into human cancer cells inhibits proliferation and increases drug sensitivity. Breast Cancer Res Treat 2012,136:347-354.

    59. Arbustini E, Diegoli M, Fasani R ,et al. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol 1998,153:1501-1510.

    60. Jarrell JT, Gao L, Cohen DS ,et al. Network Medicine for Alzheimer's Disease and Traditional Chinese Medicine. 2018,23.

    61. Lam W, Bussom S, Guan F ,et al. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci Transl Med 2010,2:45ra59.

    62. Yang X-B, Wu W-Y, Long S-Q ,et al. Effect of gefitinib plus Chinese herbal medicine (CHM) in patients with advanced non-small-cell lung cancer: A retrospective case–control study. Complementary Therapies in Medicine 2014,22:1010-1018.

    Cancer was considered as a metabolic disease because of mitochondrial dysfunction. Some mitochondrion-targeting traditional Chinese herbal medicine (TCHM) displayed some advantages in cancer therapy. In this review, we would give an overview of the effect of TCHM on the mitochondrion, the challenges and breakthroughs remaining in cancer treatment.

    :Sun LC, Tian GH, Shang HC. The roles of traditional Chinese herbal medications in regulating mitochondrial activity to reverse and prevent cancer. TMR Modern Herbal Medicine 2020, 3(2): 121-127.

    Executive Editor: Chaoyong Wu

    Submitted: 1 April 2020,

    20 April 2020,

    *Correspondence to: Hongcai Shang, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No.5 Haiyuncang Hutong, Dongcheng District, Beijing 100700, China. Email: shanghongcai@126.com

    Lichao Sun, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No.5 Haiyuncang Hutong, Dongcheng District, Beijing 100700, China. Email: Prof_sunlichao@163.com

    Abbreviations: ROS, reactive oxygen species; TCHM, traditional Chinese herbal medicine; OXPHOS, oxidative phosphorylation; ETC, electron transport chain; ATR-I, Atractylenolide I; ATL-Ⅲ, Atractylenolide Ⅲ; TMPZ, Tetramethylpyrazine; AMPK, AMP-activated protein kinase; HSYA, Hydroxysafflor yellow A; LPS, Lipopolysaccharide; Tan ⅡA, Tanshinone ⅡA; CGA, Chlorogenic acid; CSC, Cancer stem cell; Bax, B-cell lymphoma-2-associated X protein; GRh2, Ginsenoside Rh2; APS, Astragalus polysaccharides.

    Funding: This work was supported by the National Natural Science Foundation of China (No. 81773170), BeijingNovaProgram(No. Z1511000003150121), Beijing Talents Fund (No. 2015000021223ZK23).

    Competing interests: The authors declare that there is no conflict of interests regarding the publication of this paper.

    Online: 25 April 2020.

    久久香蕉精品热| 叶爱在线成人免费视频播放| 极品人妻少妇av视频| 一级毛片女人18水好多| 999久久久精品免费观看国产| 国产在线观看jvid| 久久中文字幕人妻熟女| 亚洲精品中文字幕一二三四区| 一个人免费在线观看的高清视频| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜两性在线视频| av免费在线观看网站| 水蜜桃什么品种好| 亚洲色图av天堂| 亚洲人成网站在线播放欧美日韩| 曰老女人黄片| 又黄又爽又免费观看的视频| av电影中文网址| 国产亚洲精品综合一区在线观看 | 午夜两性在线视频| 激情在线观看视频在线高清| 免费人成视频x8x8入口观看| 99国产精品一区二区蜜桃av| 最新在线观看一区二区三区| 色老头精品视频在线观看| 亚洲美女黄片视频| 久久人妻熟女aⅴ| 色婷婷av一区二区三区视频| 两性午夜刺激爽爽歪歪视频在线观看 | 精品久久久久久久毛片微露脸| 一级作爱视频免费观看| 看片在线看免费视频| 不卡一级毛片| 19禁男女啪啪无遮挡网站| 亚洲色图 男人天堂 中文字幕| 国产aⅴ精品一区二区三区波| 侵犯人妻中文字幕一二三四区| 国产不卡一卡二| 天天添夜夜摸| 中文字幕色久视频| 欧美日韩精品网址| 黄片小视频在线播放| 国产精品久久视频播放| 人人妻人人添人人爽欧美一区卜| 三上悠亚av全集在线观看| 一二三四社区在线视频社区8| 18禁裸乳无遮挡免费网站照片 | www.www免费av| 日本三级黄在线观看| 亚洲午夜精品一区,二区,三区| 美女大奶头视频| 黄频高清免费视频| 男女高潮啪啪啪动态图| 动漫黄色视频在线观看| 色综合站精品国产| 性少妇av在线| 在线十欧美十亚洲十日本专区| 色在线成人网| 国产精品 国内视频| 国产激情久久老熟女| 亚洲av五月六月丁香网| 1024香蕉在线观看| 午夜精品在线福利| 色播在线永久视频| 亚洲第一av免费看| 久久天躁狠狠躁夜夜2o2o| 亚洲国产中文字幕在线视频| 亚洲成人免费电影在线观看| 欧美激情极品国产一区二区三区| 日本wwww免费看| 亚洲中文日韩欧美视频| 大型黄色视频在线免费观看| 国产精品av久久久久免费| e午夜精品久久久久久久| 亚洲国产欧美网| 99国产极品粉嫩在线观看| 午夜福利免费观看在线| 亚洲欧美精品综合久久99| av电影中文网址| 丁香欧美五月| 在线观看午夜福利视频| 人人妻人人添人人爽欧美一区卜| av天堂在线播放| 久久中文字幕人妻熟女| 多毛熟女@视频| 黄色成人免费大全| 亚洲熟妇熟女久久| 国产97色在线日韩免费| 成年版毛片免费区| 国产精品二区激情视频| 99久久精品国产亚洲精品| 国产亚洲精品一区二区www| 日韩成人在线观看一区二区三区| 18美女黄网站色大片免费观看| 正在播放国产对白刺激| 一进一出抽搐gif免费好疼 | 国产精品亚洲一级av第二区| av有码第一页| 久久久国产一区二区| 国产精品98久久久久久宅男小说| 99在线人妻在线中文字幕| 国产国语露脸激情在线看| 91在线观看av| 国产又爽黄色视频| 亚洲一区二区三区欧美精品| 麻豆一二三区av精品| 精品人妻1区二区| 欧美日韩亚洲综合一区二区三区_| 性欧美人与动物交配| 国产精品乱码一区二三区的特点 | 国产黄色免费在线视频| 免费一级毛片在线播放高清视频 | 中文字幕另类日韩欧美亚洲嫩草| 在线播放国产精品三级| 午夜两性在线视频| 国产av精品麻豆| 精品欧美一区二区三区在线| 国产一区二区三区视频了| 黄色视频不卡| 精品日产1卡2卡| 国产精品99久久99久久久不卡| 日韩欧美三级三区| 欧美日韩一级在线毛片| 欧美乱码精品一区二区三区| 少妇被粗大的猛进出69影院| 国产av又大| 免费一级毛片在线播放高清视频 | 亚洲精品中文字幕一二三四区| 夫妻午夜视频| 国产深夜福利视频在线观看| 一级片免费观看大全| 久久午夜综合久久蜜桃| 国产av在哪里看| 国产亚洲精品久久久久5区| 久久国产亚洲av麻豆专区| 欧美一区二区精品小视频在线| 国产成人精品在线电影| 国内久久婷婷六月综合欲色啪| 妹子高潮喷水视频| 欧美激情高清一区二区三区| 久久久久精品国产欧美久久久| 久久婷婷成人综合色麻豆| 午夜福利在线免费观看网站| 成人影院久久| 亚洲自拍偷在线| a级毛片在线看网站| 亚洲在线自拍视频| 美女大奶头视频| 丝袜人妻中文字幕| 中文字幕高清在线视频| 精品国产一区二区三区四区第35| 国产欧美日韩一区二区精品| 久久久久国产精品人妻aⅴ院| 国产一卡二卡三卡精品| 性少妇av在线| 999久久久精品免费观看国产| 午夜福利免费观看在线| 国产高清国产精品国产三级| 国产精品影院久久| 久久精品亚洲av国产电影网| 咕卡用的链子| 精品一品国产午夜福利视频| 免费在线观看黄色视频的| 好看av亚洲va欧美ⅴa在| av在线播放免费不卡| 黄片大片在线免费观看| 国产精品久久久久成人av| 两个人免费观看高清视频| 久久九九热精品免费| netflix在线观看网站| av在线播放免费不卡| 欧美乱妇无乱码| 久久精品国产综合久久久| 一a级毛片在线观看| 国产单亲对白刺激| 精品国产一区二区三区四区第35| 亚洲久久久国产精品| av网站免费在线观看视频| bbb黄色大片| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩另类电影网站| avwww免费| 视频在线观看一区二区三区| 免费观看精品视频网站| 91字幕亚洲| 午夜亚洲福利在线播放| 国产极品粉嫩免费观看在线| 成人国语在线视频| 天堂√8在线中文| 视频区欧美日本亚洲| 中文欧美无线码| 久久天躁狠狠躁夜夜2o2o| 亚洲av熟女| 国产午夜精品久久久久久| 99国产精品免费福利视频| 国产一区二区激情短视频| 宅男免费午夜| 视频区欧美日本亚洲| 国产有黄有色有爽视频| av视频免费观看在线观看| 午夜免费观看网址| 天堂俺去俺来也www色官网| 精品人妻1区二区| 成人国产一区最新在线观看| 亚洲成人免费av在线播放| a级片在线免费高清观看视频| 国产精品二区激情视频| 国产精品久久视频播放| 首页视频小说图片口味搜索| 午夜老司机福利片| 麻豆av在线久日| 国产成人欧美| 80岁老熟妇乱子伦牲交| 欧美午夜高清在线| 天堂动漫精品| 久久久久久久午夜电影 | 级片在线观看| 丝袜美足系列| 国产乱人伦免费视频| 亚洲一区中文字幕在线| 变态另类成人亚洲欧美熟女 | 中文亚洲av片在线观看爽| 色播在线永久视频| 老司机亚洲免费影院| 校园春色视频在线观看| 国产在线精品亚洲第一网站| 亚洲欧美一区二区三区久久| 伊人久久大香线蕉亚洲五| 亚洲精品在线美女| 搡老岳熟女国产| 在线观看免费日韩欧美大片| 超碰成人久久| 久久久久久大精品| 亚洲情色 制服丝袜| 女人高潮潮喷娇喘18禁视频| 后天国语完整版免费观看| 国产伦一二天堂av在线观看| 免费高清视频大片| 久久伊人香网站| 亚洲全国av大片| 电影成人av| 丝袜美足系列| 久久精品影院6| 婷婷丁香在线五月| 久久久久亚洲av毛片大全| a级毛片在线看网站| 99国产精品99久久久久| 欧美黄色片欧美黄色片| 欧美日韩亚洲国产一区二区在线观看| 韩国精品一区二区三区| 久久性视频一级片| 国产精品99久久99久久久不卡| 五月开心婷婷网| 国产激情久久老熟女| 亚洲 国产 在线| 亚洲五月天丁香| netflix在线观看网站| 精品国产美女av久久久久小说| 热99re8久久精品国产| 少妇 在线观看| 免费高清在线观看日韩| 久久青草综合色| 久久精品aⅴ一区二区三区四区| 久久这里只有精品19| 一级黄色大片毛片| а√天堂www在线а√下载| 日韩大尺度精品在线看网址 | 亚洲精品中文字幕一二三四区| 一级毛片女人18水好多| 一进一出好大好爽视频| 一级片'在线观看视频| 午夜精品国产一区二区电影| 黄片大片在线免费观看| 在线观看免费视频网站a站| 亚洲一区二区三区欧美精品| 欧美人与性动交α欧美软件| 久久久久久大精品| 91大片在线观看| 亚洲精品在线观看二区| 麻豆国产av国片精品| 在线十欧美十亚洲十日本专区| 天堂√8在线中文| 高清在线国产一区| 欧美在线黄色| 久久久久久亚洲精品国产蜜桃av| 久久人人97超碰香蕉20202| 亚洲五月天丁香| 欧美乱色亚洲激情| 亚洲人成77777在线视频| 国产精品一区二区免费欧美| 80岁老熟妇乱子伦牲交| 国产激情久久老熟女| 日本五十路高清| 后天国语完整版免费观看| 一二三四在线观看免费中文在| av在线天堂中文字幕 | 男女做爰动态图高潮gif福利片 | 国产精品一区二区免费欧美| 1024香蕉在线观看| 夫妻午夜视频| 免费少妇av软件| 制服诱惑二区| 亚洲熟女毛片儿| 高清黄色对白视频在线免费看| 中文字幕高清在线视频| 国产一区二区三区综合在线观看| 国产在线精品亚洲第一网站| 亚洲第一青青草原| 高清在线国产一区| 国产蜜桃级精品一区二区三区| 国产成人欧美在线观看| 午夜免费成人在线视频| 无人区码免费观看不卡| 欧美一区二区精品小视频在线| 一边摸一边抽搐一进一小说| 欧美日韩精品网址| 国产成人精品无人区| 久久精品国产综合久久久| 亚洲熟妇中文字幕五十中出 | 国产黄a三级三级三级人| 制服人妻中文乱码| 日韩欧美一区二区三区在线观看| 国产亚洲欧美精品永久| 欧美成人午夜精品| 天天躁夜夜躁狠狠躁躁| 免费女性裸体啪啪无遮挡网站| av国产精品久久久久影院| 国产精品免费一区二区三区在线| www.熟女人妻精品国产| 亚洲片人在线观看| 亚洲avbb在线观看| 国产真人三级小视频在线观看| 国产精品美女特级片免费视频播放器 | 成人国语在线视频| 日本五十路高清| 99久久国产精品久久久| 女人高潮潮喷娇喘18禁视频| 精品久久久久久电影网| 国产精品影院久久| 精品国产一区二区久久| 精品电影一区二区在线| 在线观看免费午夜福利视频| 悠悠久久av| 久久精品亚洲av国产电影网| 精品福利观看| 一级,二级,三级黄色视频| 国产精品乱码一区二三区的特点 | 最新在线观看一区二区三区| 国产av在哪里看| 黄色片一级片一级黄色片| 色哟哟哟哟哟哟| 十八禁人妻一区二区| 九色亚洲精品在线播放| 淫秽高清视频在线观看| 久久精品国产综合久久久| 久久精品人人爽人人爽视色| 在线观看免费高清a一片| 久久精品影院6| 午夜免费鲁丝| 国产精品九九99| 精品久久久久久久久久免费视频 | 大型av网站在线播放| 亚洲一区高清亚洲精品| 中文字幕高清在线视频| 在线观看66精品国产| 91精品三级在线观看| 99在线视频只有这里精品首页| 真人做人爱边吃奶动态| 一进一出抽搐gif免费好疼 | 午夜精品在线福利| 婷婷丁香在线五月| 看片在线看免费视频| 国产精品亚洲一级av第二区| 亚洲,欧美精品.| 中文字幕人妻丝袜制服| 99精品久久久久人妻精品| 免费av中文字幕在线| 亚洲欧美激情在线| 国产精品国产av在线观看| 色精品久久人妻99蜜桃| √禁漫天堂资源中文www| 日韩国内少妇激情av| 日韩成人在线观看一区二区三区| 男女下面插进去视频免费观看| 国内久久婷婷六月综合欲色啪| 动漫黄色视频在线观看| 午夜福利,免费看| 久久中文字幕一级| 亚洲熟女毛片儿| 日韩欧美一区二区三区在线观看| 日本vs欧美在线观看视频| 亚洲人成网站在线播放欧美日韩| 国产精品爽爽va在线观看网站 | 人人妻人人添人人爽欧美一区卜| 老司机在亚洲福利影院| 欧美日本亚洲视频在线播放| 91成年电影在线观看| 真人一进一出gif抽搐免费| 窝窝影院91人妻| 亚洲伊人色综图| 人人妻人人爽人人添夜夜欢视频| 亚洲美女黄片视频| 淫秽高清视频在线观看| 99久久精品国产亚洲精品| 麻豆一二三区av精品| 9热在线视频观看99| 亚洲av成人不卡在线观看播放网| 亚洲精品国产精品久久久不卡| 最近最新中文字幕大全免费视频| 操美女的视频在线观看| 女性被躁到高潮视频| 欧美黑人精品巨大| 最近最新中文字幕大全免费视频| 免费不卡黄色视频| a级毛片黄视频| 日韩欧美一区二区三区在线观看| 成年人黄色毛片网站| 日韩大尺度精品在线看网址 | 亚洲熟女毛片儿| 女性生殖器流出的白浆| 日韩大尺度精品在线看网址 | 精品一区二区三区四区五区乱码| 国产伦一二天堂av在线观看| 一级a爱片免费观看的视频| videosex国产| 亚洲五月婷婷丁香| 男女高潮啪啪啪动态图| 身体一侧抽搐| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩一区二区精品| 亚洲精品国产一区二区精华液| 亚洲自偷自拍图片 自拍| 黄色女人牲交| 国产色视频综合| 免费一级毛片在线播放高清视频 | 变态另类成人亚洲欧美熟女 | 国产91精品成人一区二区三区| www.www免费av| 黄色丝袜av网址大全| a级毛片黄视频| 日韩成人在线观看一区二区三区| 久久99一区二区三区| 久久久久精品国产欧美久久久| 老司机午夜福利在线观看视频| 午夜91福利影院| 日韩免费av在线播放| 国产成人影院久久av| 亚洲自偷自拍图片 自拍| 精品久久久久久久毛片微露脸| 淫妇啪啪啪对白视频| av天堂在线播放| 欧美成狂野欧美在线观看| 欧美激情久久久久久爽电影 | 国产成人精品在线电影| 日日爽夜夜爽网站| 日韩三级视频一区二区三区| 日韩大尺度精品在线看网址 | 国产一区二区在线av高清观看| 色尼玛亚洲综合影院| 99精品欧美一区二区三区四区| 亚洲欧美日韩高清在线视频| 午夜福利在线免费观看网站| 又黄又爽又免费观看的视频| 两性夫妻黄色片| 波多野结衣高清无吗| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品一二三| 久久 成人 亚洲| 性色av乱码一区二区三区2| 9热在线视频观看99| 欧美乱妇无乱码| 日韩精品青青久久久久久| 色综合欧美亚洲国产小说| 欧美老熟妇乱子伦牲交| 啦啦啦在线免费观看视频4| 丝袜美腿诱惑在线| 一二三四在线观看免费中文在| 欧美色视频一区免费| 国产男靠女视频免费网站| 法律面前人人平等表现在哪些方面| 99热只有精品国产| 麻豆一二三区av精品| а√天堂www在线а√下载| 国产亚洲精品久久久久久毛片| 国产精品美女特级片免费视频播放器 | 免费少妇av软件| 搡老乐熟女国产| 视频区欧美日本亚洲| 欧美激情久久久久久爽电影 | 人妻丰满熟妇av一区二区三区| 午夜福利免费观看在线| 欧美激情久久久久久爽电影 | 国产精品电影一区二区三区| 免费女性裸体啪啪无遮挡网站| 国产精品亚洲一级av第二区| x7x7x7水蜜桃| 国产av一区二区精品久久| 一级毛片精品| 亚洲一码二码三码区别大吗| 亚洲一区二区三区色噜噜 | 12—13女人毛片做爰片一| 国产97色在线日韩免费| 午夜福利一区二区在线看| 日日摸夜夜添夜夜添小说| 久久99一区二区三区| 亚洲精品国产区一区二| 国产精品亚洲av一区麻豆| 国产蜜桃级精品一区二区三区| 日日摸夜夜添夜夜添小说| 高清黄色对白视频在线免费看| 不卡一级毛片| 亚洲一区高清亚洲精品| 欧美激情 高清一区二区三区| 黑人操中国人逼视频| 久久久久久久久久久久大奶| 悠悠久久av| 欧美一级毛片孕妇| 亚洲精品美女久久久久99蜜臀| 中文字幕精品免费在线观看视频| 成人手机av| 亚洲少妇的诱惑av| 伦理电影免费视频| 亚洲狠狠婷婷综合久久图片| 变态另类成人亚洲欧美熟女 | 亚洲一区二区三区不卡视频| 99riav亚洲国产免费| 欧美+亚洲+日韩+国产| 法律面前人人平等表现在哪些方面| 国产黄a三级三级三级人| 又黄又爽又免费观看的视频| 一级作爱视频免费观看| 免费少妇av软件| 免费观看精品视频网站| 黄频高清免费视频| 欧美亚洲日本最大视频资源| 精品欧美一区二区三区在线| 亚洲精品美女久久av网站| 欧美人与性动交α欧美软件| 后天国语完整版免费观看| 亚洲第一av免费看| 精品久久久久久久久久免费视频 | 成人精品一区二区免费| 久久天躁狠狠躁夜夜2o2o| 乱人伦中国视频| 天堂影院成人在线观看| 黑丝袜美女国产一区| 亚洲精品一卡2卡三卡4卡5卡| 久久久精品国产亚洲av高清涩受| 免费av毛片视频| 91九色精品人成在线观看| 桃红色精品国产亚洲av| 亚洲国产毛片av蜜桃av| 黄片播放在线免费| 亚洲国产精品一区二区三区在线| 老熟妇仑乱视频hdxx| 精品久久久久久成人av| 久久精品人人爽人人爽视色| 一边摸一边做爽爽视频免费| 两人在一起打扑克的视频| 91麻豆精品激情在线观看国产 | 一级,二级,三级黄色视频| 神马国产精品三级电影在线观看 | 亚洲性夜色夜夜综合| 亚洲精品成人av观看孕妇| 99久久精品国产亚洲精品| 在线免费观看的www视频| 亚洲一区二区三区不卡视频| 真人一进一出gif抽搐免费| 男人舔女人下体高潮全视频| 91精品国产国语对白视频| 久久亚洲真实| 人人妻,人人澡人人爽秒播| 国产日韩一区二区三区精品不卡| 欧美激情高清一区二区三区| 国产无遮挡羞羞视频在线观看| av网站在线播放免费| 美女高潮到喷水免费观看| 手机成人av网站| 欧美日韩视频精品一区| 国产欧美日韩一区二区三区在线| 很黄的视频免费| 巨乳人妻的诱惑在线观看| 成人18禁高潮啪啪吃奶动态图| 性色av乱码一区二区三区2| 一进一出抽搐gif免费好疼 | 色综合站精品国产| 久热爱精品视频在线9| 国产精品偷伦视频观看了| 日本免费一区二区三区高清不卡 | 日本wwww免费看| 亚洲av成人不卡在线观看播放网| 十分钟在线观看高清视频www| 日本 av在线| 人妻丰满熟妇av一区二区三区| 亚洲人成77777在线视频| 老司机亚洲免费影院| 又大又爽又粗| 好男人电影高清在线观看| 老司机福利观看| 欧美黄色片欧美黄色片| 国产激情欧美一区二区| 色综合站精品国产| 在线观看舔阴道视频| 国产成人精品久久二区二区91| 亚洲人成网站在线播放欧美日韩| 在线观看日韩欧美| 亚洲国产精品sss在线观看 | 亚洲熟女毛片儿| 无人区码免费观看不卡| 国产不卡一卡二| 午夜免费鲁丝| 丝袜美腿诱惑在线| 侵犯人妻中文字幕一二三四区| 亚洲人成电影免费在线| 免费少妇av软件|