汪 敏, 王邵宇, 吳佳佳, 許開放, 汪 濤, 何啟方, 邢肖麗, 姚文政, 張文靜
花后陰雨對(duì)小麥籽粒淀粉合成和干物質(zhì)積累的影響*
汪 敏, 王邵宇, 吳佳佳, 許開放, 汪 濤, 何啟方, 邢肖麗, 姚文政, 張文靜**
(安徽農(nóng)業(yè)大學(xué)農(nóng)學(xué)院 合肥 230061)
針對(duì)長(zhǎng)江中下游小麥開花期常遇連陰雨導(dǎo)致減產(chǎn)的現(xiàn)象, 研究陰雨寡照對(duì)小麥籽粒淀粉合成和干物質(zhì)積累的影響, 旨在為該地區(qū)小麥抗逆穩(wěn)產(chǎn)栽培提供理論依據(jù)。選用長(zhǎng)江中下游小麥主栽品種‘揚(yáng)麥18’(受漬遲鈍型)和‘皖麥52’(受漬敏感型)為試驗(yàn)材料, 在小麥開花后設(shè)置7 d、11 d和15 d的漬水遮陰處理, 研究漬水遮陰對(duì)小麥籽粒發(fā)育過程中淀粉合成相關(guān)酶活性及淀粉、干物質(zhì)積累的影響。結(jié)果表明, 漬水遮陰處理后, 小麥籽粒中腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、可溶性淀粉合成酶(SSS)和結(jié)合態(tài)淀粉合成酶(GBSS)活性在灌漿前期(花后10~15 d)與對(duì)照差異不顯著, 隨著灌漿進(jìn)程的推進(jìn), 漬水遮陰處理與對(duì)照之間差異增大。灌漿中期(花后20 d)小麥籽粒中AGPase和SSS活性達(dá)到峰值時(shí), 漬水遮陰處理11 d、15 d的‘揚(yáng)麥18’和‘皖麥52’籽粒中AGPase活性分別較對(duì)照下降1%、10%和11%、24%, SSS活性則下降5%、11%和9%、32%, 且漬水遮陰處理11 d和15 d的小麥籽粒中SSS和GBSS活性在灌漿后期顯著低于對(duì)照。用Logistic方程分別擬合籽粒淀粉和干物質(zhì)的積累, 花后漬水遮陰處理縮短了籽粒灌漿緩增期, 降低了小麥籽粒灌漿的平均速率、淀粉積累的最大速率及平均速率, 減少了籽粒淀粉和干物質(zhì)的積累量。同時(shí), 漬水遮陰處理降低了小麥穗粒數(shù)和千粒重, 使產(chǎn)量顯著下降。隨著漬水遮陰處理時(shí)間的延長(zhǎng), 小麥籽粒中淀粉合成相關(guān)酶活性、干物質(zhì)積累量及產(chǎn)量的下降幅度越大。遲鈍型品種‘揚(yáng)麥18’各指標(biāo)的下降幅度均小于敏感型品種‘皖麥52’。小麥開花后漬水遮陰處理降低了籽粒中AGPase、SSS和GBSS活性, 不利于籽粒淀粉合成及干物質(zhì)的積累, 導(dǎo)致產(chǎn)量下降顯著。
小麥; 漬水; 遮陰; 淀粉合成酶活性; 灌漿特征; 淀粉積累特性; 干物質(zhì)積累; 產(chǎn)量
長(zhǎng)江中下游麥區(qū)是中國(guó)小麥(L.)的主產(chǎn)區(qū)之一, 受季風(fēng)影響, 該地區(qū)在小麥產(chǎn)量形成期多發(fā)持續(xù)性降水[1], 傳統(tǒng)的水稻(L.)-小麥輪作制度又使得土壤質(zhì)地黏重, 排水性較差[2], 加之小麥在開花期對(duì)漬水脅迫較為敏感[3], 因此這個(gè)時(shí)期陰雨寡照是該地區(qū)小麥產(chǎn)量和品質(zhì)主要限制因素之一[4]。
淀粉是小麥籽粒干物質(zhì)的主要組成部分, 在小麥成熟時(shí)淀粉占籽粒干重的70%[5], 小麥的產(chǎn)量和加工品質(zhì)很大程度上取決于淀粉的含量[6]。而淀粉在合成過程中要受到多種酶的調(diào)控作用[7-8], 其中腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、可溶性淀粉合成酶(SSS)和結(jié)合態(tài)淀粉合成酶(GBSS)對(duì)淀粉合成和代謝起著關(guān)鍵性的作用[9?10]。AGPase為調(diào)節(jié)淀粉合成的關(guān)鍵酶[11], SSS與GBSS則分別催化支鏈淀粉和直鏈淀粉的合成[12]。有研究認(rèn)為, 漬水脅迫導(dǎo)致籽粒中AGPase、SSS和GBSS的活性降低, 且灌漿期籽粒中蔗糖代謝和淀粉積累也受到了一定影響[13-14]。同時(shí), 漬水還會(huì)使得小麥葉片葉綠素含量下降[15], 影響小麥籽粒干物質(zhì)的積累[16]。光是小麥光合作用的能量來源[17], 小麥開花后籽粒物質(zhì)積累主要來源于光合產(chǎn)物[18]。光照強(qiáng)度與小麥產(chǎn)量形成有重要的相關(guān)性[19], 是影響小麥光合生產(chǎn)、生長(zhǎng)發(fā)育和產(chǎn)量的重要因素[20]。陰雨天光照強(qiáng)度降低及光照時(shí)間縮短, 會(huì)影響小麥旗葉中碳水化合物的合成和轉(zhuǎn)運(yùn)[21], 對(duì)小麥生長(zhǎng)發(fā)育產(chǎn)生不利影響[22], 降低小麥籽粒干物質(zhì)積累并最終影響產(chǎn)量[23]。
漬水或遮陰單一脅迫對(duì)小麥籽粒淀粉合成、干物質(zhì)的積累和轉(zhuǎn)運(yùn)及產(chǎn)量的影響已有較多研究[2,18,20], 但關(guān)于漬水和遮陰復(fù)合脅迫對(duì)小麥籽粒淀粉合成及產(chǎn)量影響研究較少。由于漬水遮陰時(shí)長(zhǎng)對(duì)小麥花后干物質(zhì)積累和產(chǎn)量形成影響較大[16], 因此本試驗(yàn)選用長(zhǎng)江中下游地區(qū)主栽小麥品種‘揚(yáng)麥18’(受漬遲鈍型)和‘皖麥52’(受漬敏感型), 在小麥開花后人工模擬漬水遮陰脅迫, 分析花后陰雨寡照對(duì)小麥籽粒淀粉合成相關(guān)酶活性、淀粉積累和干物質(zhì)積累及產(chǎn)量構(gòu)成的影響, 為探索緩解長(zhǎng)江中下游麥區(qū)花后連陰雨造成小麥減產(chǎn)的栽培技術(shù)措施提供理論依據(jù)。
根據(jù)課題組前期預(yù)備試驗(yàn)結(jié)果, 選用安徽省江淮地區(qū)的主栽小麥品種‘揚(yáng)麥18’(江蘇省里下河地區(qū)農(nóng)業(yè)科學(xué)院選育)和‘皖麥52’(安徽省宿州市種子公司選育)作為試驗(yàn)材料。其中‘揚(yáng)麥18’的耐漬能力較強(qiáng), 而‘皖麥52’對(duì)漬澇脅迫較為敏感。
試驗(yàn)于2017年11月—2018年6月在安徽農(nóng)業(yè)大學(xué)校內(nèi)試驗(yàn)基地農(nóng)翠園進(jìn)行。試驗(yàn)地處中緯度地帶, 屬亞熱帶季風(fēng)性濕潤(rùn)氣候, 年平均氣溫15.7 ℃, 多年平均降水量995.3 mm, 多集中在5—6月, 年日照時(shí)間2 100 h。試驗(yàn)期間合肥地區(qū)部分氣象數(shù)據(jù)如圖1所示。
采用盆栽+池栽結(jié)合的試驗(yàn)方法, 盆栽用缽為直徑30 cm, 高30 cm的塑料盆。前茬為水稻, 大田取土粉碎后裝入盆內(nèi)。土壤pH 7.15, 含有機(jī)質(zhì)15.79 g·kg-1, 全氮0.78 g·kg-1, 堿解氮61.3 mg·kg-1, 有效磷7.2 mg·kg-1, 速效鉀123 mg·kg-1, 土壤含水量80%。每盆裝土8 kg, 施入純氮1.05 g、K2O 2.25 g、P2O 51.35 g和有機(jī)肥75 g, 待小麥拔節(jié)后每盆再追施純氮1.05 g。播種時(shí)間為2017年11月11日, 每個(gè)品種種植120盆, 相同試驗(yàn)處理埋于同一試驗(yàn)池中, 水泥池長(zhǎng)4 m, 寬4 m, 深1 m。盆子上沿與地面平齊, 待三葉期齊苗后間苗, 每盆留生長(zhǎng)一致的麥苗8株。田間管理按高產(chǎn)栽培要求進(jìn)行。
小麥開花后進(jìn)行漬水遮陰處理, 遮陰和漬水同步進(jìn)行。漬水處理需保持水層高出盆缽?fù)撩?~2 cm。用50%透光率的遮陰網(wǎng)遮陰, 為了保證遮陰網(wǎng)內(nèi)通風(fēng)良好, 需使其下沿距地面0.5 m。在小麥開花后連續(xù)漬水遮陰7 d、11 d和15 d分別記為WS7、WS11和WS15, 以正常生長(zhǎng)的小麥為對(duì)照CK, 每個(gè)處理重復(fù)3次。
圖1 試驗(yàn)期間試驗(yàn)區(qū)的降雨量、日照時(shí)數(shù)和平均溫度
在小麥開花后, 標(biāo)記同一天開花的小穗, 花后10 d開始, 每5 d從各處理中隨機(jī)選取大小發(fā)育一致的麥穗8~10個(gè), 取樣分別用于籽粒淀粉合成相關(guān)酶、淀粉和干物質(zhì)積累的測(cè)定。待小麥成熟后收獲, 測(cè)定未取樣盆栽中小麥的產(chǎn)量及產(chǎn)量構(gòu)成因素。
1.3.1 淀粉代謝相關(guān)酶活性
取10個(gè)籽粒稱重, 研磨成粉, 加5 mL 100 mmol·L-1Tricine-NaOH提取液[pH=8.0, 含有10 mmol·L-1MgCl2, 2 mmol·L-1EDTA, 50 mmol·L-12-Mercaptoethanol, 12% (/)Glycerol, 5%(/)PVP-40]于研缽中磨成勻漿, 溫度保持在0 ℃。在10 000 r·min-1離心10 min, 收集上清液作為粗酶液用于籽粒的AGPase、SSS和GBSS活性測(cè)定。
AGPase活性測(cè)定參照程方民等[24]介紹的方法。取20 μL酶粗液與110 μL反應(yīng)液于30 ℃下反應(yīng)20 min后, 置于沸水中30 s終止反應(yīng), 10 000 r·min-1離心10 min, 取上清液100 μL, 加入5.2 μL比色液5.76 mmol·L-1NADP、0.08 U P-gucomutase、0.07 U G6P-dehydro-genase, 在30 ℃下反應(yīng)10 min后, 測(cè)定340 nm處OD值。SSS和GBSS活性測(cè)定參照Nakamura等[25]介紹的方法。
1.3.2 籽粒淀粉含量測(cè)定方法
采用蒽酮比色法[26]測(cè)定。根據(jù)Logistic方程=/(1+elnA-)擬合籽粒淀粉積累量()隨開花后天數(shù)()的變化規(guī)律[27](式中、為參數(shù),為生長(zhǎng)終值量)。根據(jù)該方程及其一級(jí)和二級(jí)導(dǎo)數(shù), 推導(dǎo)出:
籽粒淀粉積累速率方程(′):
=elnA-/(1+elnA-)2(1)
籽粒淀粉積累活躍生長(zhǎng)期(, 完成淀粉積累總量90%所需時(shí)間):
=-[ln(1/9)-ln]/(2)
籽粒淀粉達(dá)到最大積累速率的時(shí)間(max):
max=ln/(3)
籽粒淀粉平均積累速率(mean):
mean=-/[ln(1/9)-ln]/(4)
籽粒淀粉最大積累速率(max):
max=/4 (5)
1.3.3 籽粒干物質(zhì)積累的測(cè)定方法
每個(gè)處理取小麥穗10~15個(gè), 剝出籽粒, 在105 ℃下殺青15 min, 80 ℃烘至恒重, 稱重并換算成千粒重。根據(jù)Logistic方程=/(1+elnb-)擬合千粒重()隨開花后天數(shù)()的變化規(guī)律[28]。其中千粒重潛力值為,和為參數(shù)。根據(jù)Logistic方程=/(1+elnb-)和該方程的一級(jí)和二級(jí)導(dǎo)數(shù), 推導(dǎo)出:
灌漿高峰期起始時(shí)間(1):
1=[ln-ln(2+1.732)]/(6)
灌漿高峰期的結(jié)束時(shí)間(2):
2=[ln+ln(2+71.732)]/(7)
灌漿終期(3, 千粒重達(dá)到99%潛力值的時(shí)間):
3=-(4.595 12+ln)/(-) (8)
其他灌漿參數(shù)如下:
1=1(9)
2=2-1(10)
3=3-2(11)
=3(12)
t=/3(13)
式中:1、2和3分別為籽粒灌漿的漸增期, 快增期和緩增期[29],和t分別為籽粒灌漿的持續(xù)天數(shù)和籽粒平均灌漿速率。
1.3.4 產(chǎn)量構(gòu)成因素的測(cè)定
待小麥成熟后, 每處理分別收獲未被取樣的10盆小麥, 供測(cè)定單株穗數(shù)、穗粒數(shù)、千粒重并計(jì)算單株產(chǎn)量。
不同處理之間采用SPSS 22.0軟件進(jìn)行單因素方差分析, Dunca法對(duì)各項(xiàng)測(cè)定數(shù)據(jù)進(jìn)行多重比較, 用Origin 9.0進(jìn)行圖形制作。
2.1.1 腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)
從圖2中可以看出, 花后漬水遮陰處理后, 2個(gè)小麥品種籽粒中AGPase的活性變化均呈單峰曲線, 且都在花后20 d左右達(dá)到活性峰值。對(duì)照籽粒中的AGPase活性在籽粒灌漿過程中一直高于漬水遮陰處理。WS7、WS11和WS15處理小麥籽粒中AGPase活性在花后10~15 d雖然低于對(duì)照, 但差異不顯著。WS7和WS11處理籽粒中AGPase活性在灌漿期間差異不顯著, WS15處理的AGPase活性最低。對(duì)于‘揚(yáng)麥18’, WS7和WS15處理籽粒中AGPase活性從花后20 d開始與對(duì)照差異達(dá)顯著水平, 而WS11處理在花后35 d才與對(duì)照有顯著差異?!畵P(yáng)麥18’籽粒中AGPase活性表現(xiàn)為WS11>WS7>WS15, 且WS15處理在花后20 d開始顯著低于WS11處理。而‘皖麥52’在花后20 d時(shí)WS15處理和花后25 d時(shí)WS11處理籽粒中AGPase活性顯著低于對(duì)照, 其他漬水遮陰處理在灌漿期與對(duì)照差異未達(dá)顯著水平。且‘皖麥52’的WS7處理籽粒中AGPase活性略高于WS11處理, 在花后20 d, WS15處理雖與WS7和WS11處理差異顯著, 但之后3個(gè)漬水遮陰處理間無顯著差異。
圖2 花后漬水遮陰對(duì)不同小麥品種籽粒腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)活性的影響
WS7、WS11和WS15分別表示花后漬水遮陰處理7 d、11 d和15 d; 不同小寫字母表示處理間差異顯著(<0.05)。WS7, WS11and WS15represent treatments of shading and waterlogging after anthesis for 7 days, 11 days, and 15 days, respectively. Different lowercase letters indicate significant differences among treatments at 0.05 level.
2.1.2 可溶性淀粉合成酶(SSS)
從圖3可以看出, 2個(gè)品種的小麥籽粒中SSS活性花后呈現(xiàn)先升高后降低的變化, 漬水遮陰處理和對(duì)照小麥籽粒中SSS活性均在花后20 d左右達(dá)峰值。與對(duì)照相比, 漬水遮陰處理均降低了花后小麥籽粒中SSS活性。漬水遮陰處理后, 籽粒中SSS活性在花后10~15 d與對(duì)照無顯著差異, 但WS15處理SSS活性在小麥開花20 d后與對(duì)照差異顯著。WS15處理籽粒中SSS活性始終低于WS7和WS11處理, 且在小麥開花20 d后, WS15處理籽粒中SSS活性與WS7和WS11處理差異顯著。對(duì)于‘揚(yáng)麥18’, 在花后20 d, WS7處理籽粒中SSS活性與對(duì)照差異不顯著, WS11處理則與對(duì)照有顯著差異。且‘揚(yáng)麥18’的WS7處理的SSS活性在花后20 d后顯著高于WS11處理。而‘皖麥52’除花后25 d時(shí)WS7和WS11處理及花后35 d時(shí)WS7處理的SSS活性與對(duì)照有顯著差異以外, 其他灌漿時(shí)期WS7和WS11處理與對(duì)照差異均未達(dá)顯著水平, 且‘皖麥52’的WS7和WS11處理在整個(gè)灌漿期間無顯著差異。
圖3 花后漬水遮陰對(duì)不同小麥品種籽??扇苄缘矸酆铣擅?SSS)活性的影響
WS7、WS11和WS15分別表示花后漬水遮陰處理7 d、11 d和15 d; 不同小寫字母表示處理間差異顯著(<0.05)。WS7, WS11and WS15represent treatments of shading and waterlogging treatments after anthesis for 7 days, 11 days, and 15 days, respectively. Different lowercase letters indicate significant differences among different treatments at 0.05 level.
2.1.3 結(jié)合態(tài)淀粉合成酶(GBSS)
從圖4可以看出, 小麥籽粒中GBSS活性在整個(gè)灌漿期呈單峰曲線, 但不同漬水遮陰處理GBSS活性峰值出現(xiàn)的時(shí)間不同。‘揚(yáng)麥18’的WS15處理籽粒的GBSS活性在花后15 d最大, 而WS7、WS11處理及對(duì)照籽粒的GBSS活性達(dá)到峰值的時(shí)間為花后20 d; ‘皖麥52’的WS7處理籽粒GBSS活性在花后15 d最大, 其他漬水遮陰處理及對(duì)照的籽粒GBSS活性在花后20 d最大。WS7處理的小麥籽粒中GBSS活性在花后10~15 d高于對(duì)照, 但在花后20 d籽粒中GBSS活性開始低于對(duì)照, 開花20 d之后下降幅度也大于對(duì)照, 并于花后30 d開始與對(duì)照籽粒中GBSS活性差異顯著。WS11處理小麥籽?;钚栽诨ê笫冀K低于對(duì)照, 并在小麥開花20 d之后與對(duì)照差異顯著, WS15處理的小麥籽粒GBSS活性在花后20 d之后與對(duì)照相比下降顯著。在小麥開花20 d之后, 小麥籽粒的GBSS活性WS7>WS11>WS15, 且WS15處理籽粒中GBSS活性顯著低于WS7和WS11處理。
圖4 花后漬水遮陰對(duì)不同小麥品種籽粒結(jié)合態(tài)淀粉合成酶(GBSS)活性的影響
WS7、WS11和WS15分別表示花后漬水遮陰處理7 d、11 d和15 d; 不同小寫字母表示處理間差異顯著(<0.05)。WS7, WS11, and WS15represent treatments of shading and waterlogging treatments after anthesis for 7 days, 11 days, and 15 days, respectively. Different lowercase letters indicate significant differences among treatments at 0.05 level.
由圖5可知, 在小麥籽粒發(fā)育的過程中, 淀粉含量在花后15~20 d增加迅速, 并且在花后30 d之后逐漸趨于穩(wěn)定。在整個(gè)灌漿過程中小麥籽粒淀粉含量CK>WS7>WS11>WS15, 說明與對(duì)照相比, 漬水遮陰處理降低了小麥籽粒中淀粉的積累量, 并且漬水遮陰處理時(shí)間越長(zhǎng), 對(duì)小麥淀粉積累量影響越大?!畵P(yáng)麥18’和‘皖麥52’在漬水遮陰處理7 d、11 d、15 d后籽粒淀粉最終積累量分別較對(duì)照下降9%、15%、23%和14%、18%、29%。
圖5 花后漬水遮陰對(duì)不同小麥品種籽粒淀粉含量的影響
WS7、WS11和WS15分別表示花后漬水遮陰處理7 d、11 d和15 d; 不同小寫字母表示處理間差異顯著(<0.05)。WS7, WS11, and WS15represent treatments of shading and waterlogging treatments after anthesis for 7 days, 11 days, and 15 days, respectively. Different lowercase letters indicate significant differences among treatments at 0.05 level.
小麥籽粒淀粉積累進(jìn)程可用Logistic方程擬合, 各方程的決定系數(shù)都達(dá)顯著水平(表1)。在本試驗(yàn)中, 與對(duì)照相比, 漬水遮陰處理推遲了淀粉最大積累速率出現(xiàn)的時(shí)間(max), 并且延長(zhǎng)了淀粉積累活躍生長(zhǎng)期(), 但不同漬水遮陰處理間變化幅度較小, 說明漬水遮陰處理時(shí)間長(zhǎng)短對(duì)max和的影響較小。小麥籽粒淀粉最大積累速率(max)和平均積累速率(mean)都表現(xiàn)為CK>WS7>WS11>WS15, 說明漬水遮陰處理降低了max和mean, 并且漬水遮陰處理時(shí)間越長(zhǎng),max和mean下降的幅度越大。與對(duì)照相比, 漬水遮陰處理7 d、11 d、15 d ‘揚(yáng)麥18’的max和mean分別下降18.3%、22.5%、28.9%和16.5%、22.5%、28.5%; ‘皖麥52’的max和mean則分別下降27.1%、34.7%、39.4%和20.1%、27.8%、33.9%。漬水遮陰處理下, ‘皖麥52’的max和mean下降的幅度比‘揚(yáng)麥18’的大。
表1 花后漬水遮陰處理下不同小麥品種籽粒淀粉積累曲線擬合和特征參數(shù)
WS7、WS11和WS15分別表示花后漬水遮陰處理7 d、11 d和15 d; 字母、、max、、max、mean分別代表淀粉積累量、花后天數(shù)、籽粒淀粉達(dá)最大積累速率的時(shí)間、淀粉積累活躍生長(zhǎng)期、淀粉積累最大速率和平均速率。WS7, WS11, and WS15represent treatments of shading and waterlogging treatments after anthesis for 7 days, 11 days, and 15 days, respectively;,,max,,max,meanrepresent starch accumulation, days after anthesis, time to maximum starch accumulation rate, starch actively-increasing accumulation duration, maximum starch accumulation rate, mean starch accumulation rate, respectively.
用Logistic方程對(duì)籽粒干物質(zhì)積累動(dòng)態(tài)進(jìn)行擬合,擬合方程見表2。各方程的決定系數(shù)都達(dá)極顯著水平, 說明擬合效果好。漬水遮陰處理后小麥千粒重低于對(duì)照, 且處理時(shí)間越長(zhǎng), 下降越顯著。與對(duì)照相比, 漬水遮陰處理延長(zhǎng)了籽粒灌漿快增期的時(shí)間(1), 縮短了灌漿緩增期時(shí)間(3), 并降低了小麥的平均灌漿速率(t)。漬水遮陰處理的時(shí)間長(zhǎng)短對(duì)小麥籽粒灌漿的各個(gè)時(shí)期長(zhǎng)短并沒有明顯影響, 但漬水遮陰處理的時(shí)間越長(zhǎng), 小麥灌漿的平均速率越小。在漬水遮陰處理的影響下, 與對(duì)照相比, ‘揚(yáng)麥18’增大了1, 減小了2、3和t; ‘皖麥52’減小了t, 但其他灌漿參數(shù)與對(duì)照的差異不大。說明在漬水遮陰處理?xiàng)l件下, ‘揚(yáng)麥18’粒重的降低主要是由于灌漿快增期和緩增期的縮短及平均灌漿速率(t)的降低, 而‘皖麥52’籽粒干物質(zhì)積累的減少主要是由于灌漿平均速率的降低。
表2 花后漬水遮陰處理下不同小麥品種籽粒灌漿曲線擬合和灌漿參數(shù)
WS7、WS11和WS15分別表示花后漬水遮陰處理7 d、11 d和15 d; 不同小寫字母表示處理間差異顯著(<0.05)。字母、、、1、2、3、t分別代表千粒重、花后天數(shù)和籽粒灌漿的持續(xù)天數(shù)、漸增期、快增期、緩增期、平均灌漿速率。WS7, WS11and WS15represent treatments of shading and waterlogging treatments after anthesis for 7 days, 11 days, and 15 days, respectively. Different lowercase letters indicate significant differences among water control treatments at 0.05 level.,,,1,2,3,trepresent 1000-kernel weight, days after anthesis, period of grain filling; duration of gradual rapid, rapid and slow increasing stages; and the mean filling rate, respectively.
從表3可以看出, 與對(duì)照相比, 漬水遮陰處理對(duì)2個(gè)品種小麥的單株穗數(shù)影響較小?;ê鬂n水遮陰處理的小麥穗粒數(shù)低于對(duì)照, WS15處理穗粒數(shù)與WS7、WS11處理差異顯著, 說明漬水遮陰處理的時(shí)間越長(zhǎng), 對(duì)小麥穗粒數(shù)的影響也就越大。與對(duì)照相比, ‘揚(yáng)麥18’和‘皖麥52’漬水遮陰處理7 d、11 d、15 d的穗粒數(shù)分別下降1.8%、6.7%、16.6%和1.9%、6.7%、23.7%。與對(duì)照相比, 漬水遮陰處理降低了小麥的千粒重, 其中WS11和WS15處理的小麥千粒重下降顯著; 小麥千粒重WS7>WS11>WS15, WS7處理的小麥千粒重與WS11處理的沒有顯著差異, 但WS7處理與WS15處理的千粒重差異顯著, 說明漬水遮陰處理的時(shí)間越長(zhǎng), 對(duì)小麥千粒重的影響越大。漬水遮陰處理7 d、11 d、15 d‘揚(yáng)麥18’和‘皖麥52’千粒重分別較對(duì)照下降9.3%、19.4%、23.6%和11.2%、15.5 %、37.6%。與對(duì)照相比, 漬水遮陰處理后小麥產(chǎn)量下降顯著; 小麥單株產(chǎn)量WS7>WS11>WS15, 且WS15處理與WS7、WS11處理差異顯著, 說明處理時(shí)間越長(zhǎng)對(duì)小麥產(chǎn)量影響越大。‘揚(yáng)麥18’的WS7和WS11處理差異并不顯著, ‘皖麥52’的3個(gè)不同時(shí)長(zhǎng)的漬水遮陰處理之間差異顯著。與對(duì)照相比, ‘揚(yáng)麥18’和‘皖麥52’在漬水遮陰處理15 d后分別減產(chǎn)47.57%和59.29%?!铥?2’在漬水遮陰處理后產(chǎn)量下降幅度大于‘揚(yáng)麥18’。
表3 花后漬水遮陰對(duì)不同小麥品種產(chǎn)量構(gòu)成的影響
WS7、WS11和WS15分別表示花后漬水遮陰處理7 d、11 d和15 d; 不同小寫字母表示處理間差異顯著(<0.05)。WS7, WS11, and WS15represent treatments of shading and waterlogging treatments after anthesis for 7 days, 11 days, and 15 days, respectively. Different lowercase letters indicate significant differences among treatments at 0.05 level.
在淀粉合成過程中, AGPase、SSS和GBSS等酶的活性決定著小麥源器官中蔗糖轉(zhuǎn)化為庫(kù)器官籽粒中淀粉的能力[30]。在本試驗(yàn)中, 小麥籽粒中AGPase、SSS和GBSS活性變化呈單峰曲線, 這與前人研究一致[31]。李亞婷等[32]的研究中小麥籽粒的AGPase和SSS分別在花后20 d和25 d活性最大, 而胡陽(yáng)陽(yáng)等[33]的研究中GBSS的活性峰值在花后26 d才出現(xiàn)。在本研究中, 除了‘揚(yáng)麥18’的WS15處理及‘皖麥52’WS7處理籽粒的GBSS活性在花后15 d達(dá)到峰值, 其他處理小麥籽粒的GBSS及AGPase和SSS都于花后20 d左右達(dá)到峰值。這說明處理、品種及生長(zhǎng)環(huán)境等可能改變小麥籽粒中SSS和GBSS活性達(dá)峰值的時(shí)間, 漬水遮陰處理可能使GBSS活性峰值提前。小麥灌漿前期有些處理的GBSS和SSS活性高于對(duì)照, 但漬水遮陰處理下籽粒中AGPase、SSS和GBSS的活性在多數(shù)測(cè)定時(shí)期低于對(duì)照, 尤其在灌漿后期, 2個(gè)品種的小麥籽粒中SSS和GBSS活性分別于小麥開花25 d和20 d之后大幅度下降。因此, 漬水遮陰處理時(shí)間越長(zhǎng), 對(duì)小麥籽粒中AGPase、SSS和GBSS活性影響越大, 一般在小麥開花20 d后WS15處理的籽粒中SSS和GBSS活性與處理WS7和WS11的差異顯著。
有研究表明, 小麥籽粒中AGPase、SSS和GBSS活性與淀粉積累速率呈顯著正相關(guān)[29]。用Logistic方程擬合淀粉積累進(jìn)程表明, 與對(duì)照相比, 漬水遮陰處理降低了小麥籽粒淀粉的最大積累速率和平均積累速率, 而對(duì)淀粉達(dá)到最大積累速率的時(shí)間和淀粉積累的生長(zhǎng)活躍期影響不大。漬水遮陰處理下小麥籽粒淀粉平均積累速率的降低可能是由于籽粒中淀粉合成相關(guān)酶活性的下降引起的, 而小麥平均積累速率的降低是淀粉積累量下降的主要原因。
小麥粒重的大小與籽粒平均灌漿速率大小以及灌漿持續(xù)期長(zhǎng)短有關(guān)[34]。遮陰和漬水導(dǎo)致小麥減產(chǎn)可能是由于影響了籽粒干物質(zhì)的積累和轉(zhuǎn)運(yùn)[35-37]。本試驗(yàn)中, 與對(duì)照相比, 漬水遮陰處理后籽粒中干物質(zhì)量都下降, 且隨著漬水遮陰處理時(shí)長(zhǎng)的增加, 對(duì)小麥籽粒干物質(zhì)積累的影響程度也就越大。賀明榮等[38]研究發(fā)現(xiàn), 小麥可能存在某種反應(yīng)機(jī)制來調(diào)節(jié)弱光對(duì)灌漿的影響, 因此遮陰對(duì)不同品種千粒重的影響程度不同。不同品種小麥在漬水遮陰處理下對(duì)籽粒灌漿的影響程度和方面也不同, ‘皖麥52’籽粒灌漿受到的影響主要來源于灌漿平均速率的降低, 而‘揚(yáng)麥18’在脅迫處理的條件下不僅降低了平均灌漿速率, 還縮短了灌漿的快增期和緩增期。且漬水遮陰處理的灌漿持續(xù)天數(shù)與對(duì)照差異不大的情況下, ‘皖麥52’的平均灌漿速率的下降幅度高于‘揚(yáng)麥18’。綜合來看, ‘皖麥52’籽粒灌漿受到的影響要比‘揚(yáng)麥18’大。
劉楊等[39]的研究認(rèn)為在小麥拔節(jié)期, 光照不足可以降低漬水對(duì)小麥產(chǎn)生的影響, 而在灌漿期則存在疊加的負(fù)面影響。這是由于作物對(duì)寡照存在補(bǔ)償機(jī)制[40], 營(yíng)養(yǎng)生長(zhǎng)期可通過增加底部葉片面積等方式來彌補(bǔ)遮陰所造成的影響。小麥抽穗后進(jìn)入生殖生長(zhǎng)期已不能通過增加葉片面積來提高光合效率, 可以通過增加分蘗來增加葉片面積提高光合效率[41]。因此花后漬水遮陰處理對(duì)小麥產(chǎn)量存在疊加的負(fù)面作用。對(duì)小麥產(chǎn)量構(gòu)成要素而言, 由于抽穗期前已經(jīng)決定了成穗數(shù), 因此開花后的漬水遮陰處理對(duì)小麥穗數(shù)影響不大, 對(duì)小麥穗粒數(shù)有一定影響, 增加了不孕小花數(shù)。漬水遮陰處理對(duì)產(chǎn)量構(gòu)成要素中影響最大的是千粒重, ‘皖麥52’產(chǎn)量的降低主要是因?yàn)榍ЯV氐南陆? 說明漬水遮陰處理嚴(yán)重影響了小麥的籽粒灌漿。因此, 花后漬水遮陰處理導(dǎo)致小麥產(chǎn)量顯著下降, 主要是由于千粒重和穗粒數(shù)的下降所致。
花后漬水遮陰處理使小麥籽粒中AGPase、SSS和GBSS的活性下降, 影響籽粒淀粉合成, 縮短籽粒灌漿緩增期時(shí)間, 降低了淀粉積累和灌漿平均速度, 從而導(dǎo)致小麥籽粒淀粉和干物質(zhì)積累量減少, 千粒重顯著降低, 最終導(dǎo)致產(chǎn)量下降。本試驗(yàn)結(jié)果還表明, 不同品種對(duì)漬水遮陰處理的反應(yīng)也不同, 與受漬敏感型品種‘皖麥52’相比, 受漬遲鈍型品種‘揚(yáng)麥18’在漬水遮陰處理的過程中淀粉合成相關(guān)酶活性、淀粉含量、干物質(zhì)的積累和產(chǎn)量的下降幅度較小。因此‘揚(yáng)麥18’比‘皖麥52’更易抵御漬水遮陰逆境而趨于穩(wěn)產(chǎn), 這對(duì)在長(zhǎng)江中下游平原上培育高產(chǎn)穩(wěn)產(chǎn)小麥具有一定積極意義。同時(shí), 本研究可對(duì)當(dāng)前陰雨或陰霾等極端天氣對(duì)小麥產(chǎn)量的影響以及優(yōu)質(zhì)小麥抗逆調(diào)優(yōu)栽培提供理論依據(jù)。
[1] 蔡劍, 姜東. 氣候變化對(duì)中國(guó)冬小麥生產(chǎn)的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2011, 30(9): 1726–1733 CAI J, JIANG D. The effect of climate change on winter wheat production in China[J]. Journal of Agro-Environment Science, 2011, 30(9): 1726–1733
[2] 姜東, 陶勤南, 張國(guó)平. 漬水對(duì)小麥揚(yáng)麥5號(hào)旗葉和根系衰老的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2002, 13(11): 1519–1521 JIANG D, TAO Q N, ZHANG G P. Effect of waterlogging on senescence of flag leaf and root of wheat Yangmai 5[J]. Chinese Journal of Applied Ecology, 2002, 13(11): 1519–1521
[3] DE SAN CELEDONIO R P, ABELEDO L G, MIRALLES D J. Identifying the critical period for waterlogging on yield and its components in wheat and barley[J]. Plant and Soil, 2014, 378(1/2): 265–277
[4] 石春林, 金之慶. 基于WCSODS的小麥漬害模型及其在災(zāi)害預(yù)警上的應(yīng)用[J]. 應(yīng)用氣象學(xué)報(bào), 2003, 14(4): 462–468 SHI C L, JIN Z Q. A WCSODS-based model for simulating wet damage for winter wheat in the middle and lower reaches of the Yangtse River[J]. Journal of Applied Meteorological Science, 2003, 14(4): 462–468
[5] 李永庚, 于振文, 姜東, 等. 冬小麥旗葉蔗糖和籽粒淀粉合成動(dòng)態(tài)及與其有關(guān)的酶活性的研究[J]. 作物學(xué)報(bào), 2001, 27(5): 658–664 LI Y G, YU Z W, JIANG D, et al. Studies on the dynamic changes of the synthesis of sucrose in the flag leaf and starch in the grain and related enzymes of high-yielding wheat[J]. Acta Agronomica Sinica, 2001, 27(5): 658–664
[6] 鄧梅, 張雄, 鐘小娟, 等. 不同生態(tài)環(huán)境對(duì)四川小麥品種(系)籽粒淀粉含量及理化特性的影響[J]. 麥類作物學(xué)報(bào), 2019, 39(1): 64–72 DENG M, ZHANG X, ZHONG X J, et al. Effect of different ecological environments on content and physicochemical properties of starch in wheat varieties (lines) in Sichuan Province[J]. Journal of Triticeae Crops, 2019, 39(1): 64–72
[7] RAHMAN S, REGINA A, LI Z Y, et al. Comparison of starch branching enzyme genes reveals evolutionary relationships among isoform. Characterization of a gene for starch-branching enzyme IIa from the wheat D genome donor[J]. Plant Physiology, 2001, 125(3): 1314?1324
[8] 譚彩霞, 封超年, 郭文善, 等. 不同小麥品種籽粒淀粉合成酶基因的表達(dá)及其與淀粉積累的關(guān)系[J]. 麥類作物學(xué)報(bào), 2011, 31(6): 1063–1070 TAN C X, FENG C N, GUO W S, et al. Difference in expression of starch synthase gene and starch synthesis in the grains of different wheat cultivars[J]. Journal of Triticeae Crops, 2011, 31(6): 1063–1070
[9] KEELING P L, BANISADR R, BARONE L, et al. Effect of temperature on enzymes in the pathway of starch biosynthesis in developing wheat and maize grain[J]. Functional Plant Biology, 1994, 21(6): 807
[10] 楊毅, 李昱, 康建宏, 等. 花后高溫脅迫對(duì)春小麥籽粒淀粉合成的影響[J]. 麥類作物學(xué)報(bào), 2015, 35(11): 1535–1541 YANG Y, LI Y, KANG J H, et al. Effect of heat stress after anthesis on starch synthesis in spring wheat[J]. Journal of Triticeae Crops, 2015, 35(11): 1535–1541
[11] JENNER C F. Starch synthesis in the kernel of wheat under high temperature conditions[J]. Functional Plant Biology, 1994, 21(6): 791
[12] 王月福, 馬東輝, 趙長(zhǎng)星, 等. 施氮量和花后土壤含水量對(duì)強(qiáng)筋小麥籽粒淀粉合成及品質(zhì)的影響[J]. 西北植物學(xué)報(bào), 2008, 28(9): 1803–1810 WANG Y F, MA D H, ZHAO C X, et al. Effects of nitrogen fertilizer rate and post-anthesis soil moisture content on starch synthesis and quality of grains in strong gluten wheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(9): 1803– 1810
[13] AHMADI A, BAKERDA. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat[J]. Plant Growth Regulation, 2001, 35(1): 81-91
[14] DAI Z, YIN Y, WANG Z. Activities of key enzymes involved in starch synthesis in grains of wheat under different irrigation patterns[J]. The Journal of Agricultural Science, 2009, 147(4): 437–444
[15] SAIRAM R K, KUMUTHA D, EZHILMATHI K, et al. Physiology and biochemistry of waterlogging tolerance in plants[J]. Biologia Plantarum, 2008, 52(3): 401–412
[16] 丁錦峰, 蘇盛楠, 梁鵬, 等. 拔節(jié)期和花后漬水對(duì)小麥產(chǎn)量、干物質(zhì)及氮素積累和轉(zhuǎn)運(yùn)的影響[J]. 麥類作物學(xué)報(bào), 2017, 37(11): 1473–1479 DING J F, SU S N, LIANG P, et al. Effect of waterlogging at elongation or after anthesis on grain yield and accumulation and remobilization of dry matter and nitrogen in wheat[J]. Journal of Triticeae Crops, 2017, 37(11): 1473–1479
[17] 蔡永萍. 植物生理學(xué)[M]. 第2版. 北京: 中國(guó)農(nóng)業(yè)大學(xué)出版社, 2016 CAI Y P. Plant Physiology[M]. Second edition. Beijing: China Agricultural University Press, 2016
[18] 張?jiān)獛? 馮偉, 張海艷, 等. 遮陰和施氮對(duì)冬小麥旗葉光合特性及產(chǎn)量的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2016, 24(9): 1177–1184 ZHANG Y S, FENG W, ZHANG H Y, et al. Effects of shading and nitrogen rate on photosynthetic characteristics of flag leaves and yield of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1177–1184
[19] 牟會(huì)榮, 姜東, 戴廷波, 等. 遮蔭對(duì)小麥旗葉光合及葉綠素?zé)晒馓匦缘挠绊慬J]. 中國(guó)農(nóng)業(yè)科學(xué), 2008, 41(2): 599–606 MU H R, JIANG D, DAI T B, et al. Effect of shading on photosynthesis and chlorophyll fluorescence characters in wheat flag leaves[J]. Scientia Agricultura Sinica, 2008, 41(2): 599–606
[20] 郭翠花, 高志強(qiáng), 苗果園. 花后遮陰對(duì)小麥旗葉光合特性及籽粒產(chǎn)量和品質(zhì)的影響[J]. 作物學(xué)報(bào), 2010, 36(4): 673–679 GUO C H, GAO Z Q, MIAO G Y. Effect of shading at post flowering on photosynthetic characteristics of flag leaf and response of grain yield and quality to shading in wheat[J]. Acta Agronomica Sinica, 2010, 36(4): 673–679
[21] 戰(zhàn)吉宬, 黃衛(wèi)東, 王利軍. 植物弱光逆境生理研究綜述[J]. 植物學(xué)通報(bào), 2003, 20(1): 43–50 ZHAN J H, HUANG W D, WANG L J. Research of weak light stress physiology in plants[J]. Chinese Bulletin of Botany, 2003, 20(1): 43?50
[22] 陸昱, 丁宇輝, 蔡沈林, 等. 太陽(yáng)輻射減弱對(duì)冬小麥生長(zhǎng)發(fā)育及產(chǎn)量的影響[J]. 安徽農(nóng)業(yè)科學(xué), 2018, 46(4): 143–145 LU Y, DING Y H, CAI S L, et al. Effect of weaker solar radiation on the growth and yield of winter wheat[J]. Journal of Anhui Agricultural Sciences, 2018, 46(4): 143–145
[23] 閆素輝. 小麥胚乳淀粉合成、粒度分布特征及對(duì)花后高溫的響應(yīng)[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2009 YAN S H. Starch synthesis and granule size distribution of developing wheat endosperm in response to postanthesis high temperature[D]. Tai’an: Shandong Agricultural University, 2009
[24] 程方民, 蔣德安, 吳平, 等. 早秈稻籽粒灌漿過程中淀粉合成酶的變化及溫度效應(yīng)特征[J]. 作物學(xué)報(bào), 2001, 27(2): 201–206 CHENG F M, JIANG D A, WU P, et al. The dynamic change of starch synthesis enzymes during the grain filling stage and effects of temperature upon it[J]. Acta Agronomica Sinica, 2001, 27(2): 201–206
[25] NAKAMURA Y, YUKI K, PARK S, et al. Carbohydrate metabolism in the developing endosperm of rice grains[J]. Plant and Cell Physiology, 1989, 30(6): 833–839
[26] 高俊鳳. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 北京: 高等教育出版社, 2006 GAO J F. Plant Physiology[M]. Beijing: Higher Education Press, 2006
[27] 沈?qū)W善, 朱云集, 郭天財(cái), 等. 施硫?qū)Α?0’籽粒灌漿特性及產(chǎn)量的影響[J]. 西北植物學(xué)報(bào), 2007, 27(6): 1265-1269 SHEN X S, ZHU Y J, GUO T C, et al. Effects of sulphur application on characteristics of grain filling and grain yield of winter wheat cuitivar ‘Yumai 50’[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(6): 1265–1269
[28] 武文明, 陳洪儉, 李金才, 等. 氮肥運(yùn)籌對(duì)孕穗期受漬冬小麥旗葉葉綠素?zé)晒馀c籽粒灌漿特性的影響[J]. 作物學(xué)報(bào), 2012, 38(6): 1088–1096 WU W M, CHEN H J, LI J C, et al. Effects of nitrogen fertilization on chlorophyll fluorescence parameters of flag leaf and grain filling in winter wheat suffered waterlogging at booting stage[J]. Acta Agronomica Sinica, 2012, 38(6): 1088–1096
[29] 曹穎妮, 胡衛(wèi)國(guó), 王根平, 等. 糯性和非糯性小麥灌漿期胚乳直/支鏈淀粉積累及其相關(guān)酶活性研究[J]. 西北植物學(xué)報(bào), 2010, 30(10): 1995–2001 CAO Y N, HU W G, WANG G P, et al. Dynamic changes of starch accumulation and enzymes relating to starch biosynthesis of kernel during grain filling in waxy and non-waxy winter wheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(10): 1995–2001
[30] AHMADI A, BAKER D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat[J]. Plant Growth Regulation, 2001, 35(1): 81–91
[31] 依兵. 高粱籽粒淀粉積累與合成相關(guān)酶活性研究[D]. 沈陽(yáng): 沈陽(yáng)農(nóng)業(yè)大學(xué), 2014 YI B. Starch accumulation and enzymes activities for starch synthesis in sorghum grains[D]. Shenyang: Shenyang Agricultural University, 2014
[32] 李亞婷, 康建宏, 吳宏亮, 等. 花后水分脅迫對(duì)春小麥淀粉形成及相關(guān)酶活性的影響[J]. 草業(yè)科學(xué), 2016, 33(5): 917–925 LI Y T, KANG J H, WU H L, et al. Effects of water stress after anthesis on starch formation and the activity of associated enzyme in spring wheat[J]. Pratacultural Science, 2016, 33(5): 917–925
[33] 胡陽(yáng)陽(yáng), 盧紅芳, 劉衛(wèi)星, 等. 灌漿期高溫與干旱脅迫對(duì)小麥籽粒淀粉合成關(guān)鍵酶活性及淀粉積累的影響[J]. 作物學(xué)報(bào), 2018, 44(4): 591–600 HU Y Y, LU H F, LIU W X, et al. Effects of high temperature and water deficiency during grain filling on activities of key starch synthesis enzymes and starch accumulation in wheat[J]. Acta Agronomica Sinica, 2018, 44(4): 591–600
[34] 李文陽(yáng), 尹燕枰, 閆素輝, 等. 小麥花后弱光對(duì)籽粒淀粉積累和相關(guān)酶活性的影響[J]. 作物學(xué)報(bào), 2008, 34(4): 632–640 LI W Y, YIN Y P, YAN S H, et al. Effect of shading after anthesis on starch accumulation and activities of the related enzymes in wheat grain[J]. Acta Agronomica Sinica, 2008, 34(4): 632–640
[35] EARLY E B, MCILRATH W O, SEIF R D, et al. Effects of shade applied at different stages of plant development on corn (L.) production[J]. Crop Science, 1967, 7(2): 151
[36] 范雪梅, 戴廷波, 姜東, 等. 花后干旱與漬水下氮素供應(yīng)對(duì)小麥碳氮運(yùn)轉(zhuǎn)的影響[J]. 水土保持學(xué)報(bào), 2004, 18(6): 63–67 FAN X M, DAI T B, JIANG D, et al. Effects of nitrogen rates on carbon and nitrogen assimilate translocation in wheat grown under drought and waterlogging from anthesis to maturity[J]. Journal of Soil Water Conservation, 2004, 18(6): 63–67
[37] ZHAO H, DAI T B, JING Q, et al. Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars[J]. Plant Growth Regulation, 2007, 51(2): 149–158
[38] 賀明榮, 王振林, 高淑萍. 不同小麥品種千粒重對(duì)灌漿期弱光的適應(yīng)性分析[J]. 作物學(xué)報(bào), 2001, 27(5): 640?644 HE M R, WANG Z L, GAO S P. Analysis on adaptability of wheat cultivars to low light intensity during grain filling[J]. Acta Agronomic Sinica, 2001, 27(5): 640?644
[39] 劉楊, 石春林, 宣守麗, 等. 不同生育期漬水寡照對(duì)小麥產(chǎn)量構(gòu)成的影響[J]. 江蘇農(nóng)業(yè)科學(xué), 2016, 44(10): 124?127 LIU Y, SHI C L, XUAN S L, et al. Effects of waterlogging and shading on different growth stages on yield components of wheat[J]. Jiangsu Agricultural Science, 2016, 44(10): 124?127
[40] LI H W, CAI J, LIU F L, et al. Generation and scavenging of reactive oxygen species in wheat flag leaves under combined shading and waterlogging stress[J]. Functional Plant Biology, 2012, 39(1): 71?81
[41] 王亞凱, 董寶娣, 喬勻周, 等. 開花灌漿期小麥葉片奢侈蒸騰發(fā)生的土壤水分閾值試驗(yàn)研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文), 2019, 27(7): 1024–1032 WANG Y K, DONG B D, QIAO Y Z, et al. Experimental study on soil water threshold of luxury transpiration in winter wheat leaves during flowering and filling stage[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7): 1024–1032
Effects of shading and waterlogging following anthesis on starch synthesis and dry matter accumulation in wheat grain*
WANG Min, WANG Shaoyu, WU Jiajia, XU Kaifang, WANG Tao, HE Qifang, XING Xiaoli, YAO Wenzheng, ZHANG Wenjing**
(College of Agricultural Sciences, Anhui Agricultural University, Hefei 230061, China)
Focusing on the reduced wheat yield caused by continuous rain following anthesis in the middle and lower reaches of the Yangtze River, a pot experiment was designed to investigate the effects of shading and waterlogging on starch synthesis and dry matter accumulation in wheat grains, to provide information regarding adverse resistance cultivation and stable yield of wheat in the area. Two wheat varieties — ‘Yangmai 18’ (waterlogging-insensitive type) and ‘Wanmai 52’ (waterlogging-sensitive type) — that are domain varieties in the Yangtze River Basin of China were selected to investigate the effects of 7-, 11-, and 15-day shading and waterlogging treatments following anthesis on starch synthesis and dry matter accumulation in wheat grains. The results indicated that there were no significant differences between the control and shading and waterlogging treatments in terms of the activities of adenosine diphosphate-glucose pyrophosphate (AGPase), soluble starch synthase (SSS), and bound starch synthase (GBSS) in wheat grains during the earlier grain-filling stage (10–15 days after anthesis). However, with the development of the grain-filling process, the difference between the control and shading and waterlogging treatments increased. In the mid-grain-filling stage (20 days after anthesis), when the activities of the three key enzymes were highest. The 11- and 15-day shading and waterlogging treatments decreased the activity of AGPase in wheat grain by 1% and 10% for ‘Yangmai 18’, and by 11% and 24% for ‘Wanmai 52’, respectively. Further, the activity of SSS was decreased by 5% and 11% for ‘Yangmai 18’, and 9%, 32% for ‘Wanmai 52’, respectively, compared with the control. In addition, the activities of SSS and GBSS under 11- and 15-day shading and waterlogging treatments were significantly lower than those in the control during the late grain-filling stage. Simulating the process of starch accumulation and grain filling with a Logistic equation showed that compared with the control, the shading and waterlogging treatments shortened the duration of the slow increasing stage and decreased the average grain-filling rate, average and peak starch accumulation rates, and cumulative wheat starch and dry matter amounts. Simultaneously, the shading and waterlogging treatments decreased the grain number and 1000-kernel weight of wheat, thereby lowering the yield. The extented shading and waterlogging treatments duration induced a decline in the activities of SSS and GBSS as well as the starch and dry matter accumulation amount in wheat grains and yield. The waterlogging-insensitive variety ‘Yangmai 18’ showed slight decreases compared with the waterlogging-sensitive variety ‘Wanmai 52’ in each index. Shading and waterlogging stresses following anthesis of wheat decreased the activities of AGPase, SSS, and GBSS and affected the starch and dry matter accumulation in wheat grains, thereby leading to yield loss.
Wheat; Waterlogging; Shading; Starch synthase activity; Grain-filling characteristic; Starch accumulation characteristic; Dry matter accumulation; Grain yield
S512.1
* 國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0300902, 2017YFD0300205)、國(guó)家自然科學(xué)基金項(xiàng)目(31801285)、國(guó)家留學(xué)基金委項(xiàng)目(201808775002)和2018年安徽農(nóng)業(yè)大學(xué)校級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(XJDC2018216)資助
張文靜, 主要研究方向?yàn)樾←溕砩鷳B(tài)。E-mail: zhangwenjing79@126.com
汪敏, 主要從事農(nóng)學(xué)方面研究。E-mail: 2425448927@qq.com
2019-07-17
2019-08-20
* This research was supported by the National Key Research and Development Plan of China (2018YFD0300902, 2017YFD0300205), the National Natural Science Foundation of China (31801285), the Project of China Scholarship Council (201808775002), and the College Students’ Innovative Entrepreneurial Training Plan Program of Anhui Agricultural University (XJDC2018216).
, E-mail: zhangwenjing79@126.com
Jul. 17, 2019;
Aug. 20, 2019
10.13930/j.cnki.cjea.190540
汪敏, 王邵宇, 吳佳佳, 許開放, 汪濤, 何啟方, 邢肖麗, 姚文政, 張文靜. 花后陰雨對(duì)小麥籽粒淀粉合成和干物質(zhì)積累的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文), 2020, 28(1): 76-85
WANG M, WANG S Y, WU J J, XU K F, WANG T, HE Q F, XING X L, YAO W Z, ZHANG W J. Effects of shading and waterlogging following anthesis on starch synthesis and dry matter accumulation in wheat grain[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 76-85
中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文)2020年1期