• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrodynamic Analysis of a Spar Platform under Asymmetrical Mooring System

    2019-12-30 06:46:02-,,,,-,-
    船舶力學 2019年12期

    -,,,,-,-

    (State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian 116024,China)

    Abstract: When mining the oil and gas resources on the continental slope, the seabed topography at the location where the floating platform is located may have a relatively steep gradient,so an asymmetrical mooring system may be deployed. Based on a Spar platform, an asymmetrical mooring system is optimized to match the different anchor depth, and the horizontal stiffness of asymmetrical mooring system is relatively high. The motion response of platform and the dynamic characteristics of mooring system are compared through the coupled numerical simulation model in time domain. The results show that the response amplitude and mooring tension of platform with asymmetrical mooring system in the surge,sway and pitch are all in line with the engineering requirements,and it could improve the global motion performance of Spar platform.

    Key words:asymmetric mooring system;Spar platform;dynamic response;mooring line tension

    0 Introduction

    The South China Sea has about one third of China’s oil reserves. Its depth is generally 500-2 000 m, so the focus of oil and gas development in South China Sea is the deep sea area.The applicable depth of Spar platform is generally 500-3 000 m. It has the advantages of large draught depth, good stability and motion performance, low cost and wide application range,which make it extremely competitive in deep ocean area and ultra-deep water.

    The Spar platform has undergone three generations of development, followed by Classic Spar, Truss Spar and Cell Spar. Nowadays, most of them come into use in Gulf of Mexico. The three-generation platform structures are shown in Fig.1. Mekha et al[1]used the simplified Spar platform model with only three degrees of freedom: surge, heave and pitch. The Morison equation is used to calculate the drag resistance and the three-dimensional potential flow theory is used to calculate the inertial force. The dynamic responses of the platform are calculated and compared between the numerical results and model tests.Ran et al[2]used the numerical and experimental methods to analyze the dynamic response of truss Spar platform under different types of waves.The research shows that the low-frequency surge and pitch responses are significantly greater than the wave-frequency responses, while the presence of the ocean current could reduce the slow drift response of platform. Agarwal et al[3]used the linear Airy wave theory and Morison equation to predict the wave loads on the main body of Spar platform,and solved the iterative equation of dynamic by using the Newmark-βmethod.The integral recovery stiffness matrix is divided into three parts: the stiffness of water plane, the stiffness in the horizontal direction of nonlinear mooring system and the stiffness of vertical spring. Koo et al[4]calculated the heave and pitch responses of Spar platform under regular and irregular waves, then studied the effects of damping and additional stiffness on Matthew’s instability.The study shows that the occurrence of Matthew's instability is greatly affected by the damping, so it is necessary to accurately predict the damping of platform. Considering the effects of first-order and second-order random wave loads and time-varying displacements and transient wave heights, Liu[5]established the coupled equations of motion for the Spar platform to calculate and compare the dynamic responses of platform under different sea conditions.

    Fig.1 Three generations of Spar platform

    The mooring system is used to position the floating platform. The design of mooring system is a complex process, and the layout of mooring system is a very important factor that should be considered. Currently, the layout of mooring systems is mainly based on symmetrical arrangements. Some Spar platforms use asymmetrical arrangements on thex-axis ory-axis[6-9], where each mooring line has the same physical properties,such as material,wet weight,length,diameter,and pretension,as shown in Fig.2.Sometimes,the mooring lines of several different physical properties will also need to be used, while the sea area where the mooring system is located is not flat,thezvalue of mooring line at the seabed point will also be different.For example,Xu et al[10]used this asymmetrical mooring arrangement when studying the installation of the jacket platform, as shown in Fig.3. There is also the use of semi-submersible platforms in shallow water as a floating base near the island reef. Hou et al[11]used the software AQWA to carry out numerical simulation calculations of floating trestle bridges, and conducted comparative analysis with the results of pool tests to predict and research the motion response of single floating bridges near the island reef. Focusing on the complex island reef topography of the South China Sea,Wang et al[12]adopted an asymmetric arrangement of anchor chains and designed a mooring system that adapts to the positioning of the platform under extremely shallow water.The positioning ability is calculated and analyzed, and the feasibility of mooring system is verified. The results could provide reference for the design of platform mooring system in the extremely shallow water environment.

    Fig.2 Layout of an asymmetrical mooring system of Spar

    Fig.3 Layout of mooring system of jacket platform installation

    Through the comparative analysis of the characteristics of various types of floating platforms, combined with the characteristics of the semi-submersible platform and Truss Spar, the Deep Draft Multi-Spar(DDMS)Platform is proposed by a research team in Deepwater Engineering Research Center of Dalian University of Technology[13]. The single large-diameter column from Spar platform is separated into four relatively small-diameter columns and a closed center well is set in the middle to protect the riser from waves and currents. In the lower part of hard tank,the heave plates are arranged to improve the hydrodynamic performance of the platform.A ballast tank is installed at the bottom of platform,and four small columns are connected with the hard tank to provide good stability for the platform.The schematic diagram of DDMS platform is shown in Fig.4.The main structural parameters are shown in Tab.1.Compared with the traditional single-column Spar platform, DDMS has less difficulty of construction, transportation and installation, but larger upper deck platform area. Therefore, the cost-effectiveness of DDMS are relatively high.

    Fig.4 DDMS platform

    Tab.1 Main parameters of DDMS platform

    The research work of this paper is mainly aimed at the DDMS platform with asymmetrical mooring systems.Based on AQWA software,the hydrodynamic model of platform is established,and an asymmetrical mooring system is designed and optimized. The coupling analysis method is used to study the motion responses of DDMS platform and the dynamic characteristics of asymmetrical mooring system under irregular wave,wind and current.Meanwhile,the results are compared with the symmetrical mooring system.

    1 Solving the equation of motion

    1.1 Time-domain coupled equations of motion

    The mooring system and floating platform in the ocean are affected by the coupled effects of irregular wave,wind and current.The time domain coupling equation of motion is shown in Eq.(1).

    where,Mis the mass matrix of floating body structure;mis the additional mass matrix of floating body structure;Lis the delay function matrix of system;Cis the restoring force coefficient matrix;x(t)is the displacement vector of six degree-of-freedom of platform;andare the first-order and second-order wave loads, respectively;FwindandFcurrentare the wind loads and current loads,respectively;Fmooris the force of mooring line to the floating structure.

    1.2 Load solution

    For large-dimensional deep-water floating platforms, the high-order boundary element method is generally used for hydrodynamic solution to obtain the wave force in frequency domain.Through the inverse Fourier transform,the first-order and second-order wave force transfer functions are used to convert the frequency domain calculation results into those in the time domain.The delay function can be obtained by the inverse Fourier transform of the damping coefficients in the frequency domain,as shown in Eq.(2).

    whereλ(ω)is the damping coefficient.

    The wind load acts on the structure above the waterline of entire offshore platform.The calculation of wind load is mainly related to the wind speed and the shape of structure.The general expressions of wind force and the wind torque on the structure are shown in Equations(3)-(4).

    where,ρais the density of air;Cdis the coefficient of wind resistance;Ais the projected area of component in the wind direction;U10is the wind speed at a height of 10m above the sea surface;Lis the distance between the gravity center of platform and the center of wind force.The simplified projected area is chosen to calculate the wind load without considering the voids and mutual obscuration between components.

    Assuming that the current distribution is uniform,the general expressions of the flow forces and flow forces moment on the structure are shown in Eqs.(5)-(6).

    where,ρwis the density of seawater;Cdcis the fluid drag coefficient;Ais the projected area of component in the direction of current;Vis the velocity of current,Lis the distance between the gravity center of platform and the center of current force.

    The force of mooring system on the platform is shown in Eq.(7)

    where,K'andC'are the stiffness and damping matrix at the connection point of mooring line and platform, respectively;T'is the displacement transformation matrix between the platform gravity center and the mooring line connection point;xmis the displacement vector of mooring line and platform connection point.

    1.3 Iterative solution

    The iteration method can be used to solve the motion equation of floating body in the time domain.The motion Eq.(1)is written as the second-order differential equation as shown in Eq.(8).

    The Eq.(8)can be solved by the fourth-order Runge-Kutta method.At timet+ Δt,the displacement and velocity of platform are shown in Eqs.(9)and(10).

    where,

    2 Mooring design

    2.1 Symmetrical mooring arrangement

    At a depth of 1 500 m, a symmetrical semi-taut mooring arrangement is adopted, and 12 mooring lines are used, which are divided into four groups and arranged on four columns, respectively. Each group is separated by 90 degrees. The layout is shown in Fig.5. Each mooring line is combined by three segments that are chain, wire and chain. The material properties of each segment are shown in Tab.2. The pretension is 3 220 kN, and the coordinates of anchor points are shown in Tab.3.

    Tab.2 Material parameters of the mooring line

    Fig.5 Symmetrical mooring system layout

    Fig.6 Asymmetric mooring system layout

    Tab.3 Anchor coordinates of symmetrical mooring system at 1 500 m depth

    2.2 Optimization design of asymmetrical mooring

    The arrangement of asymmetrical mooring systems is similar to the symmetrical mooring systems,except that the anchorage depth of mooring lines#7-12 in Fig.5 is changed from 1 500 m to 1 200 m.The layout is shown in Fig.6.In order to ensure the stability of platform,the initial pretension (3 220 kN) and the pretension angle of deep water side (#1-6 mooring line) and the shallow water side(#7-12 mooring line)should be the same in the design.

    In the static analysis of mooring line, the elastic elongation and the current force on the mooring line are taken into account by using the segmented extrapolation method[14]. An asymmetry mooring system optimization applet is programmed by MATLAB. Keeping the lengths of upper and bottom chain unchanged,the length of middle wire section of mooring line is used as the variable,and the optimized length of middle wire is 1 484 m.The coordinates of anchor points are shown in Tab.4.

    The stiffness of mooring line is nonlinear and the mooring system restoring force curve is plotted to characterize the restoring force of mooring system.The symmetrical mooring system only needs to consider the restoring force inXdirection (orydirection), but the asymmetrical mooring needs to consider both inXandYdirections.As shown in Figs.7-8,it can be seen that the restoring force characteristics of these two mooring systems are relatively consistent inXdirection,whereas the asymmetrical mooring system is much larger in theYdirection. The asymmetrical mooring system has a stronger nonlinear effect,and the stiffness of asymmetrical mooring system inYdirection is much greater than that inXdirection.

    Tab.4 Anchor coordinates of asymmetrical mooring

    Fig.7 Restoring force of mooring system in X direction

    Fig.8 Restoring force of mooring system in Y direction

    3 Results and analysis

    In general[15], under the normal operating sea state conditions, the amplitude of surge response of platform should not exceed 2%-3% of water depth, the amplitude of heave motion should not exceed 3 m, and the amplitude of pitch should be less than 6°. For mooring systems, in accordance with API RP 2SK[16], the safety factor,which is the ratio of mooring line breaking strength to the maximum mooring line tension,should not be less than 1.67.The one-year return period in South China Sea is chosen as the operating sea state conditions,as shown in Tab.5.The JONSWAP wave spectrum,API wind spectrum and the uniform current distribution are used in the numerical simulation.The combinations of wind,wave and current direction are used to analyze the platform response,and the incident angle isXdirection.

    Tab.5 Environmental conditions

    3.1 Free decay test

    The main structure of DDMS platform is symmetrical about theX-axis andY-axis. The analysis mainly considers the motion response of surge,heave and pitch motions.The free decay test results in still water under the symmetrical and asymmetrical mooring systems are shown in Figs.9-11. The first 6 cycles of free decay is used to calculate the natural period and damping ratio.According to Tab.6,the natural period of surge using asymmetrical mooring is significantly smaller than that of the symmetrical mooring, while the heave and pitch are not much different.The natural period of heave motion meets the requirement of larger than 20 s. This is due to the fact that the mooring system provides a great stiffness in the horizontal direction,which can significantly reduce the natural period of surge, while the heave and pitch mainly depend on the hydrostatic stiffness of platform,and the mooring system has little influence.The asymmetricalmooring system contributes significantly to the damping ratio. The damping ratios of surge, heave and pitch increase by 2.39%,14.78% and 7.94% compared to the symmetrical mooring system,respectively.

    Tab.6 Statistics of free decay

    Fig.9 Surge decay

    Fig.10 Heave decay

    Fig.11 Pitch decay

    3.2 Motion response of platform

    The iteration time step used in the numerical simulation is 0.1 s and the simulation duration is 3 h. The motion responses statistics of platform under the symmetrical mooring and asymmetrical mooring systems are given in Tab.7.It can be seen that the motion response amplitude of platform under two types of mooring systems both can meet the engineering requirements,and the surge motion of platform under the asymmetrical mooring system is obviously smaller. Fig.12 shows the time series of motion response and the corresponding spectrum.According to the motion response spectrum, it can be seen that the peak value of motion response is between 0 and 0.2 rad/s in low frequency range, which is very small in the wave frequency range,and indicates obvious low frequency motion characteristics.

    Tab.7 Motion response of platform

    Fig.12 Motion response of platform

    3.3 Tension response of mooring lines

    For symmetrical mooring systems,the maximum mooring line tension is 3.626 MN,and the corresponding mooring number is #4, and the safety factor is 4.744. For asymmetrical mooring systems, the maximum mooring line tension is 4.030 MN, and the corresponding mooring number is#10,and the safety factor is 4.268.Therefore,the safety factor of mooring lines under both mooring systems is greater than 1.67, which meets the engineering requirements. The corresponding time series of mooring line tension and tension spectrum are shown in Fig.13.According to the tension spectrum, it can be seen that the peak value of tension under the symmetrical mooring system is in the low frequency range, while the peak value of tension under the asymmetrical mooring system is concentrated in the wave frequency range and is relatively large.This indicates that the mooring line strength requirements are higher for asymmetrical mooring systems.

    Fig.13 Tension response of mooring line

    4 Conclusions

    The mooring system plays a very important role in ensuring the safe operation of floating platform. This paper researches the response of platform motion and the mooring tension response based on the symmetric and asymmetric mooring systems, and combines them to draw conclusions as follows:

    (1) Keeping the initial pretension and the pretension angle unchanged, the asymmetrical mooring system can be optimized through only changing the length of middle segment, and the stiffness of optimized asymmetrical mooring system is greater than that of initial symmetrical mooring system in bothXandYdirections.

    (2) The asymmetrical mooring system designed in this paper can provide larger damping and obviously reduce the surge motion amplitude of platform. Besides, the motion response of platform has obvious low frequency characteristics.

    (3) The safety factor of optimized asymmetrical mooring system meets the requirements of specification,but the maximum mooring line tension is much larger.Moreover,the peak value of tension response under the symmetrical mooring system is in the low frequency range while the peak value of tension under the asymmetrical mooring system is concentrated in the wave frequency range.

    精品国产露脸久久av麻豆 | 啦啦啦啦在线视频资源| 日日摸夜夜添夜夜爱| 国产综合精华液| 一区二区三区乱码不卡18| 亚洲国产精品成人久久小说| 六月丁香七月| 国产亚洲精品久久久com| a级毛色黄片| 欧美一级a爱片免费观看看| 日韩,欧美,国产一区二区三区| av网站免费在线观看视频 | 神马国产精品三级电影在线观看| 看非洲黑人一级黄片| 国产精品久久久久久精品电影| 最新中文字幕久久久久| 日本爱情动作片www.在线观看| 久久精品夜色国产| kizo精华| 国产爱豆传媒在线观看| 2018国产大陆天天弄谢| 99热6这里只有精品| 又爽又黄a免费视频| 国产亚洲av片在线观看秒播厂 | 精品久久久久久久久久久久久| 色尼玛亚洲综合影院| 久久精品熟女亚洲av麻豆精品 | 人人妻人人澡人人爽人人夜夜 | 亚洲精品亚洲一区二区| 久久久久久久久久黄片| 男女视频在线观看网站免费| 欧美日韩亚洲高清精品| 午夜激情福利司机影院| 你懂的网址亚洲精品在线观看| 人妻一区二区av| www.av在线官网国产| 尾随美女入室| 中文在线观看免费www的网站| 天堂网av新在线| 亚洲欧美日韩东京热| 有码 亚洲区| 一区二区三区四区激情视频| 亚洲美女搞黄在线观看| 人体艺术视频欧美日本| av又黄又爽大尺度在线免费看| 大片免费播放器 马上看| 色视频www国产| 97超碰精品成人国产| 日韩一本色道免费dvd| 国产亚洲91精品色在线| 精品欧美国产一区二区三| 99热这里只有是精品50| 肉色欧美久久久久久久蜜桃 | 国产av不卡久久| 99久国产av精品国产电影| 国产色爽女视频免费观看| 成人亚洲欧美一区二区av| 亚洲综合色惰| 国产精品嫩草影院av在线观看| 亚洲在线自拍视频| 亚洲成人av在线免费| 日韩伦理黄色片| 日本爱情动作片www.在线观看| 国产一级毛片在线| 99re6热这里在线精品视频| 亚洲乱码一区二区免费版| 亚洲精品国产成人久久av| 亚洲成人久久爱视频| 小蜜桃在线观看免费完整版高清| 亚洲欧美一区二区三区黑人 | 在线播放无遮挡| 日韩av在线免费看完整版不卡| 男女国产视频网站| 免费黄色在线免费观看| 80岁老熟妇乱子伦牲交| 91aial.com中文字幕在线观看| 亚洲av电影在线观看一区二区三区 | 亚洲综合精品二区| 免费人成在线观看视频色| 两个人的视频大全免费| 麻豆国产97在线/欧美| 简卡轻食公司| 人妻一区二区av| 久久国产乱子免费精品| 大片免费播放器 马上看| 日日啪夜夜爽| 国产高潮美女av| 国产国拍精品亚洲av在线观看| 国产人妻一区二区三区在| 日韩欧美一区视频在线观看 | 成人亚洲精品av一区二区| 看免费成人av毛片| 国产不卡一卡二| 久久韩国三级中文字幕| 亚洲av成人精品一区久久| 大话2 男鬼变身卡| 舔av片在线| 国产69精品久久久久777片| 99re6热这里在线精品视频| 婷婷色综合大香蕉| 男插女下体视频免费在线播放| 成人美女网站在线观看视频| 国产高潮美女av| 日韩强制内射视频| 欧美成人午夜免费资源| 我的老师免费观看完整版| 亚洲国产欧美人成| 久久久久性生活片| 国产成人精品福利久久| 国产av不卡久久| 最近的中文字幕免费完整| 18+在线观看网站| 久久国产乱子免费精品| 国产亚洲精品久久久com| 日韩一区二区视频免费看| 午夜福利高清视频| 丝袜美腿在线中文| 在线观看人妻少妇| 亚洲精品日韩在线中文字幕| 欧美激情在线99| av福利片在线观看| 最近最新中文字幕免费大全7| 婷婷色综合www| 夜夜爽夜夜爽视频| 亚洲欧美日韩无卡精品| 2021少妇久久久久久久久久久| 日韩视频在线欧美| 蜜臀久久99精品久久宅男| 在线观看美女被高潮喷水网站| 国产精品蜜桃在线观看| 小蜜桃在线观看免费完整版高清| 中国美白少妇内射xxxbb| 街头女战士在线观看网站| 最近中文字幕高清免费大全6| 国产免费视频播放在线视频 | 亚洲电影在线观看av| 日本与韩国留学比较| 一个人免费在线观看电影| 精品99又大又爽又粗少妇毛片| 网址你懂的国产日韩在线| 欧美bdsm另类| 亚洲国产精品成人久久小说| 99久久九九国产精品国产免费| 久久久久久伊人网av| 在现免费观看毛片| 欧美+日韩+精品| 亚洲美女视频黄频| 韩国av在线不卡| 日韩,欧美,国产一区二区三区| 久久久成人免费电影| 日韩亚洲欧美综合| 国产成人freesex在线| 久久这里只有精品中国| 久久精品国产亚洲网站| 国产有黄有色有爽视频| 久久精品综合一区二区三区| 久久久久久久国产电影| 男女啪啪激烈高潮av片| 国产精品久久视频播放| 大又大粗又爽又黄少妇毛片口| 日韩av不卡免费在线播放| 日日干狠狠操夜夜爽| 久久精品国产鲁丝片午夜精品| 好男人在线观看高清免费视频| 99久国产av精品国产电影| 麻豆成人午夜福利视频| 男人狂女人下面高潮的视频| 欧美 日韩 精品 国产| 可以在线观看毛片的网站| av.在线天堂| 久久国产乱子免费精品| 国产 亚洲一区二区三区 | 亚洲内射少妇av| av女优亚洲男人天堂| 亚洲在线观看片| 99视频精品全部免费 在线| 亚洲av.av天堂| 一区二区三区四区激情视频| 久热久热在线精品观看| 成年女人看的毛片在线观看| 亚洲精品国产成人久久av| 精品久久久久久成人av| 精品人妻偷拍中文字幕| 日韩欧美精品免费久久| 不卡视频在线观看欧美| 日韩av免费高清视频| 婷婷色av中文字幕| 大话2 男鬼变身卡| 色播亚洲综合网| 国产色爽女视频免费观看| 午夜福利在线在线| 国产在视频线精品| 搞女人的毛片| 97在线视频观看| 欧美日韩亚洲高清精品| 91午夜精品亚洲一区二区三区| 国产高清有码在线观看视频| 久久这里有精品视频免费| 美女主播在线视频| 男人爽女人下面视频在线观看| 不卡视频在线观看欧美| 91久久精品国产一区二区三区| 亚洲国产成人一精品久久久| 男女啪啪激烈高潮av片| 免费观看的影片在线观看| 国产午夜精品论理片| 精品久久久久久电影网| 亚洲一区高清亚洲精品| 亚洲精品aⅴ在线观看| 一区二区三区四区激情视频| 精品国内亚洲2022精品成人| 久久这里只有精品中国| 婷婷色av中文字幕| 男人舔奶头视频| 六月丁香七月| 国产探花极品一区二区| 97在线视频观看| 亚洲图色成人| 汤姆久久久久久久影院中文字幕 | 国产成人一区二区在线| 天堂√8在线中文| 午夜精品国产一区二区电影 | 少妇被粗大猛烈的视频| 亚洲精品第二区| 人人妻人人澡人人爽人人夜夜 | 天堂网av新在线| av免费观看日本| 在线免费十八禁| 成年版毛片免费区| 深爱激情五月婷婷| 波多野结衣巨乳人妻| 国产精品av视频在线免费观看| 亚洲精品第二区| 97热精品久久久久久| 国产精品人妻久久久久久| 久久久成人免费电影| 国产精品一二三区在线看| h日本视频在线播放| 国产黄a三级三级三级人| 亚洲国产成人一精品久久久| 国产黄频视频在线观看| 能在线免费观看的黄片| 在线天堂最新版资源| 观看美女的网站| 十八禁国产超污无遮挡网站| 国产一级毛片七仙女欲春2| 国产 亚洲一区二区三区 | 久久午夜福利片| 亚洲国产精品国产精品| 国产精品久久久久久久电影| 五月玫瑰六月丁香| 99久久精品国产国产毛片| 久热久热在线精品观看| 黄色日韩在线| av国产免费在线观看| 久久韩国三级中文字幕| 久久精品国产鲁丝片午夜精品| 欧美xxⅹ黑人| 欧美精品国产亚洲| 老司机影院成人| 91精品一卡2卡3卡4卡| 99久久中文字幕三级久久日本| 国产单亲对白刺激| 自拍偷自拍亚洲精品老妇| 久久国内精品自在自线图片| 亚洲色图av天堂| 91久久精品国产一区二区三区| 免费黄频网站在线观看国产| 搡女人真爽免费视频火全软件| 三级国产精品片| 国产精品一区二区在线观看99 | 夫妻午夜视频| 在线观看免费高清a一片| 99久国产av精品| 日韩在线高清观看一区二区三区| 97人妻精品一区二区三区麻豆| 一个人观看的视频www高清免费观看| 蜜桃久久精品国产亚洲av| 美女脱内裤让男人舔精品视频| 高清av免费在线| 亚洲精品乱码久久久v下载方式| 国产精品福利在线免费观看| 韩国av在线不卡| 两个人的视频大全免费| 亚洲精品国产av成人精品| 久久鲁丝午夜福利片| 91久久精品国产一区二区三区| 亚洲在线自拍视频| 免费不卡的大黄色大毛片视频在线观看 | 三级经典国产精品| 我要看日韩黄色一级片| 国产欧美日韩精品一区二区| 国产成人精品婷婷| 又黄又爽又刺激的免费视频.| 男人舔女人下体高潮全视频| 亚洲精品中文字幕在线视频 | 久久久色成人| 精品国产一区二区三区久久久樱花 | 久久久久久久久久久免费av| 免费观看无遮挡的男女| 成人高潮视频无遮挡免费网站| 舔av片在线| 一级毛片aaaaaa免费看小| 亚洲一级一片aⅴ在线观看| 如何舔出高潮| 国产一区二区三区av在线| 国产人妻一区二区三区在| 亚洲国产高清在线一区二区三| 国产亚洲午夜精品一区二区久久 | 欧美日韩一区二区视频在线观看视频在线 | 少妇的逼好多水| 真实男女啪啪啪动态图| 亚洲av.av天堂| 成年av动漫网址| 日产精品乱码卡一卡2卡三| 久99久视频精品免费| 国产一级毛片七仙女欲春2| 国产高清有码在线观看视频| 久久鲁丝午夜福利片| 免费大片18禁| 内射极品少妇av片p| 舔av片在线| 波多野结衣巨乳人妻| 2018国产大陆天天弄谢| 成年女人在线观看亚洲视频 | 五月天丁香电影| 在线天堂最新版资源| 日韩av在线大香蕉| www.av在线官网国产| 日本免费a在线| 日日摸夜夜添夜夜添av毛片| 综合色av麻豆| 欧美一级a爱片免费观看看| 美女黄网站色视频| 亚洲图色成人| 婷婷六月久久综合丁香| 高清在线视频一区二区三区| 亚洲av.av天堂| 别揉我奶头 嗯啊视频| 男女下面进入的视频免费午夜| 成人鲁丝片一二三区免费| 久久精品人妻少妇| 最近2019中文字幕mv第一页| 亚洲精品亚洲一区二区| 国产视频内射| 国产 一区精品| 美女高潮的动态| 免费看a级黄色片| 国产中年淑女户外野战色| 人妻夜夜爽99麻豆av| 禁无遮挡网站| 寂寞人妻少妇视频99o| 99久久精品国产国产毛片| 全区人妻精品视频| 18禁裸乳无遮挡免费网站照片| 色网站视频免费| 午夜福利视频精品| 在线a可以看的网站| 嫩草影院新地址| 国产探花极品一区二区| 69av精品久久久久久| 伊人久久精品亚洲午夜| 成人午夜高清在线视频| 看十八女毛片水多多多| 性插视频无遮挡在线免费观看| 少妇高潮的动态图| 欧美成人一区二区免费高清观看| 欧美区成人在线视频| 天天躁日日操中文字幕| 最近中文字幕2019免费版| 天天躁日日操中文字幕| 高清午夜精品一区二区三区| 99久久精品国产国产毛片| 亚洲电影在线观看av| 高清欧美精品videossex| 精品熟女少妇av免费看| 精品欧美国产一区二区三| av在线蜜桃| 在线 av 中文字幕| 男的添女的下面高潮视频| 水蜜桃什么品种好| 自拍偷自拍亚洲精品老妇| 韩国高清视频一区二区三区| 国产精品无大码| 亚洲一区高清亚洲精品| 少妇丰满av| 中文字幕制服av| 久久精品久久久久久噜噜老黄| 亚洲国产成人一精品久久久| 久久99热这里只有精品18| av线在线观看网站| 亚洲国产av新网站| 丝袜喷水一区| 天堂√8在线中文| 欧美潮喷喷水| 亚洲最大成人av| 中国美白少妇内射xxxbb| 国产综合精华液| 天天一区二区日本电影三级| 日日摸夜夜添夜夜爱| 人人妻人人澡人人爽人人夜夜 | 内射极品少妇av片p| 日日干狠狠操夜夜爽| 欧美激情久久久久久爽电影| av卡一久久| 国产男女超爽视频在线观看| 春色校园在线视频观看| 1000部很黄的大片| 免费黄色在线免费观看| 91av网一区二区| 一级av片app| 看非洲黑人一级黄片| 色尼玛亚洲综合影院| av免费在线看不卡| 亚洲三级黄色毛片| 搡老乐熟女国产| 亚洲性久久影院| 成人午夜高清在线视频| 九九在线视频观看精品| 好男人在线观看高清免费视频| 成年女人看的毛片在线观看| 国产黄色视频一区二区在线观看| 亚洲真实伦在线观看| 国产精品伦人一区二区| 亚洲av成人精品一二三区| 高清在线视频一区二区三区| 国产国拍精品亚洲av在线观看| 少妇的逼水好多| 中国国产av一级| 中文资源天堂在线| 九色成人免费人妻av| 亚洲天堂国产精品一区在线| 亚洲av中文av极速乱| 天天躁日日操中文字幕| 中文字幕av在线有码专区| 97超视频在线观看视频| 亚洲图色成人| 成人国产麻豆网| 99热这里只有精品一区| 97人妻精品一区二区三区麻豆| 午夜福利在线观看吧| 秋霞伦理黄片| 又大又黄又爽视频免费| 国产乱来视频区| 国产午夜福利久久久久久| 观看美女的网站| 国产又色又爽无遮挡免| 国产精品一区二区三区四区久久| 成年av动漫网址| 美女主播在线视频| 女人被狂操c到高潮| 天天躁夜夜躁狠狠久久av| 亚洲四区av| 精品不卡国产一区二区三区| av在线播放精品| 久久久久久久久久成人| 我要看日韩黄色一级片| 成人午夜精彩视频在线观看| 97超视频在线观看视频| 国产欧美另类精品又又久久亚洲欧美| 啦啦啦韩国在线观看视频| 乱人视频在线观看| 亚洲av二区三区四区| 午夜精品在线福利| 日产精品乱码卡一卡2卡三| 18禁动态无遮挡网站| 国产成人免费观看mmmm| 日韩欧美一区视频在线观看 | 人人妻人人澡人人爽人人夜夜 | 国产男女超爽视频在线观看| 成人性生交大片免费视频hd| 黄片无遮挡物在线观看| 亚洲久久久久久中文字幕| 五月玫瑰六月丁香| 国产伦一二天堂av在线观看| 97热精品久久久久久| 久久久久久九九精品二区国产| 婷婷色av中文字幕| 丰满人妻一区二区三区视频av| 赤兔流量卡办理| 亚洲欧美日韩卡通动漫| 欧美xxⅹ黑人| 麻豆av噜噜一区二区三区| 日韩精品有码人妻一区| 免费观看精品视频网站| 嫩草影院新地址| 国产有黄有色有爽视频| 久久精品国产亚洲网站| 日本与韩国留学比较| 麻豆乱淫一区二区| 亚洲人与动物交配视频| 亚洲自拍偷在线| 极品少妇高潮喷水抽搐| 国产精品爽爽va在线观看网站| 欧美不卡视频在线免费观看| 亚洲av免费高清在线观看| 午夜福利在线在线| 午夜精品国产一区二区电影 | 免费大片18禁| 国产有黄有色有爽视频| 三级国产精品片| 精品久久久久久电影网| 国产在线男女| av卡一久久| av网站免费在线观看视频 | 国内精品美女久久久久久| 成年免费大片在线观看| 一级毛片 在线播放| 免费看不卡的av| 亚洲欧美日韩卡通动漫| 纵有疾风起免费观看全集完整版 | 男人舔奶头视频| 欧美高清性xxxxhd video| 国产成人福利小说| 女人久久www免费人成看片| 大香蕉97超碰在线| 亚洲av中文av极速乱| 91精品国产九色| 亚洲av免费在线观看| 麻豆成人av视频| 亚洲精品国产av成人精品| 免费高清在线观看视频在线观看| 国产在视频线在精品| 综合色av麻豆| 久久久久久久久久人人人人人人| 韩国av在线不卡| 免费av毛片视频| 欧美高清成人免费视频www| 国产免费视频播放在线视频 | 欧美成人精品欧美一级黄| 精品午夜福利在线看| 国产探花极品一区二区| 久久久久网色| 久久精品久久久久久噜噜老黄| 免费人成在线观看视频色| 女人十人毛片免费观看3o分钟| 国产高潮美女av| 久久久久久久国产电影| 国国产精品蜜臀av免费| 免费无遮挡裸体视频| 亚洲成人久久爱视频| 久久这里只有精品中国| 欧美高清成人免费视频www| 丰满少妇做爰视频| freevideosex欧美| 乱码一卡2卡4卡精品| 99九九线精品视频在线观看视频| 亚洲国产高清在线一区二区三| 超碰97精品在线观看| 国产精品国产三级国产av玫瑰| 看黄色毛片网站| av国产久精品久网站免费入址| 日韩av在线免费看完整版不卡| 亚洲精品一区蜜桃| 国产精品爽爽va在线观看网站| 最近中文字幕2019免费版| 成年免费大片在线观看| 国产一区亚洲一区在线观看| 天天一区二区日本电影三级| 成人性生交大片免费视频hd| 国产伦精品一区二区三区视频9| 国产成人午夜福利电影在线观看| 好男人视频免费观看在线| 日韩电影二区| 亚洲av二区三区四区| 免费观看性生交大片5| 国产精品久久久久久av不卡| 亚洲av成人精品一区久久| 国产午夜福利久久久久久| 日韩不卡一区二区三区视频在线| 九九久久精品国产亚洲av麻豆| 熟女人妻精品中文字幕| 欧美激情久久久久久爽电影| 高清av免费在线| 观看免费一级毛片| 国产黄片美女视频| 男女那种视频在线观看| 亚洲精品,欧美精品| 在线免费十八禁| 夜夜看夜夜爽夜夜摸| 亚洲四区av| 精品熟女少妇av免费看| 久久草成人影院| 又大又黄又爽视频免费| 日本三级黄在线观看| 国产成人91sexporn| 天堂影院成人在线观看| 国产精品国产三级国产av玫瑰| 成人午夜精彩视频在线观看| 成人午夜高清在线视频| 日韩一本色道免费dvd| 尤物成人国产欧美一区二区三区| 最近视频中文字幕2019在线8| 熟女电影av网| 国产精品久久久久久久久免| 日韩av免费高清视频| 一个人看的www免费观看视频| 免费在线观看成人毛片| 国产 亚洲一区二区三区 | 哪个播放器可以免费观看大片| 亚洲三级黄色毛片| 卡戴珊不雅视频在线播放| 午夜日本视频在线| 精品人妻一区二区三区麻豆| 在线观看美女被高潮喷水网站| 午夜福利网站1000一区二区三区| 中文字幕亚洲精品专区| 丰满乱子伦码专区| 九九在线视频观看精品| 蜜桃亚洲精品一区二区三区| 国产亚洲午夜精品一区二区久久 | 一级毛片黄色毛片免费观看视频| 99热这里只有是精品在线观看| 亚洲国产欧美在线一区| 国产成人精品福利久久|