• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The category of upper bounded bifinite posets

    2019-12-26 09:51:30LiJiboChenYanchangZhangHaixia

    Li Jibo,Chen Yanchang,Zhang Haixia

    (1.School of Mathematics and Statistics,Anyang Normal University,Anyang 455000,China;2.College of Mathematics and Information Science,He′nan Normal University,Xinxiang 453007,China)

    Abstract:In this paper,some results about D-precontinuous or D-prealgebraic posets and D△-continuous functions are summarized and supplemented.The category BFBP,in which objects are upper bounded bifinite posets and arrows are D△-continuous functions between them,is shown to be cartesian closed.

    Keywords: D-precontinuous posets,D-prealgebraic posets,D△-continuous functions,Cartesian closed categories

    1 Introduction

    The study of cartesian closed categories has received considerable attention in the study of domain theory.Related issues were dealt with in reference[1-8].Because the category DOM of domains and Scott continuous maps is not cartesian closed,many researchers looked for full subcategories of DOM,and in particular for maximal ones.References[2-3]successfully identified all maximal cartesian closed full subcategories of DOM.Among the maximal ones is the category of FS-domains.Later,the category of bifinite domains is considered in reference[9].

    Classically,domain theory is based on the investigation ofdcpos in which every directed set has a least upper bound.However,there are important ordered structures which fail to be dcpos and more and more occasions to study posets which are not directed complete.To get rid of the restriction to directed sets,in references[10-11]generalized the concept of FS-domains and bifinite domains to the FS-posets and B-posets,respectively.Some elementary results about FS-posets,B-posets and relevant categories have been obtained in reference[10].In reference[12],the authors introduced the concept of finitely separated and upper bounded posets and proved that the category FSBP is cartesian closed in which objects are finitely separated and upper bounded posets,and arrows areD△-continuous functions between them.To make the study deeper,in this paper,some results aboutD-precontinuous orD-prealgebraic posets andD△-continuous functions are summarized and supplemented.The category BFBP is shown to be cartesian closed,in which objects are upper bounded bifinite posets and arrows areD△-continuous functions(or,Scott continuous functions by Proposition 2.1)between them.

    2 Preliminaries

    LetPbe a poset andYa subset ofP.We denote the set{x∈P|?y∈Y,x≤y}by↓Y,and the set↑Yis defined dually.IfY=↓Y,thenYis called a downset or lower set;the dual is an upset or upper set.In particular,the set↓x=↓{x}(resp.,↑x=↑{x})is called the principal ideal(resp.,principal dual ideal)generated by the elementx.The cut operator△onPis defined by△Y=∩{↓x|x∈P,Y?↓x}for everyY?P.

    For a posetP,letAPdenote the collection of all lower subsets ofPandDPthe collection of all directed subsets ofP.The cut operator△gives rise to a standard completionD△PofP:D△P={Y∈AP|D∈DPandD?Yimply△D?Y}.Note that△X∈D△Pfor everyX?P.TheD-below ideal generated by an elementy∈Pis the set?Dy=∩{D∈DP∩AP|y∈△D}.Forx,y∈P,we writex?Dyifx∈?Dy,that is,D∈DPandy∈△Dimplyx∈↓D.Obviously,theD-below relation is an auxiliary relation in the sense of[1].An elementx∈Psatisfyingx?Dxis calledD-compact.The subset of allD-compact elements is denoted byKDP.A posetPis calledD-precontinuous if?Dy∈DPandy=∨?Dyfor eachy∈P.If↓y∩KDP∈DPandy= ∨(↓y∩KDP)for everyy∈P,thenPis said to beD-prealgebraic.It is clear that everyD-prealgebraic poset isD-precontinuous.

    Lemma 2.1A posetPisD-precontinuous provid∨ed that,for everyy,one can find a directed setDof elementsd?Dysuch thaty=D.

    ProofLetu?Dy,v?Dy.Thenu≤duandv≤dvfor somedu,dv∈D.Pickd∈Dsuch thatdu≤danddv≤d.Thenu≤d,v≤dandd?Dy.Thus?Dyis directed.Sincey= ∨Dand any upper bound of?Dyis an upper bound ofD,we know thaty=∨?Dy.The remaining part of the statement is easy.

    Let us note that aD-precontinuous(resp.,D-prealgebraic)dcpo is just a domain(resp.,algebraic domain),but aD-precontinuous(resp.,D-prealgebraic)poset is not the same thing as a continuous(resp.,algebraic)poset in the sense of[1],for example,the Euclidean plane R2under the usual order is a continuous poset,but it is not aD-precontinuous poset and the poset Z2under the usual order is an algebraic poset,but it is not aD-prealgebraic poset.

    Turn to certain classes of functions between two posets.Letfbe a function between posetsPandQ.The functionfis calledD△-continuous iff?1(Y)∈D△Pfor allY∈D△Q,and weaklyD△-continuous if at leastf?1(↓x)∈D△Pfor allx∈Q.

    Proposition 2.1[12-13]For a functionfbetween posetsPandQ,consider the following conditions:

    (1)fisD△-continuous;

    (2)fis weaklyD△-continuous;

    (3)f(△D)?△f(D)for eachD∈DP;

    (4)f(∨D)= ∨f(D)for everyD∈DPwhich has a join inP.

    The implications(1)?(2)?(3)?(4)are true,and(3)?(4)holds ifPisD-prealgebraic.

    Proposition 2.2LetSbe aD-precontinuous poset andp:S→SaD△-continuous projection.Then the imagep(S)with the order induced fromSis aD-precontinuous poset,too.Forx,y∈p(S),

    ProofLety∈p(S)be given.AsSisD-precontinuous,the setis directed and∨.SincepisD△-continuous,we know from Proposition 2.1 that it preserves directed joins,whenceis directed and.Asy∈p(S),we havep(y)=y.In accordance with Lemma 2.1,for theD-precontinuity ofp(S),it suffices to prove thatp(u)wheneveru.For this,letube an element ofSsuch thatu.Consider any directed subsetD?p(S)such thaty∈△D.Asu,we can find ad∈Dsuch thatu≤d.Thenp(u)≤p(d)=dby the monotonicity and idempotency ofp.This shows thatp(u).For the second part of the claim,letx,y∈p(S)such thatx.Asby the above,there is au∈Swithusuch thatx≤p(u).The converse has already been shown in the first part of the proof.

    Proposition 2.3LetPbe a poset andS=δ(P)the image of aD△-continuous kernel operatorδ:P→P.Then an elementx∈SisD-compact inSi ffxisD-compact inP,that isKD(S)=S∩KD(P).

    ProofAs in the proof of Proposition 2.2,we see that for an elementx∈S,xisD-compact inSwhen it isD-compact inP.For the converse,letx∈SbeD-compact inS.Consider any directed subsetD?Psuch thatx∈△D.Under the hypothesis thatδ:P→Pis aD△-continuous kernel operator,we getδ(D)is a directed subset ofSandx=δ(x)∈δ(△D)?△δ(D).AsxisD-compact inS,there exists ad∈Dsuch thatx≤k(d).Sinceδis a kernel operator,we havex≤d.This shows thatxisD-compact inP.

    Henceforth,we restrict our considerations to upper bounded posets,which guarantees that in directed productsR×S,the cut operator satisfies△(Y1×Y2)=△Y1×△Y2forY1?RandY2?S.Generally speaking,this equation is false,as is shown in the Euclidean plane R2.

    LetS,Tbe posets and denote theD△-continuous function space by[S→T]Dor simply by[S→T].Forf,g∈[S→T],we definef≤gi fff(x)≤g(x)for eachx∈S.Then[S→T]is a poset.

    Lemma 2.2[12]GivenD△-continuous mapsδ∈[R→R]andε∈[S→S]on upper bounded posets.Then the mapδ×ε:R×S→R×S,(r,s)7→(δ(r),ε(s))is againD△-continuous.

    Proposition 2.4[12]LetR,Sbe upper bounded posets,then the evaluation mape:[R→S]×R→S,(f,r)7→f(r)isD△-continuous.

    Proposition 2.5[12]LetRbe an arbitrary poset andS,Tbe upper bounded posets,then the composition mapc:[S→T]×[R→S]→[R→T],(f,g)7→f?gisD△-continuous.

    Proposition 2.6[12]LetR,S,Tbe upper bounded posets,and defineE,Fby

    Then the bijectionsEandFinduce mutually inverse isomorphisms between the upper bounded posets[(R×S)→T]and[R→[S→T]].

    3 The category upper bounded bifinite posets

    Recall that for a posetS,a△-approximate identity is a directed setD?[S→S]satisfying ∨D=idS,the identity onS.AD△-continuous functionδ:S→Sis finitely separating if there exists a finite setFδ?Ssuch that for eachx∈S,there is ay∈Fδwithδ(x)≤y≤x.A posetSis finitely separated if there is a△-approximate identity forSconsisting of finitely separating functions.

    Lemma 3.1[12]LetPbe a poset.Ifδ∈[P→P]is finitely separating,thenδ(x)?Dxfor allx∈P.

    Definition 3.1AD-prealgebraic finitely separated poset is called a bifinite poset.A bifinite upper bounded poset will be called a BFB-poset.

    Proposition 3.1For an upper bounded posetP,the following properties are equivalent.

    (1)Pis a bifinite poset;

    (2)Pis aD-prealgebraic poset and has a△-approximate identity consisting of functions with finite range;

    (3)Phas a△-approximate identity consisting of kernel operators with finite range.

    ProofThe implication(2)?(1)is immediate.For the implication(3)?(2),it suffices to show that(3)implies thatPisD-prealgebraic.For this,letDbe a directed set ofD△-continuous kernel operators with finite range such that∨D=idP.Then the setS={δ(x)|δ∈D}is directed.The greatest element ofPis denoted by 1P.Next,we will show that the join of the setSexists and isx.It is very clear thatxis an upper bound ofS.Suppose thatuis an arbitrary upper bound ofS.Define a maph:P→Pas follows:

    Thenhis well defined.It is clear thathisD△-continuous andδ≤hfor everyδ∈D.Thus∨D≤hin[P→P].As∨D=idP,we havex=(∨D)(x)≤h(x)=u.This shows thatx= ∨S.As the imageim δ={δ(x)|x∈P}ofδ∈Dis finite,all of its elements areD-compact in the finite posetim δ.From Proposition 2.3,it follows that all the elements ofim δareD-compact inP.Thus,everyx∈Pis the join of a directed set ofD-compact elements and we have shown thatPisD-prealgebraic.

    Now establish that(1)implies(3).LetDbe a△-approximate identity onPsuch that eachδ∈Dis finitely separating.For eachδ∈D,setGδ={k∈P|δ(k)=k}.Note that it must be the case thatGδ?Fδ,which is the finite separating set,and hence,Gδis finite.Moreover,all elements ofGδareD-compact by Lemma 3.1.

    We claim that for eachx∈P,there exists a largest member ofGδin↓x.In fact,we can pick a minimal elementzof↓x∩Fδsince↓x∩Fδis a nonempty finite set under the hypothesis thatδis finitely separating.Then there exists a member ofFδbetweenδ(z)andδ(δ(z)),and this must bezby minimality ofz.It follows thatz=δ(z).Thus↓x∩Gδ?.

    Letk1,k2∈↓x∩Gδ.Thenki=δ(ki)≤δ(x)fori=1,2.There existsy∈Fδsuch thatδ(x)≤y≤x,and thuski≤y≤xfori=1,2.Pick a minimal elementk∈↓x∩Fδsuch thatki≤kfori=1,2.Thenki=δ(δ(ki))≤δ(δ(k))≤δ(k)fori=1,2.Asδis finitely separating,there must be an element ofFδbetweenδ(δ(k))andδ(k),and this element must be equal tokby minimality ofk.It follows thatδ(k)=k.Thus the finite set↓x∩Gδis directed,and hence,it must have a largest element.

    Forδ∈D,defining a functionkδbykδ(x)is the largest compact elementk≤xsuch thatδ(k)=k.The preceding paragraphs guarantee the existence of such a function.One verifies easily thatkδis aD△-continuous kernel operator with finite range.Also the family{kδ|δ∈D}is directed,since asδbecomes larger,the setGδof fixed-points grows.Next,we will show that the join of the family{kδ|δ∈D}exists and it is equal to idP,that is{kδ|δ∈D}is a△-approximate identity.For this,letx∈P.In casex∈KD(P),sinceDis a△-approximate identity,there existsη∈Dsuch thatδ(x)=xfor anyδ≥η,and hence,x=∨{kδ(x)|δ∈D}.In casex/∈KD(P).AsPisD-prealgebraic,we obtainx= ∨(↓x∩KD(P)).From Proposition 2.1,it follows thatkδ(x)= ∨kδ(↓x∩KD(P)).Note that

    Define a functionf:P→Pbyf(x)= ∨{kδ(x)|δ∈D}.ThenfisD△-continuous and hence,∨{kδ|δ∈D}=f=idP.

    Proposition 3.2IfRandSare BFB-posets,thenR×Sand[R→S]are also BFB-posets.

    ProofIt is obvious thatR×Sand[R→S]are upper bounded posets.LetDandEbe△-approximate identity forRandS,respectively,consisting of kernel operators with finite range(see Proposition 3.1(3)).By Lemma 2.2,δ×εisD△-continuous for anyδ∈D,ε∈E.ThenD×E={δ×ε|δ∈D,ε∈E}clearly is a△-approximate identity forR×Sconsisting of functions with finite range andR×SisD-prealgebraic,thusR×Sis a BFB-poset by Proposition 3.1.Next we will show that[R→S]is a BFB-poset.For this,letδ∈Dandε∈E.Define a self-map

    and denoteD⊙E={δ·ε|δ∈D,ε∈E}.Forδ1·ε1andδ2·ε2inD⊙E,there existδ3∈Dandε3∈Esuch thatδ1≤δ3,δ2≤δ3,ε1≤ε3andε2≤ε3.By monotonicity of the involved functions,it follows thatδi·εi≤δ3·ε3fori=1,2.Therefore,D⊙Eis a directed set.

    Iterated application of Proposition 2.5 and related simpler continuity arguments show that the compositeg 7→δ·εisD△-continuous.For eachg∈[R→S],r∈R,we infer

    that is,∨D⊙E=1[S→T].Thus,the familyD⊙Eis a△–approximate identity for[S→T].Asδandεare idempotent,the same follows forδ·εand consequently this is a kernel operator.Its range is finite,as it can be viewed to be the set of all monotone maps from the finite posetim δinto the finite posetim ε.Thus,D⊙Eis a△-approximate identity on[R→S]consisting of kernel operators with finite range,which implies that[R→S]is a BFB-poset.

    Proposition 3.3LetR,S,Tbe BFB-posets,and defineE,Fby

    Then the bijectionsEandFinduce mutually inverse isomorphisms between the BFB-posets[(R×S)→T]and[R→[S→T]].

    ProofThis follows immediately from Proposition 2.6 and Proposition 3.2.

    Now we are ready to study the category BFBP of all BFB-posets andD△-continuous maps between them.Given a BFB-posetS,the preceding results give rise to two functors from the category BFBP to the category SET of sets:

    The product functor?×S:BFBP→SET sends each objectRof BFBP toR×Sand each morphismf:R→R′tof×idS.

    The exponent functor[S→?]:BFBP→SET sends each objectTof BFBP to[S→T]and each morphismf:T→T′tof??:[S→T]→[S→T′].

    Proposition 3.3 indicates that for three objectsR,S,Tin BFBP,the contravariant hom-functorshom(?×S,T)andhom(?,[S→T])from BFBPopto SET are naturally isomorphic,and the hom-functorshom(R×S,?)andhom(R,[S→?])from BFBP to SET are naturally isomorphic,too(refer to reference[13]for background on homfunctors).In all,the following isomorphismEis natural inRandT:

    In fact,leth:R′→Randk:T→T′.Then for anyf:R×S→T,an easy direct computation yieldsE(f?h×idS)=E(f)?handE(k?f)=[S→?](k)?E(f).For the first equality,givenr′∈R′,s∈S,we have:

    For the second equality,givenr∈R,s∈S,we have:

    Summarizing the previous facts,we arrive at

    Theorem 3.1The category BFBP is cartesian closed.

    ProofIn the category BFBP,any singleton poset is a terminal object.Each pair of objectsRandShas a productR×Swith the obvious projectionsp1∈[R×S→R]andp2∈[R×S→S].

    LetR,S,Tbe three objects in the category BFBP.There is an object[R→S]and an arrowe∈[[S→T]×S→T]with the property that for any arrowf:[R×S→T],there is a unique arrowE(f)∈[R→[S→T]]such that the composite

    is justfby Proposition 2.4 and Proposition 3.3.Thus the category BFBP is cartesian closed.

    精品人妻1区二区| 一级毛片我不卡| 亚洲精品日本国产第一区| 每晚都被弄得嗷嗷叫到高潮| 午夜福利,免费看| 男女之事视频高清在线观看 | 国产成人精品久久二区二区免费| 男人舔女人的私密视频| 大香蕉久久网| 69精品国产乱码久久久| 在线观看国产h片| 色婷婷久久久亚洲欧美| 成年av动漫网址| 一本一本久久a久久精品综合妖精| 美女大奶头黄色视频| 人人妻人人澡人人看| 久久ye,这里只有精品| 手机成人av网站| tube8黄色片| 成人亚洲精品一区在线观看| 久久这里只有精品19| 久久99热这里只频精品6学生| 99热全是精品| 国产精品二区激情视频| 日本午夜av视频| 久久综合国产亚洲精品| 亚洲精品中文字幕在线视频| 国产伦理片在线播放av一区| 丝袜人妻中文字幕| 久久热在线av| 悠悠久久av| 午夜福利,免费看| 丝袜人妻中文字幕| 一级毛片女人18水好多 | 国产国语露脸激情在线看| 亚洲精品久久午夜乱码| 在线亚洲精品国产二区图片欧美| 90打野战视频偷拍视频| 性少妇av在线| 亚洲国产最新在线播放| 亚洲国产毛片av蜜桃av| 水蜜桃什么品种好| 两人在一起打扑克的视频| 久久久久久久精品精品| 亚洲国产欧美日韩在线播放| 国产精品.久久久| 亚洲天堂av无毛| 91老司机精品| 男人舔女人的私密视频| 久久久国产精品麻豆| 99精品久久久久人妻精品| 欧美大码av| 国产亚洲av高清不卡| 国产不卡av网站在线观看| 1024视频免费在线观看| 黑人欧美特级aaaaaa片| 午夜视频精品福利| 国产精品一区二区在线观看99| 亚洲av成人精品一二三区| 99国产精品99久久久久| 在线观看人妻少妇| 久久99一区二区三区| 国产男人的电影天堂91| 欧美精品啪啪一区二区三区 | 91成人精品电影| 成人亚洲欧美一区二区av| 国产成人一区二区三区免费视频网站 | 欧美国产精品va在线观看不卡| av在线老鸭窝| 亚洲av欧美aⅴ国产| 午夜久久久在线观看| 亚洲欧美中文字幕日韩二区| 午夜福利,免费看| 如日韩欧美国产精品一区二区三区| 黄色a级毛片大全视频| 亚洲精品中文字幕在线视频| 国产男女超爽视频在线观看| 一级片'在线观看视频| 亚洲国产精品成人久久小说| 亚洲精品一二三| 嫁个100分男人电影在线观看 | 精品国产一区二区三区久久久樱花| 日本vs欧美在线观看视频| 亚洲国产欧美网| av在线app专区| 一级毛片黄色毛片免费观看视频| 国产成人啪精品午夜网站| 一级a爱视频在线免费观看| 免费看不卡的av| 只有这里有精品99| 美女福利国产在线| 国产真人三级小视频在线观看| 亚洲av日韩在线播放| 欧美日韩亚洲国产一区二区在线观看 | 日韩 欧美 亚洲 中文字幕| 交换朋友夫妻互换小说| 青青草视频在线视频观看| 午夜视频精品福利| 亚洲av日韩在线播放| 多毛熟女@视频| 少妇 在线观看| 久久亚洲国产成人精品v| 青草久久国产| 啦啦啦视频在线资源免费观看| 精品亚洲乱码少妇综合久久| 欧美在线一区亚洲| 免费在线观看日本一区| 亚洲av成人不卡在线观看播放网 | 一本—道久久a久久精品蜜桃钙片| 超碰成人久久| 国产一卡二卡三卡精品| 日本色播在线视频| 夜夜骑夜夜射夜夜干| 青春草视频在线免费观看| 视频在线观看一区二区三区| 丁香六月欧美| 久久久国产欧美日韩av| 久久精品成人免费网站| 免费在线观看日本一区| 久久国产精品男人的天堂亚洲| av网站免费在线观看视频| 久久ye,这里只有精品| 亚洲精品中文字幕在线视频| 亚洲av电影在线进入| 久久久久国产一级毛片高清牌| 欧美精品亚洲一区二区| 在线天堂中文资源库| 精品国产一区二区久久| 丝袜脚勾引网站| kizo精华| 一级毛片 在线播放| 欧美精品啪啪一区二区三区 | 国产免费现黄频在线看| 亚洲国产中文字幕在线视频| 在线亚洲精品国产二区图片欧美| 国产福利在线免费观看视频| 久久久久久久精品精品| 男女午夜视频在线观看| 久久精品成人免费网站| 亚洲国产最新在线播放| 免费在线观看完整版高清| av福利片在线| 黄色视频在线播放观看不卡| 亚洲av美国av| 极品人妻少妇av视频| 亚洲精品日本国产第一区| 亚洲精品一二三| 99热国产这里只有精品6| 一本大道久久a久久精品| 精品人妻熟女毛片av久久网站| 婷婷色综合大香蕉| 曰老女人黄片| 尾随美女入室| 大码成人一级视频| 久久久久久久大尺度免费视频| 成在线人永久免费视频| 中文字幕最新亚洲高清| 久久久国产欧美日韩av| 后天国语完整版免费观看| 亚洲av片天天在线观看| 美女中出高潮动态图| 亚洲五月婷婷丁香| 9191精品国产免费久久| 一区福利在线观看| 男人操女人黄网站| 成年人午夜在线观看视频| 欧美激情 高清一区二区三区| 欧美日韩一级在线毛片| 在线 av 中文字幕| www.999成人在线观看| 亚洲伊人久久精品综合| 建设人人有责人人尽责人人享有的| 国产三级黄色录像| 国产成人啪精品午夜网站| 飞空精品影院首页| 中文字幕另类日韩欧美亚洲嫩草| 黄色a级毛片大全视频| 亚洲少妇的诱惑av| 欧美精品一区二区免费开放| 女性被躁到高潮视频| 国产成人一区二区在线| 91麻豆av在线| 蜜桃国产av成人99| cao死你这个sao货| 日日夜夜操网爽| 一个人免费看片子| 99香蕉大伊视频| 老司机影院成人| 中文字幕人妻丝袜一区二区| 熟女少妇亚洲综合色aaa.| 日韩一区二区三区影片| 亚洲七黄色美女视频| 久久国产精品人妻蜜桃| 巨乳人妻的诱惑在线观看| 在线观看免费日韩欧美大片| 欧美国产精品va在线观看不卡| 深夜精品福利| 国产成人啪精品午夜网站| 三上悠亚av全集在线观看| 男女免费视频国产| 看免费av毛片| 蜜桃在线观看..| 日韩制服骚丝袜av| 国产精品久久久久久精品古装| 美女脱内裤让男人舔精品视频| 成人影院久久| 精品人妻1区二区| 婷婷色麻豆天堂久久| 少妇猛男粗大的猛烈进出视频| 日韩 欧美 亚洲 中文字幕| 日本色播在线视频| 99热全是精品| 国产成人精品无人区| 久久99热这里只频精品6学生| 国产成人系列免费观看| 人人妻人人澡人人看| 亚洲欧美一区二区三区国产| 欧美日韩亚洲综合一区二区三区_| 伦理电影免费视频| 少妇精品久久久久久久| 日本午夜av视频| 曰老女人黄片| 日韩熟女老妇一区二区性免费视频| 欧美日韩亚洲国产一区二区在线观看 | 欧美日本中文国产一区发布| 欧美日韩亚洲国产一区二区在线观看 | www.av在线官网国产| 美女扒开内裤让男人捅视频| 新久久久久国产一级毛片| 国产黄频视频在线观看| 国产深夜福利视频在线观看| 青草久久国产| 侵犯人妻中文字幕一二三四区| 亚洲av电影在线进入| 久久午夜综合久久蜜桃| 天天影视国产精品| 国产国语露脸激情在线看| 侵犯人妻中文字幕一二三四区| 亚洲人成77777在线视频| 成人18禁高潮啪啪吃奶动态图| 97在线人人人人妻| 别揉我奶头~嗯~啊~动态视频 | 午夜福利乱码中文字幕| 亚洲成国产人片在线观看| 国产精品久久久久久精品古装| 久久精品国产a三级三级三级| 国产精品av久久久久免费| 天堂8中文在线网| 国产又爽黄色视频| 少妇人妻久久综合中文| 999久久久国产精品视频| 亚洲激情五月婷婷啪啪| 女性被躁到高潮视频| 国产免费现黄频在线看| 校园人妻丝袜中文字幕| 国产伦理片在线播放av一区| 久久久久精品国产欧美久久久 | av视频免费观看在线观看| 99热网站在线观看| 悠悠久久av| 日韩av不卡免费在线播放| av电影中文网址| 成年人免费黄色播放视频| 亚洲精品国产一区二区精华液| av线在线观看网站| 中文字幕人妻熟女乱码| 国产精品久久久久久精品古装| 国产精品久久久久久人妻精品电影 | 欧美日韩一级在线毛片| 黄网站色视频无遮挡免费观看| 色94色欧美一区二区| av天堂久久9| 在线观看一区二区三区激情| 国产97色在线日韩免费| 日韩制服丝袜自拍偷拍| 观看av在线不卡| 国产视频一区二区在线看| 精品免费久久久久久久清纯 | 亚洲国产精品一区二区三区在线| 在线观看免费高清a一片| 国产91精品成人一区二区三区 | 亚洲国产av影院在线观看| 久久久精品区二区三区| 嫁个100分男人电影在线观看 | 免费观看a级毛片全部| 九色亚洲精品在线播放| 久久99一区二区三区| 9191精品国产免费久久| 波野结衣二区三区在线| 亚洲中文日韩欧美视频| 九草在线视频观看| 脱女人内裤的视频| 欧美人与善性xxx| 夫妻午夜视频| 欧美黑人欧美精品刺激| av天堂久久9| 久久狼人影院| 国产男人的电影天堂91| 免费少妇av软件| 99久久精品国产亚洲精品| 国产无遮挡羞羞视频在线观看| 少妇裸体淫交视频免费看高清 | 亚洲精品一卡2卡三卡4卡5卡 | 亚洲国产欧美一区二区综合| 色婷婷久久久亚洲欧美| 满18在线观看网站| 五月天丁香电影| 99国产综合亚洲精品| 国产成人免费无遮挡视频| 亚洲国产精品999| 一边亲一边摸免费视频| 精品人妻一区二区三区麻豆| 视频区图区小说| 婷婷成人精品国产| 成人黄色视频免费在线看| 精品少妇一区二区三区视频日本电影| 天天躁夜夜躁狠狠久久av| 色婷婷久久久亚洲欧美| 亚洲一码二码三码区别大吗| 在现免费观看毛片| 亚洲七黄色美女视频| 女人爽到高潮嗷嗷叫在线视频| 女性生殖器流出的白浆| 亚洲欧美日韩高清在线视频 | 成年动漫av网址| 成人国产av品久久久| 国语对白做爰xxxⅹ性视频网站| 女人久久www免费人成看片| 两个人看的免费小视频| 高清视频免费观看一区二区| 国产精品一区二区免费欧美 | 久久性视频一级片| 激情视频va一区二区三区| 久久免费观看电影| 久久国产精品影院| 免费高清在线观看视频在线观看| 99热全是精品| 国产精品成人在线| 国产成人欧美| 久久精品久久久久久噜噜老黄| 黄网站色视频无遮挡免费观看| 色精品久久人妻99蜜桃| 一边摸一边做爽爽视频免费| 久久性视频一级片| 美女视频免费永久观看网站| 美女主播在线视频| 自线自在国产av| 精品国产乱码久久久久久小说| 黄色 视频免费看| 两性夫妻黄色片| 天堂俺去俺来也www色官网| 最新的欧美精品一区二区| 精品福利观看| 国产成人精品无人区| 热99国产精品久久久久久7| 国产亚洲精品久久久久5区| 丰满少妇做爰视频| 国产有黄有色有爽视频| 老司机亚洲免费影院| 日本a在线网址| 不卡av一区二区三区| 免费观看av网站的网址| 男人爽女人下面视频在线观看| 国产免费福利视频在线观看| 下体分泌物呈黄色| 18在线观看网站| 亚洲欧美激情在线| 波多野结衣一区麻豆| 美女视频免费永久观看网站| 国产国语露脸激情在线看| 亚洲专区中文字幕在线| 一区二区av电影网| 久久久久久人人人人人| 老司机午夜十八禁免费视频| 新久久久久国产一级毛片| av片东京热男人的天堂| av在线app专区| 欧美黄色淫秽网站| 丝袜喷水一区| 熟女少妇亚洲综合色aaa.| 一区福利在线观看| 搡老乐熟女国产| 免费看不卡的av| 青春草亚洲视频在线观看| 久久久欧美国产精品| 国产人伦9x9x在线观看| 黄片小视频在线播放| 亚洲国产精品一区三区| 亚洲精品美女久久av网站| av在线播放精品| 国产精品.久久久| 国产成人精品久久二区二区免费| 精品国产乱码久久久久久男人| 午夜福利影视在线免费观看| 99国产精品一区二区蜜桃av | 女警被强在线播放| av天堂在线播放| 操美女的视频在线观看| 欧美97在线视频| 色综合欧美亚洲国产小说| 久久国产精品男人的天堂亚洲| 2018国产大陆天天弄谢| 精品一品国产午夜福利视频| 国产日韩一区二区三区精品不卡| 日本黄色日本黄色录像| 午夜日韩欧美国产| 成年美女黄网站色视频大全免费| 下体分泌物呈黄色| 国产精品成人在线| 伊人久久大香线蕉亚洲五| 极品人妻少妇av视频| 一个人免费看片子| 亚洲欧洲日产国产| 深夜精品福利| 国精品久久久久久国模美| 午夜福利免费观看在线| 夜夜骑夜夜射夜夜干| 男女下面插进去视频免费观看| 日韩 亚洲 欧美在线| 婷婷色麻豆天堂久久| 妹子高潮喷水视频| 亚洲欧洲国产日韩| 搡老岳熟女国产| 爱豆传媒免费全集在线观看| 国产av一区二区精品久久| 欧美大码av| 国产欧美日韩精品亚洲av| 少妇猛男粗大的猛烈进出视频| 最近中文字幕2019免费版| 欧美国产精品va在线观看不卡| 国产精品 国内视频| 99热全是精品| 18禁黄网站禁片午夜丰满| 女人高潮潮喷娇喘18禁视频| 高清av免费在线| 久久毛片免费看一区二区三区| 精品一区二区三区av网在线观看 | 亚洲精品一区蜜桃| 大片电影免费在线观看免费| 宅男免费午夜| 日日摸夜夜添夜夜爱| 色网站视频免费| 亚洲精品日本国产第一区| 国产黄色免费在线视频| 999久久久国产精品视频| 十分钟在线观看高清视频www| 50天的宝宝边吃奶边哭怎么回事| 亚洲人成网站在线观看播放| av国产精品久久久久影院| 夫妻性生交免费视频一级片| 曰老女人黄片| 午夜av观看不卡| 国产在线一区二区三区精| 大码成人一级视频| 亚洲成人国产一区在线观看 | 99精国产麻豆久久婷婷| 欧美精品亚洲一区二区| 69精品国产乱码久久久| av在线老鸭窝| 制服人妻中文乱码| 五月开心婷婷网| 国产在视频线精品| 一级,二级,三级黄色视频| 婷婷成人精品国产| 成人国产av品久久久| 国产福利在线免费观看视频| 国产亚洲一区二区精品| 国产一区二区在线观看av| 精品一区二区三卡| 我的亚洲天堂| 国产有黄有色有爽视频| 欧美成人午夜精品| 日本wwww免费看| 国产精品久久久av美女十八| 中国国产av一级| 亚洲av日韩精品久久久久久密 | 亚洲精品美女久久av网站| 精品久久久精品久久久| 亚洲精品自拍成人| 国产欧美日韩一区二区三区在线| 777米奇影视久久| 黄片小视频在线播放| 中文字幕高清在线视频| 亚洲黑人精品在线| 婷婷色av中文字幕| 亚洲成国产人片在线观看| 国产欧美日韩一区二区三 | 精品久久久精品久久久| 免费看十八禁软件| www.自偷自拍.com| 夫妻午夜视频| 美女高潮到喷水免费观看| 无限看片的www在线观看| 国产黄色免费在线视频| 99久久人妻综合| 一级片'在线观看视频| 国产精品二区激情视频| 中文字幕精品免费在线观看视频| 亚洲人成电影观看| 老熟女久久久| 男女国产视频网站| 亚洲av电影在线进入| 国产精品99久久99久久久不卡| 99香蕉大伊视频| 国产又爽黄色视频| 校园人妻丝袜中文字幕| 国产成人精品久久久久久| 一边摸一边做爽爽视频免费| 日本vs欧美在线观看视频| 考比视频在线观看| 精品少妇内射三级| 麻豆av在线久日| 成人国产一区最新在线观看 | 国产欧美亚洲国产| 亚洲一区中文字幕在线| 最黄视频免费看| 精品一区二区三卡| 亚洲,一卡二卡三卡| 久久精品国产亚洲av高清一级| 国产精品国产三级国产专区5o| 精品国产一区二区久久| 国产精品国产av在线观看| 在线观看免费高清a一片| 精品福利永久在线观看| 悠悠久久av| 午夜激情久久久久久久| 久久鲁丝午夜福利片| 在线 av 中文字幕| 精品熟女少妇八av免费久了| 久久精品熟女亚洲av麻豆精品| 亚洲精品久久午夜乱码| 亚洲一码二码三码区别大吗| 久久久久久人人人人人| 免费久久久久久久精品成人欧美视频| 美女高潮到喷水免费观看| 欧美日韩av久久| 视频区图区小说| 国产av一区二区精品久久| 丝袜美足系列| 日韩av不卡免费在线播放| 国产深夜福利视频在线观看| 国产视频首页在线观看| 久久中文字幕一级| 超碰97精品在线观看| 国产精品人妻久久久影院| 精品人妻熟女毛片av久久网站| 老司机影院成人| 最黄视频免费看| 国产主播在线观看一区二区 | 人成视频在线观看免费观看| 晚上一个人看的免费电影| av网站在线播放免费| 国产一区二区激情短视频 | 欧美变态另类bdsm刘玥| 午夜日韩欧美国产| 欧美日韩成人在线一区二区| 少妇精品久久久久久久| 脱女人内裤的视频| 电影成人av| 亚洲精品一区蜜桃| 9色porny在线观看| 最近最新中文字幕大全免费视频 | av又黄又爽大尺度在线免费看| 捣出白浆h1v1| 手机成人av网站| 日本wwww免费看| 亚洲成人国产一区在线观看 | 91国产中文字幕| 少妇精品久久久久久久| av国产精品久久久久影院| 久久久久久久久久久久大奶| 亚洲精品一区蜜桃| 黄片播放在线免费| 久久99一区二区三区| 男人舔女人的私密视频| 成人影院久久| 天堂中文最新版在线下载| 中文字幕制服av| 精品一区在线观看国产| 免费观看人在逋| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲午夜精品一区二区久久| 黑丝袜美女国产一区| 国产无遮挡羞羞视频在线观看| 2018国产大陆天天弄谢| 老司机影院毛片| 欧美日韩黄片免| 亚洲国产中文字幕在线视频| 夫妻性生交免费视频一级片| 久久久久久免费高清国产稀缺| 午夜激情久久久久久久| 亚洲av电影在线进入| 久久久久久免费高清国产稀缺| 熟女少妇亚洲综合色aaa.| 天天添夜夜摸| 免费在线观看影片大全网站 | 巨乳人妻的诱惑在线观看| 久久国产亚洲av麻豆专区| 亚洲人成电影观看| 美女午夜性视频免费| 大片免费播放器 马上看| 久久九九热精品免费| 新久久久久国产一级毛片| 脱女人内裤的视频| 亚洲av国产av综合av卡| 在线观看一区二区三区激情| 国产免费视频播放在线视频| 久久久久久久久久久久大奶| 精品亚洲成国产av| 丁香六月欧美| 精品福利永久在线观看| 悠悠久久av| xxx大片免费视频| 欧美黄色片欧美黄色片| 黄片播放在线免费|