• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Fine AlN Powders by Foamed Precursor-assisted Carbothermal Reduction-nitridation Method

    2019-12-24 09:25:52MAOXiXiXUYongGangMAOXiaoJianZHANGHaiLongLIJunWANGShiWei
    無機(jī)材料學(xué)報(bào) 2019年10期
    關(guān)鍵詞:鋁粉氮化硅酸鹽

    MAO Xi-Xi, XU Yong-Gang, MAO Xiao-Jian, ZHANG Hai-Long, LI Jun, WANG Shi-Wei

    Synthesis of Fine AlN Powders by Foamed Precursor-assisted Carbothermal Reduction-nitridation Method

    MAO Xi-Xi1,2,3, XU Yong-Gang1,2,3, MAO Xiao-Jian1,2, ZHANG Hai-Long2, LI Jun1, WANG Shi-Wei1,2

    (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. CAS Key Laboratory of Transparent and Opto-functional Advanced Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China)

    A modified carbothermal reduction-nitridation (CRN) method was proposed to synthesize fine AlN particles using-Al2O3and sucrose as raw materials which were pre-treated as cellular foams. The reaction procedure and the produced AlN were investigated by XRD, SEM and TEM. XRD result suggests that-Al2O3transferred into AlN without transformation into-Al2O3. HRTEM shows that-Al2O3particles are covered by amorphous carbon from sucrose inhibiting the transformation of-Al2O3from-Al2O3in the synthesis procedure. The foamed structure is of benefit to the diffusion of N2and the produced CO. The minimum reaction temperature is 1450 ℃ for full conversion of Al2O3to AlN. SEM photographs show the particle size of synthesized AlN is 50 nm. This study demonstrated an efficient way to synthesize fine AlN powders which are urgently required for the manufacture of advanced AlN ceramics.

    aluminum nitride; foams; particles; synthesis

    Aluminum nitride (AlN) is one of the most important advanced ceramics and an ideal substrate material for semiconductor package because of the remarkably high thermal conductivity, low dielectric constant, high elec-trical resistivity, high mechanical strength, and low the-rmal expansion coefficient that matches well with sili-con[1-4]. As well known, the property of the advanced cer-amics are critically influenced by the characterization of raw powders. The manufacture of advanced AlN ceram-ics is the same case. It is still a challenge to fabricate high quality AlN powders with efficient sintering activity. Presently, the most practical method to synthesize AlN ceramic powders is the carbothermal reduction-nitridation (CRN) of Al2O3[5]. Compared with direct nitridation from aluminum[6], the CRN process is more appropriate to synthesize AlN powder, since it produces powders with high purity, high uniformity, high yield and low cost[7-10]. However, the CRN process requires high synthesis temperature[11], which leads to particle growth and agglutination. Furthermore, it is important to mix carbon and alumina particles in a very small scale, because the CRN reaction is the reaction involved two solid phases. Otherwise, much higher temperature and longer time are necessary in order to convert all Al2O3into AlN[12-14].

    In order to decrease the synthesis temperature and time, much attention was attracted on using fine alumina and carbon particles or precursors. For example,-Al2O3[15], Al(OH)3[16], and-AlOOH[16]were used instead of-Al2O3. And nano-sized carbon particle was used to replace graphite particles. However, their effects are very limited in the respect of synthesis temperature and particle size. Other research work focused on applying soluble precursors which may transform into alumina and carbon afterwards. The idea is that the mixture of solution could reach atom level, compared with the mixture of solid particles. Mylinh,[17]prepared AlN particles using phenol resin as precursor at a temperature above 1700 ℃. Baik,[18]employed sucrose as carbon source and converted Al2O3fully to AlN at 1600 ℃. Chu,[19]prepared Al/C precursor by combustion synthesis using a mixed solution of aluminum nitrate, glucose, and urea, which was then nitrided into pure AlN at 1500 ℃. Jung,[20]obtained AlN particles by calcining basic dicarboxylate Al(III) complexes under flowing nitrogen at 1450 ℃ for 15 h. These efforts focused on reactants, but didn’t effectively decrease the synthesis temperature. The reason is that it is difficult for nitrogen to diffuse into the interior of the reactant through the gap between the sub-micron particles, as well as for CO escaping as by-product. Besides, the using of aluminum organics lead to much higher cost which will, of course, restrict the application of obtained AlN powders.

    To accelerate the reaction, the diffusion of N2into the interphase draws our attention. Recently, we employed a slurry foaming method, which is normally used to make ceramic foams[21-22], to prepare porous-Al2O3/carbon foam, where plenty of connected pores act as channels for N2transportation during the following CRN procedure[23]. In this method, Al2O3starts to transfer to AlN at 1400 ℃, and is completely converted at 1550 ℃ for only 2 h.

    In the present work, we combined the foaming tech-nology with sucrose as carbon source to ensure all-Al2O3particles are covered by the resulting carbon. Excessive sucrose was used in order to form residual carbon to avoid the particle growth and agglutination of AlN powders. The effects of reaction temperature and sucrose/Al2O3ratio on the nitridation rate and morphology of AlN powder were investigated.

    1 Experimental

    Commercial-Al2O3with the average particle size of 13 nm (purity 99.99%, specific surface area 120 m2/g, Dalian Hiland Photoelectric Material Co., Dalian, China), and sucrose (C12H22O11, purity 99.5%; Sinopharm Che-mical Reagent Co., Ltd., Shanghai, China) were used as starting raw materials. The weight ratio of sucrose to alumina was 2.0. The corresponding carbon addition is 1.2 times of that required for the reduction of alumina. The existence of excess carbon, which originally covered on alumina particles, is expected to separate the formed AlN particles to avoid the agglutination. The forming procedure was described elsewhere[23]. Sucrose,-Al2O3, and copolymers of isobuthylene and maletic anhydride[24-25](Isobam104# and Isobam600AF, Kuraray; Osaka, Japan) were dispersed in deionized water. Then, Emal TD (triethanolamine laurylsulfate, with 40% active content, Kao Chemical Co., Tokyo, Japan) was added into the mixed slurries, which were then vigorously stirred for 3 min to generate foams. After gelation and drying, the sucrose/Al2O3precursor foams were pyrolysed for 1 h at 1000 ℃ with a heating rate of 10 ℃/min in flowing N2in a graphite furnace (High-Multi 10000, Fujidempa Kogyo Co., Tokyo, Japan). Following CRN reaction was carried out at 1250–1600 ℃ for 2 h. After synthesis, residual carbon in the nitridation product was removed by firing at 650 ℃ in air for 6 h.

    The crystalline phase of the synthesized products was examined by X-ray diffraction (XRD, D8-Advance A25, Bruker Co., Karlsruhe, Germany) with Cu Kα radiation and a scan speed of 0.1 (°)/s. The AlN conversion fraction was determined on the basis of the relatively peak intensity of the AlN phase in XRD patterns. The morphologies of the products were observed by scanning electron microscopy (SEM, Hitachi, S-4800, Tokyo, Ja-pan). A field-emission transmission electron microscope (TEM, JEM-2100F, JEOL, Japan) was used for high resolution transmission electron microscopy (HRTEM). Differential thermal analysis/thermo gravimetric analysis of sucrose was studied in N2using a thermal analyzer (TG/DTA, Netzsch, STA449C, Germany). The oxygen content of the resultant AlN powder was measured by Oxygen-Azote mensuration equipment (TC600C, Leco Co., Chicago, America).

    2 Results and discussions

    In order to confirm the carbonization of sucrose, the TG/DTA curves of sucrose pyrolysis procedure from room temperature to 1000 ℃ in N2atmosphere is presented in Fig. 1. Two endothermic peaks take place at 172.9 and 219.4 ℃, revealing the carbonization of sucrose with a carbon yield of 21.41wt% according to the TG curve. The corresponding carbon addition is about 1.2 times of that required for the reduction of alumina, which agrees well with the design.

    The SEM images of the foam heated at 1000 ℃ in N2are shown in Fig. 2(a). The pyrolysis foam sustains the cellular structure of the precursor foam, where large number of spherical cells and interconnected windows act as the transportation channels for N2and the by- product CO. Fig. 2(b) shows the microstructure of the produced foam after CRN reaction at 1550℃. It could be observed that the struts and walls of the cells become loose with more interconnected windows.

    Fig. 3 shows X-ray diffraction patterns of the products from the foam with sucrose/Al2O3ratio of 2.0. It can be clearly seen that only-Al2O3phase is detected in the sample heated at 1300 ℃, which implies that the produced carbon is amorphous and the nitridation reaction did not occurr at this temperature. The diffraction peaks of AlN start appearing at 1350 ℃, and become stronger as the heating temperature increases. When the heating temperature is higher than 1450 ℃, only AlN diffraction peaks are detected, which infers that all alumina is transferred to AlN. It is notable that in the temperature range of 1300–1400 ℃, the unreacted alumina exists as-Al2O3instead of-Al2O3. It suggests that in the present case-Al2O3is transferred into AlN without any transformation into-Al2O3. However, in our previous work where nano-sized carbon black was used, all-Al2O3was changed to-Al2O3at 1300 ℃, which is consistent with the thermal stability of-Al2O3in literature that-Al2O3is transferred to-Al2O3at around 1200 ℃[26]. This phenomenon probably originates from the C/-Al2O3core shell structure.

    Fig. 1 DTA and TG analysis of sucrose pyrolysis procedure from room temperature to 1000℃ in N2 atmosphere

    Fig. 2 SEM images of the foam heated at (a) 1000 and (b) 1550 ℃ with sucrose/Al2O3 ratio of 2.0

    Fig. 3 XRD patterns of the sucrose/Al2O3 powders synthesized at different temperatures

    Fig. 4 shows morphologies of the corresponding particles synthesized at different temperatures. Fig. 4(a) is the microstructure of products after pyrolysis where the CRN reaction didn’t happen yet as indicated by the XRD results in Fig. 3. There are shuttle-like dark particles which are surrounded by the gray carbon decomposed from sucrose. The dark particles should be-Al2O3which remains until 1300 ℃ as shown in Fig. 3. In Fig. 4(b), however, it can be found that the dark particles have spherical shape with a diameter about 20 nm. The change of particle morphology relates to the transformation of Al2O3to AlN, which is confirmed by XRD results. As the synthesis temperature increases to 1450 and 1550 ℃, the diameters of the spherical particles increase to about 50 and 200 nm, as shown in Fig. 4(c, d). It is noted that the AlN particles are separated by the residual carbon, which could avoid the growth of AlN, because carbon are very stable in the synthesis temperature range.

    Fig. 4 TEM images of particles heated at different temperatures

    (a) 1250 ℃; (b) 1350 ℃; (c) 1450 ℃; (d) 1550 ℃

    The HRTEM image of the particles after pyrolysis at 1250 ℃ is shown in Fig. 5(a) with a selective electron diffraction spot pattern indicated in Fig. 5(b). The periodic lattice in Fig. 5(a) has a periodic distance of 0.458 nm, which is proximate to the interplanar distance of {111} plane of-Al2O3. The diffraction spots in Fig. 5(b) is consistent with the diffraction pattern of the-Al2O3phase along the [011] zone axis, with spots corresponding to crystal plane {111} and {400}. It is obvious that the inside dark particles are-Al2O3, which is consistent with the XRD results (Fig. 3). The-Al2O3particles are covered by amorphous carbon with the boundary appearing a quasi-ordered structure, with an interplanar distance thickness of 0.395 nm. The boundary layer is considered as the critical factor for the existence of-Al2O3at high temperature. Confined by the boundary layer, the growth of-Al2O3is prevented even the temperature is over 1200 ℃. Hence, the nucleation of-Al2O3becomes difficult. Another reason might be attributed to the surface energy barrier from the interlayer.

    Fig. 5 (a) HRTEM image of particles synthesized at 1250 ℃ and (b) selective electron diffraction pattern

    The formation of AlN is directly from-Al2O3in the present study, which has much larger specific surface area than that of-Al2O3. Compared with our previous study[23], this transformation procedure is beneficial to the CRN reaction. Fig. 6 shows the microstructures of the AlN particles synthesized at different temperatures after de-carbon calcination. The particle size increases from about 50 nm to 200 nm as the reaction temperature raises from 1450 ℃ to 1600 ℃, which are much smaller than that reported in previous study[23], where the average AlN particles size is 300 nm when synthesized at 1450 ℃.

    In an early study where sucrose was also used as carbon source[18], the minimum reaction temperature for full conversion of Al2O3to AlN is 1600 ℃, even a fine and reactive precursor boehmite was used. The high reaction temperature results in agglutination of the produced AlN particles. The lower minimum full conversion temperature at 1450 ℃ in our study, which could be attributed to porous structure of foamed precursor, is the key to gain fine particle size. The interconnected channels make it possible that the rapid diffusion of N2and easy removal of produced CO, eliminating the screening effect of CO[11]. Considering the chemical reaction formula of the CRN, lower pressure of CO corresponds to lower energy barrier for the AlN formation and thus higher reaction rate[27].

    Fig. 6 SEM photographs of the AlN powders synthesized at different temperatures for 2 h

    (a) 1450 ℃; (b) 1500 ℃; (c) 1550 ℃; (d) 1600 ℃

    Table 1 Nitrogen and oxygen content of AlN powders with various sucrose/Al2O3 ratios and synthesizing at 1550℃

    The nitrogen and oxygen content of the AlN powder synthesized at 1550 ℃ with different sucrose/Al2O3weight ratio are also investigated and are listed in Table 1. An increase of nitrogen from 29.3wt% to 30.2wt% can be seen with the oxygen decreasing from 2.4wt% to 1.6wt% when sucrose/Al2O3weight ratio increases from 2.0 to 3.0. Taken the low cost and non-pollution of sucroseand the simple starting materials mixing process into consideration, the current modified CRN process shows great potential for a convenient and efficient method to fabricated AlN powder.

    3 Conclusions

    AlN powders were synthesized by the novel sucrose/-Al2O3foam assisted CRN method. The inter-connected channels in the foam structure facilities N2and CO diffusion and supplies larger effective reaction area. The-Al2O3particles, covered by the pyrolytic carbon from sucrose, convert directly to AlN without the appearance of-Al2O3. The residual carbon from extra sucrose can effectively avoid the growth of AlN particles. Size controllable AlN particles from 50 nm to 200 nm can be obtained by correspondingly varying the synthesis temperature from 1450 ℃ to 1600 ℃.

    [1] TAYLOR K M, LENIE CAMILLE. Some properties of aluminum nitride., 1960, 107(4): 308–314.

    [2] VIRKAR ANIL-V, JACKSON T-BARRETT, CUTLER RAYMOND-A. Thermodynamic and kinetic effects of oxygen removal on the thermal-conductivity of aluminum nitride., 1989, 72(11): 2031–2042.

    [3] BAIK Y, DREW R A W, Aluminum nitride: processing and applications., 1996, 122: 553–570.

    [4] JACKSON T-BARRETT, VIRKAR ANIL-V, MORE KARREN-L,High-thermal-conductivity aluminum nitride ceramics: the effect of thermodynamic, kinetic, and microstructural factors., 1997, 80(6): 1421–1435.

    [5] SELVADURAY G, SHEET L. Aluminium nitride: review of synthesis methods., 1993, 9(6): 463–473.

    [6] TAJIKA MASAHIKO, RAFANIELLO WILLIAM, NIIHARA KOICHI. Sintering behavior of direct nitrided AlN powder., 2000, 46(23): 98–104.

    [7] HASHIMOTO NOBORU, YODEN HIROYOSHI, DEKI SHIGE-HITO. Effect of milling treatment on the particle size in the prepa-ration of AIN powder from aluminum poly-nuclear complexes., 1993, 76(2): 438–442.

    [8] PATHAK LOKESH-CHANDRA, RAY AJOY-KUMAR, DAS SAMAR,Carbothermal synthesis of nanocrystalline aluminum nitride powders., 1999, 82(1): 257–260.

    [9] GAO ZHI-FANG, WAN YI-ZAO, XIONG GUANG-YAO,Synthesis of aluminum nitride nanoparticles by a facile urea glass route and influence of urea/metal molar ratio., 2013, 280: 42–49.

    [10] NIU JING, SUZUKI SHOTA, YI XUEMEI,Fabrication of AlN particles and whiskerssalt-assisted combustion synthesis., 2015, 41(3): 4438–4443.

    [11] FORSLUND B, ZHENG J. Carbothermal synthesis of aluminium nitride at elevated nitrogen pressures., 1993, 28: 3125–3131.

    [12] QIN MING-LI, DU XUE-LI, LI ZI-XI,Synthesis of aluminum nitride powder by carbothermal reduction of a combustion synthesis precursor., 2008, 43(11): 2954–2960.

    [13] JUNG WOO-SIK. Synthesis of aluminum nitride powder from-alumina nanopowders under a mixed gas flow of nitrogen and hydrogen., 2012, 38(1): 871–874.

    [14] KIM KYUNG-IN, CHOI SUNG-CHURL, KIM JIN-HO,Synthesis and characterization of high-purity aluminum nitride nanopowder by RF induction thermal plasma., 2014, 40(6): 8117–8123.

    [15] TSUGE A, INOUE H, KASORI M,Raw material effect on AlN powder synthesis from Al2O3carbothermal reduction., 1990, 25: 2359–2361.

    [16] CHO Y W, CHARLES J A. Synthesis of nitrogen ceramic powder by carbothermal reduction-nitridation Part 3 aluminium nitride., 1991, 7(6): 495–504.

    [17] MYLINH DANG-THY, YOON DAE-HO, KIM CHANG-YEOUL. Aluminum nitride formation from aluminum oxide/phenol resin solid-gel mixture by carbothermal reduction nitridation method., 2015, 60(2): 1551–1555.

    [18] BAIK YOUNGMIN, SHANKER KARTIK, MCDERMID JOSEPH-R,Carbothermal synthesis of aluminum nitride using sucrose., 1994, 77(8): 2165–2172.

    [19] CHU AI-MIN, QIN MINGLI, DIN RAFIUD,Effect of urea on the size and morphology of AlN nanoparticles synthesized from combustion synthesis precursors., 2012, 530: 144–151.

    [20] JUNG WOO-SIK, AHN SANG-KYEUNG. Synthesis of aluminum nitride by a modified carbothermal reduction and nitridation method using basic dicarboxylate Al (III) complexes Al(OH)(C+2H2nO4)?H2O (=3,6,8)., 2001, 21: 79–85.

    [21] YANG YAN, SHIMAI SHUNZO, SUN YI,Fabrication of porous Al2O3ceramics by rapid gelation and mechanical foaming., 2013, 28(15): 2012–2016.

    [22] ZHANG XIAO-QIANG, SUN YI, SHIMAI SHUNZO Z,Effect of water-soluble epoxy resin on microstructure and properties of porous alumina ceramics by gel-casting., 2015, 30(10): 1085–1088.

    [23] MAO XI-XI, LI JUN, ZHANG HAI-LONG,Synthesis of AlN powder by carbothermal reduction-nitridation of alumina/ carbon black foam., 2017, 32(10): 1115–1120.

    [24] YANG YAN, SHIMAI SHUNZO, WANG SHI-WEI. Room- temperature gelcasting of alumina with a water-soluble copolymer., 2013, 28(11): 1512–1516.

    [25] SUN YI, SHIMAI SHUNZO, PENG XIANG,A method for gelcasting high-strength alumina ceramics with low shrinkage., 2014, 29(2): 247–251.

    [26] LEVIN IGOR, BRANDON DAVID. Metastable alumina polymorphs: crystal structures and transition sequences., 1998, 81(8): 1995–2012.

    [27] Wang QI, Cui WEI, Ge YI-YAO,. Preparation of spherical AlN granules directly by carbothermal reduction-nitridation method., 2015,98(2): 392–397.

    碳熱還原氮化法結(jié)合泡沫前驅(qū)體制備超細(xì)氮化鋁粉體

    茅茜茜1,2,3, 徐勇剛1,2,3, 毛小建1,2, 張海龍2, 李軍1, 王士維1,2

    (1. 中國科學(xué)院 上海硅酸鹽研究所, 高性能陶瓷和超微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室, 上海 200050; 2. 中國科學(xué)院上海硅酸鹽研究所, 中國科學(xué)院光功能無機(jī)材料重點(diǎn)實(shí)驗(yàn)室, 上海 200050;3. 中國科學(xué)院大學(xué), 北京 100049)

    本研究使用改良的碳熱還原氮化法合成超細(xì)氮化鋁粉體。以氧化鋁和蔗糖作為鋁源和碳源, 先預(yù)處理制備成多孔泡沫, 再通過碳熱還原氮化法合成氮化鋁粉體。反應(yīng)過程和產(chǎn)物通過X射線衍射分析、SEM和TEM確定。X射線衍射分析表明整個(gè)反應(yīng)過程不存在氧化鋁的相轉(zhuǎn)變。高分辨透射電子顯微鏡顯示-Al2O3顆粒被無定型碳包裹, 從而抑制了-Al2O3到-Al2O3的相轉(zhuǎn)變。泡沫的多孔結(jié)構(gòu)促進(jìn)了氮?dú)獾臄U(kuò)散和反應(yīng)副產(chǎn)物的釋放, 使得最低反應(yīng)溫度降低至1450 ℃。SEM結(jié)果表明得到的氮化鋁顆粒粒徑大約為50 nm。本研究合成的氮化鋁粉體可用于制備高熱導(dǎo)氮化鋁陶瓷。

    氮化鋁; 泡沫; 粉體; 合成

    TQ174

    A

    2019-01-28;

    2019-05-12

    National Key R&D Program of China (2017YFB0310500); National Natural Science Foundation of China (51772309)

    MAO Xi-Xi (1991?), female, candidate of Master degree. E-mail: 112113192@qq.com

    MAO Xiao-Jian, professor. E-mail: maoxiaojian@mail.sic.ac.cn; WANG Shi-Wei, professor. E-mail: swwang51@ mail.sic.ac.cn

    1000-324X(2019)10-1123-05

    10.15541/jim20190055

    猜你喜歡
    鋁粉氮化硅酸鹽
    納米鋁粉的反應(yīng)性研究進(jìn)展及趨勢
    礦化劑對硅酸鹽水泥煅燒的促進(jìn)作用
    氮化鋁粉末制備與應(yīng)用研究進(jìn)展
    納米材料改性硅酸鹽水泥研究進(jìn)展
    納米鋁粉對RDX基炸藥爆速的影響
    火工品(2019年1期)2019-04-29 03:03:44
    XD超級氮化催滲劑的運(yùn)用
    以氮化鎵/氮化鋁鎵超晶格結(jié)構(gòu)優(yōu)化氮化銦鎵LED
    電子制作(2018年12期)2018-08-01 00:47:48
    鉬酸鹽與硅酸鹽復(fù)合鈍化膜耐蝕性的研究
    基于20 L球形爆炸裝置的微米級鋁粉爆炸特性實(shí)驗(yàn)
    40CrH鋼氣體軟氮化-后氧化復(fù)合處理的組織性能
    上海金屬(2016年2期)2016-11-23 05:34:32
    一区二区三区四区激情视频| 色5月婷婷丁香| 亚洲av二区三区四区| 蜜臀久久99精品久久宅男| 午夜激情久久久久久久| 国产综合精华液| 99久国产av精品国产电影| 国产91av在线免费观看| 亚洲人成网站在线观看播放| 亚洲精品视频女| 日韩三级伦理在线观看| 免费观看的影片在线观看| 国产欧美日韩一区二区三区在线 | 午夜免费鲁丝| a 毛片基地| 国产69精品久久久久777片| 赤兔流量卡办理| av在线蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 日本爱情动作片www.在线观看| 99热6这里只有精品| 国产成人a区在线观看| 国产熟女欧美一区二区| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲精品久久久com| 高清在线视频一区二区三区| 国产av码专区亚洲av| 日韩精品有码人妻一区| 91精品国产国语对白视频| 国产v大片淫在线免费观看| 欧美高清成人免费视频www| 久久女婷五月综合色啪小说| 日韩不卡一区二区三区视频在线| 18禁在线播放成人免费| 久久久久国产精品人妻一区二区| 精品久久久噜噜| 国产精品久久久久久久电影| 国产一区亚洲一区在线观看| 国产精品久久久久久精品电影小说 | 黄色一级大片看看| 最新中文字幕久久久久| 六月丁香七月| 亚洲av不卡在线观看| 久久av网站| 亚洲av国产av综合av卡| 99九九线精品视频在线观看视频| 韩国高清视频一区二区三区| 在线精品无人区一区二区三 | a级毛色黄片| 成人综合一区亚洲| 国产乱人视频| 美女xxoo啪啪120秒动态图| 男人爽女人下面视频在线观看| 老女人水多毛片| 九九在线视频观看精品| 一本—道久久a久久精品蜜桃钙片| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三区在线 | 国产深夜福利视频在线观看| 成人高潮视频无遮挡免费网站| 少妇人妻一区二区三区视频| 观看美女的网站| 性色av一级| 色5月婷婷丁香| 日本与韩国留学比较| 亚洲av电影在线观看一区二区三区| 亚洲人与动物交配视频| 国产又色又爽无遮挡免| 午夜福利高清视频| 伦理电影免费视频| 亚洲精品456在线播放app| 久久久久久久久久成人| 日韩伦理黄色片| 91精品国产国语对白视频| 免费黄网站久久成人精品| 99国产精品免费福利视频| 日产精品乱码卡一卡2卡三| 欧美国产精品一级二级三级 | av在线app专区| h日本视频在线播放| 久久99热这里只有精品18| av卡一久久| 国产在线一区二区三区精| 一个人看视频在线观看www免费| 久久国产乱子免费精品| 亚洲婷婷狠狠爱综合网| 久久国产精品男人的天堂亚洲 | 在线免费观看不下载黄p国产| 日韩欧美一区视频在线观看 | 久久久久视频综合| 国内精品宾馆在线| 久久精品熟女亚洲av麻豆精品| 午夜福利高清视频| 亚洲av电影在线观看一区二区三区| 水蜜桃什么品种好| 亚洲精品一二三| 国产亚洲5aaaaa淫片| 国产精品女同一区二区软件| 晚上一个人看的免费电影| 亚洲久久久国产精品| 蜜臀久久99精品久久宅男| 偷拍熟女少妇极品色| 亚洲精品第二区| 日韩在线高清观看一区二区三区| 日本与韩国留学比较| 久久99热这里只频精品6学生| 女的被弄到高潮叫床怎么办| 精品熟女少妇av免费看| 丰满乱子伦码专区| 特大巨黑吊av在线直播| 亚洲国产高清在线一区二区三| 日韩三级伦理在线观看| 久久人人爽人人片av| 色5月婷婷丁香| 少妇被粗大猛烈的视频| 天天躁日日操中文字幕| 国产亚洲av片在线观看秒播厂| 熟女电影av网| 国产男人的电影天堂91| 建设人人有责人人尽责人人享有的 | 亚洲精品亚洲一区二区| 一级二级三级毛片免费看| 日本黄大片高清| 视频区图区小说| 18禁裸乳无遮挡免费网站照片| tube8黄色片| 三级国产精品欧美在线观看| 日本猛色少妇xxxxx猛交久久| 狂野欧美激情性bbbbbb| 国产一级毛片在线| 99国产精品免费福利视频| 国产极品天堂在线| 国产亚洲91精品色在线| 麻豆精品久久久久久蜜桃| 日本黄色日本黄色录像| 日日撸夜夜添| 久久精品国产亚洲网站| 色网站视频免费| av又黄又爽大尺度在线免费看| 黄色视频在线播放观看不卡| 国产欧美亚洲国产| 国产精品人妻久久久影院| 亚洲欧美一区二区三区国产| 人妻制服诱惑在线中文字幕| xxx大片免费视频| 久久人人爽人人片av| 欧美激情极品国产一区二区三区 | 男人添女人高潮全过程视频| 亚洲欧美日韩无卡精品| 99久久精品国产国产毛片| 成人午夜精彩视频在线观看| 男女下面进入的视频免费午夜| 美女cb高潮喷水在线观看| 久热这里只有精品99| 亚洲美女黄色视频免费看| 91久久精品国产一区二区成人| 最近最新中文字幕大全电影3| 久久热精品热| 91精品国产国语对白视频| 少妇精品久久久久久久| 午夜日本视频在线| 亚洲婷婷狠狠爱综合网| 蜜桃在线观看..| 精华霜和精华液先用哪个| 欧美成人一区二区免费高清观看| 18+在线观看网站| 少妇被粗大猛烈的视频| 国产美女午夜福利| 久久国产精品大桥未久av | 亚洲四区av| 午夜免费男女啪啪视频观看| 久久久成人免费电影| 亚洲国产色片| 看十八女毛片水多多多| 成人特级av手机在线观看| 如何舔出高潮| 久久久久久九九精品二区国产| 欧美日韩视频高清一区二区三区二| 九九爱精品视频在线观看| 久久人妻熟女aⅴ| 亚洲精品国产色婷婷电影| 晚上一个人看的免费电影| 亚洲欧美精品自产自拍| 久久人人爽av亚洲精品天堂 | 免费av中文字幕在线| 国产精品久久久久久精品古装| 国产精品.久久久| xxx大片免费视频| 日本黄色片子视频| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产精品一区三区| 一个人免费看片子| 日本色播在线视频| 中文字幕精品免费在线观看视频 | 欧美成人a在线观看| 中文字幕人妻熟人妻熟丝袜美| 日韩人妻高清精品专区| 国语对白做爰xxxⅹ性视频网站| 国产欧美日韩精品一区二区| 99久久精品热视频| 国产视频内射| 国产有黄有色有爽视频| 国产黄片视频在线免费观看| 国产欧美日韩精品一区二区| 亚洲国产av新网站| 水蜜桃什么品种好| 日本免费在线观看一区| 最近中文字幕高清免费大全6| 国产成人a区在线观看| 91aial.com中文字幕在线观看| 丰满少妇做爰视频| 国产伦在线观看视频一区| www.色视频.com| 97精品久久久久久久久久精品| 性高湖久久久久久久久免费观看| 欧美另类一区| 一个人免费看片子| 精品国产三级普通话版| a级毛色黄片| 国产精品久久久久久久电影| 久久6这里有精品| 美女中出高潮动态图| 观看av在线不卡| 国产老妇伦熟女老妇高清| 成人高潮视频无遮挡免费网站| 国产国拍精品亚洲av在线观看| 欧美 日韩 精品 国产| 高清黄色对白视频在线免费看 | 熟妇人妻不卡中文字幕| 91午夜精品亚洲一区二区三区| 少妇猛男粗大的猛烈进出视频| 99久久精品一区二区三区| 亚洲av成人精品一二三区| 久久久久国产精品人妻一区二区| 精品熟女少妇av免费看| videossex国产| 中国美白少妇内射xxxbb| 亚洲av男天堂| 久热久热在线精品观看| 日韩av在线免费看完整版不卡| 午夜福利视频精品| 欧美+日韩+精品| 欧美精品国产亚洲| av黄色大香蕉| 国产一区二区在线观看日韩| 麻豆乱淫一区二区| 欧美日韩一区二区视频在线观看视频在线| 国产成人免费无遮挡视频| 国产午夜精品一二区理论片| 在线观看三级黄色| 观看免费一级毛片| 久久久久精品久久久久真实原创| 三级国产精品片| 亚洲电影在线观看av| 亚洲精品久久午夜乱码| 欧美高清成人免费视频www| 成人国产av品久久久| 国产精品久久久久久av不卡| 日韩国内少妇激情av| 精品久久久久久久久av| videos熟女内射| 精品人妻视频免费看| 麻豆成人午夜福利视频| .国产精品久久| 超碰av人人做人人爽久久| 日韩视频在线欧美| 99久久中文字幕三级久久日本| 亚洲精品456在线播放app| 久久久久久九九精品二区国产| 日日摸夜夜添夜夜添av毛片| 菩萨蛮人人尽说江南好唐韦庄| 国产视频内射| 日韩一本色道免费dvd| 欧美日韩国产mv在线观看视频 | 欧美成人a在线观看| 久久av网站| 免费久久久久久久精品成人欧美视频 | 80岁老熟妇乱子伦牲交| 国产国拍精品亚洲av在线观看| 国产在线一区二区三区精| 国产精品无大码| av女优亚洲男人天堂| 老司机影院毛片| 日本爱情动作片www.在线观看| 国产在线男女| 久久久国产一区二区| av黄色大香蕉| 菩萨蛮人人尽说江南好唐韦庄| 一级av片app| 亚洲精品亚洲一区二区| 国产美女午夜福利| 中文天堂在线官网| 国产精品嫩草影院av在线观看| 黄色日韩在线| 国产黄片视频在线免费观看| 亚洲久久久国产精品| 激情五月婷婷亚洲| 国产伦精品一区二区三区四那| 亚洲综合色惰| 又爽又黄a免费视频| av国产免费在线观看| 三级国产精品片| 国产高潮美女av| 日本一二三区视频观看| 成人免费观看视频高清| 久久97久久精品| kizo精华| 亚洲精品国产色婷婷电影| 欧美97在线视频| 亚洲伊人久久精品综合| 高清在线视频一区二区三区| 亚洲国产精品专区欧美| 直男gayav资源| 亚洲天堂av无毛| 久久精品国产亚洲网站| 免费高清在线观看视频在线观看| 51国产日韩欧美| 大话2 男鬼变身卡| 国产老妇伦熟女老妇高清| 一级毛片黄色毛片免费观看视频| 婷婷色综合www| 波野结衣二区三区在线| 大片免费播放器 马上看| 免费大片黄手机在线观看| 久久综合国产亚洲精品| 99国产精品免费福利视频| 中国国产av一级| 80岁老熟妇乱子伦牲交| 2018国产大陆天天弄谢| 成年女人在线观看亚洲视频| 有码 亚洲区| 欧美97在线视频| 爱豆传媒免费全集在线观看| 新久久久久国产一级毛片| 免费播放大片免费观看视频在线观看| 国产爽快片一区二区三区| 日本午夜av视频| 麻豆精品久久久久久蜜桃| 91午夜精品亚洲一区二区三区| 亚洲国产精品成人久久小说| 久久人妻熟女aⅴ| 插阴视频在线观看视频| 国产av精品麻豆| 卡戴珊不雅视频在线播放| 人妻制服诱惑在线中文字幕| 久久国产亚洲av麻豆专区| 成人高潮视频无遮挡免费网站| 观看美女的网站| 麻豆成人av视频| 我要看日韩黄色一级片| 国产毛片在线视频| 嫩草影院新地址| 国产毛片在线视频| 日本av手机在线免费观看| 国产精品不卡视频一区二区| a级毛片免费高清观看在线播放| 久久婷婷青草| 国产亚洲最大av| 赤兔流量卡办理| 一级毛片电影观看| 中文资源天堂在线| 少妇裸体淫交视频免费看高清| 亚洲欧美成人精品一区二区| 天堂8中文在线网| 国产精品99久久久久久久久| av在线播放精品| 亚洲国产日韩一区二区| 国产免费视频播放在线视频| .国产精品久久| 欧美成人一区二区免费高清观看| 亚洲国产高清在线一区二区三| 一本久久精品| av在线蜜桃| 亚洲国产色片| 久久久午夜欧美精品| 国产中年淑女户外野战色| 男女边摸边吃奶| 人妻少妇偷人精品九色| 亚洲av国产av综合av卡| 国产无遮挡羞羞视频在线观看| 亚洲美女黄色视频免费看| 干丝袜人妻中文字幕| 国产 一区精品| 蜜桃亚洲精品一区二区三区| 久久精品久久久久久噜噜老黄| 18禁动态无遮挡网站| 99热国产这里只有精品6| 女的被弄到高潮叫床怎么办| 99久久精品热视频| 一级爰片在线观看| 亚洲欧洲日产国产| 尾随美女入室| 高清不卡的av网站| 久久国产精品大桥未久av | 国产成人a区在线观看| xxx大片免费视频| 男女无遮挡免费网站观看| 精品久久久久久久久av| 国产精品不卡视频一区二区| 免费观看性生交大片5| 免费大片黄手机在线观看| 国产成人免费无遮挡视频| 波野结衣二区三区在线| 国内精品宾馆在线| 男女边摸边吃奶| 国产精品国产三级国产专区5o| 国产黄频视频在线观看| 狠狠精品人妻久久久久久综合| av免费观看日本| 国产无遮挡羞羞视频在线观看| av国产免费在线观看| 欧美高清性xxxxhd video| 99热网站在线观看| 男女无遮挡免费网站观看| 免费av中文字幕在线| 日韩成人伦理影院| 国产高清有码在线观看视频| .国产精品久久| 美女cb高潮喷水在线观看| 成人毛片60女人毛片免费| 乱系列少妇在线播放| 国产极品天堂在线| 在线亚洲精品国产二区图片欧美 | 欧美精品一区二区免费开放| 99热这里只有精品一区| 99久久中文字幕三级久久日本| 国产免费又黄又爽又色| a级毛片免费高清观看在线播放| 亚洲无线观看免费| 91精品伊人久久大香线蕉| 国产高清不卡午夜福利| 女性被躁到高潮视频| 精品人妻偷拍中文字幕| 妹子高潮喷水视频| 亚洲欧洲国产日韩| 免费少妇av软件| 成人特级av手机在线观看| 高清视频免费观看一区二区| 在线观看免费高清a一片| 久久久久久久久久人人人人人人| 日韩亚洲欧美综合| 久久99精品国语久久久| 中文字幕亚洲精品专区| 国产成人免费观看mmmm| 久久精品熟女亚洲av麻豆精品| 久久久久人妻精品一区果冻| 亚洲精品,欧美精品| 美女高潮的动态| 黄片wwwwww| 尤物成人国产欧美一区二区三区| 国产亚洲91精品色在线| 色5月婷婷丁香| 久久国产亚洲av麻豆专区| 全区人妻精品视频| 午夜激情福利司机影院| 欧美日韩精品成人综合77777| 亚洲精品一区蜜桃| 女人十人毛片免费观看3o分钟| 国产男女超爽视频在线观看| 亚洲国产精品成人久久小说| 黄片无遮挡物在线观看| 久久精品国产鲁丝片午夜精品| 中文精品一卡2卡3卡4更新| 国产精品国产av在线观看| 天美传媒精品一区二区| 精品国产一区二区三区久久久樱花 | 夜夜爽夜夜爽视频| 中国国产av一级| 国产成人freesex在线| 国产亚洲最大av| av专区在线播放| 久久人人爽av亚洲精品天堂 | 卡戴珊不雅视频在线播放| 国产探花极品一区二区| 性色avwww在线观看| 在线观看av片永久免费下载| 国产一级毛片在线| 18禁裸乳无遮挡动漫免费视频| 99久久精品一区二区三区| 日本av手机在线免费观看| 精品国产一区二区三区久久久樱花 | 亚洲三级黄色毛片| 色视频在线一区二区三区| 久久久久久久久久人人人人人人| 日韩 亚洲 欧美在线| av播播在线观看一区| 欧美 日韩 精品 国产| 中国三级夫妇交换| 人人妻人人看人人澡| 国产成人免费无遮挡视频| 日本黄大片高清| 久久99热6这里只有精品| 亚洲怡红院男人天堂| 成人一区二区视频在线观看| 观看美女的网站| 插逼视频在线观看| 亚洲精品成人av观看孕妇| 又大又黄又爽视频免费| 久久婷婷青草| 免费观看无遮挡的男女| 国产精品一区二区性色av| 啦啦啦啦在线视频资源| 亚洲综合色惰| 亚洲精华国产精华液的使用体验| 在线观看免费高清a一片| 国产精品一区二区性色av| 国产无遮挡羞羞视频在线观看| 亚洲av男天堂| 欧美老熟妇乱子伦牲交| av国产久精品久网站免费入址| 久久久久久九九精品二区国产| 国产精品久久久久久久久免| 在线观看三级黄色| 日韩国内少妇激情av| 国产精品久久久久成人av| 免费高清在线观看视频在线观看| 精品人妻一区二区三区麻豆| 激情五月婷婷亚洲| 夫妻性生交免费视频一级片| 最近的中文字幕免费完整| 精品国产三级普通话版| 久久久精品免费免费高清| 免费观看无遮挡的男女| 中文天堂在线官网| 亚洲人成网站在线播| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩东京热| 在现免费观看毛片| 观看av在线不卡| 亚洲三级黄色毛片| av在线播放精品| 1000部很黄的大片| 纯流量卡能插随身wifi吗| xxx大片免费视频| 久久精品国产亚洲av涩爱| 亚洲四区av| 国产 一区精品| 欧美一级a爱片免费观看看| 日本av手机在线免费观看| 寂寞人妻少妇视频99o| 国产精品久久久久久精品古装| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产亚洲av涩爱| 一本一本综合久久| 婷婷色综合大香蕉| h视频一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 男的添女的下面高潮视频| 熟妇人妻不卡中文字幕| 男女国产视频网站| 九草在线视频观看| 国产精品99久久99久久久不卡 | 日日啪夜夜撸| videos熟女内射| 国产精品女同一区二区软件| 制服丝袜香蕉在线| 特大巨黑吊av在线直播| 多毛熟女@视频| 亚洲经典国产精华液单| 久久精品国产亚洲网站| 一本—道久久a久久精品蜜桃钙片| 亚洲,欧美,日韩| 国产精品熟女久久久久浪| 深夜a级毛片| 美女中出高潮动态图| 卡戴珊不雅视频在线播放| 亚洲精品自拍成人| 尤物成人国产欧美一区二区三区| 国产精品女同一区二区软件| 三级国产精品欧美在线观看| 中文字幕免费在线视频6| 国国产精品蜜臀av免费| 久久国产精品大桥未久av | 精品少妇黑人巨大在线播放| 亚洲精品日本国产第一区| 久久久久精品久久久久真实原创| 久久毛片免费看一区二区三区| 一级毛片我不卡| av播播在线观看一区| 国产色婷婷99| 国产av国产精品国产| 日韩av不卡免费在线播放| 精品人妻一区二区三区麻豆| 视频中文字幕在线观看| 制服丝袜香蕉在线| 99热这里只有精品一区| 搡老乐熟女国产| 欧美三级亚洲精品| 亚洲国产成人一精品久久久| 色哟哟·www| 成人亚洲精品一区在线观看 | 两个人的视频大全免费| 丝瓜视频免费看黄片| 我要看日韩黄色一级片| 国产成人精品久久久久久| 成年av动漫网址| 激情 狠狠 欧美| 男女免费视频国产| 中文字幕免费在线视频6| 搡老乐熟女国产| 大话2 男鬼变身卡| 亚洲精品乱码久久久v下载方式| 99九九线精品视频在线观看视频| av在线蜜桃| 精品亚洲乱码少妇综合久久| 人人妻人人添人人爽欧美一区卜 | 亚洲欧美清纯卡通| 免费观看a级毛片全部| 成年女人在线观看亚洲视频| 亚洲国产最新在线播放| 免费观看a级毛片全部| 小蜜桃在线观看免费完整版高清| 亚洲综合精品二区| 免费观看a级毛片全部| 国产又色又爽无遮挡免|