姜早龍 劉曉君 金波 張志軍 劉正波 趙嘉祺 李園
摘? ?要:中低速磁浮快線軌道通電時(shí)會(huì)使周圍的電場(chǎng)和磁場(chǎng)發(fā)生強(qiáng)烈的變化,形成強(qiáng)電、強(qiáng)磁場(chǎng)效應(yīng),是上跨磁浮快線軌道鋼箱梁頂推及落梁施工的重大安全隱患. 以長(zhǎng)沙黃花國(guó)際機(jī)場(chǎng)大道工程為案例,研究強(qiáng)電、強(qiáng)磁場(chǎng)對(duì)鋼箱梁跨越磁浮快線軌道頂推落梁施工的影響. 采用大型有限元分析軟件ANSOFT,對(duì)磁浮快線軌道產(chǎn)生的強(qiáng)電、強(qiáng)磁場(chǎng)進(jìn)行有限元分析及數(shù)值計(jì)算,假定鋼箱梁推進(jìn)過(guò)程中磁浮軌道電流保持不變,通過(guò)改變鋼箱梁相對(duì)于軌道的位置,研究不同工況下強(qiáng)電、強(qiáng)磁場(chǎng)對(duì)鋼箱梁頂推落梁產(chǎn)生的影響,并對(duì)每一個(gè)工況進(jìn)行靜態(tài)分析及計(jì)算,得出相應(yīng)的施工安全范圍,為今后類似工程提供具有參考價(jià)值的理論和經(jīng)驗(yàn).
關(guān)鍵詞:鋼箱梁;頂推施工;有限元;電場(chǎng);磁場(chǎng)
中圖分類號(hào):F407.9? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A
Influence of Steel Electromagnetic Field on Pushing and Falling
Construction of Steel Box Girder over Maglev Track
JIANG Zaolong1,2,4,LIU Xiaojun1,JIN Bo2,ZHANG Zhijun3,LIU Zhengbo2,ZHAO Jiaqi2,LI Yuan2
(1. College of Civil Engineering,Xi' an University of Architecture & Technology,Xi'an 710055,China;
2. College of Civil Engineering,Hunan University,Changsha 410082,China;
3. The Third Engineering Co Ltd of China Railway Seventh Group,Xi'an 710032,China;
4. Hunan Huda Construction Supervision Co Ltd,Changsha 410082,China)
Abstract: The surrounding electromagnetic fields will be changed greatly when the track of medium and low speed maglev is electrified. The generated effect of strong electromagnetic field has a great impact on the safety of the pushing and falling of the steel box girder over the maglev track.Therefore,taking the construction of Changsha Huanghua International Airport Avenue Project as a practical case,the impact of electromagnetic field on the pushing and falling of the steel box girder over the maglev track is studied.The large finite element analysis software ANSOFT is used to perform finite element analysis and numerical calculation on the strong electromagnetic field of the maglev track.It is assumed that the current of the maglev track remains constant during the advancement of the steel box girder. By changing the position of the steel box girder relative to the track,the impact of the strong electromagnetic field generated by the maglev track on the launching and falling of the steel box girder under the different working conditions is studied. After performing the static analysis and calculation for each working condition,the corresponding construction safety scope is obtained. The conclusion of the study provides references and suggestions for similar projects in the future.
Key words: steel box girder;pushing construction;finite element;electric field;magnetic field
隨著世界橋梁建設(shè)領(lǐng)域的快速發(fā)展,橋梁的結(jié)構(gòu)形式與受力特性日益復(fù)雜[1],交叉跨越、臨水臨電、跨山跨河等現(xiàn)象不斷增多,增加了橋梁施工與管理的難度. 頂推落梁、BIM、快速施工、靜力拆除等技術(shù)持續(xù)創(chuàng)新、相互融合,逐漸突破橋梁施工的局限性,施工工藝不斷改進(jìn),監(jiān)管效率不斷提高[2-4]. 頂推法構(gòu)思源于鋼箱梁縱向拖拉法,采用若干個(gè)千斤頂替代卷?yè)P(yáng)機(jī)滑車組,板式滑動(dòng)設(shè)備替代滾筒,將梁體頂推向[5],具有快速、安全、經(jīng)濟(jì)、優(yōu)質(zhì)、受外界干擾較小和占用場(chǎng)地少等優(yōu)勢(shì). 當(dāng)橋梁施工需要跨越深谷、且有交通線路(鐵路、公路、河道)或難以拆遷的既有建筑物(名勝古跡、地下設(shè)施等)時(shí),采用頂推施工法從空中完成跨越作業(yè),是一種比較理想的方法. 自1959年在奧地利阿革爾橋中成功應(yīng)用后,頂推施工工藝不斷創(chuàng)新,在國(guó)內(nèi)外各類大跨徑橋梁施工中相繼運(yùn)用[6],建成了多座預(yù)應(yīng)力混凝土連續(xù)梁橋,得到了快速的發(fā)展[7-8]. 1977年,我國(guó)首次采用單點(diǎn)頂推法施工建成了預(yù)應(yīng)力混凝土連續(xù)梁橋——狄家河
仿真結(jié)束后,對(duì)整體模型進(jìn)行電流密度云圖求解,可得箱梁、橋墩及磁浮快線軌道周圍的磁感應(yīng)強(qiáng)度,如圖6所示. 以3條直線為例,分別建立3條線上電流密度云圖分布曲線圖,3條直線位置及最不利情況分析見表6.
4.2? ?各工況下電流密度分析
3種工況下第1條直線電流密度分布曲線如圖7(a)(b)(c)所示. 第1條直線上電流密度有4個(gè)峰值,每個(gè)峰值位置都位于4條軌道附近,電流密度由4條軌道向外遞減. 對(duì)其大小與相應(yīng)距離進(jìn)行分析,第1條直線上電流密度峰值與對(duì)應(yīng)距離的關(guān)系如表7所示,可以發(fā)現(xiàn)離兩條外側(cè)軌道大約0.7 m附近電流密度小于人體安全限值(≤10 mA/m2). 對(duì)比3個(gè)工況可知,3工況下軌道附近電流密度大小無(wú)明顯差異,說(shuō)明當(dāng)鋼箱梁通過(guò)磁浮快線軌道上方時(shí),對(duì)軌道附近電場(chǎng)無(wú)影響.
第2條直線電流密度分布曲線,如圖7(d)(e)(f)所示. 第2條直線電流密度隨距離變化較為規(guī)律,磁浮快線軌道內(nèi)部電流密度最大,從軌道向箱梁表面電流密度逐漸遞減. 第2條直線上電流密度與對(duì)應(yīng)距離的關(guān)系如表8所示,可以發(fā)現(xiàn)只有磁浮快線軌道內(nèi)部電流密度較大. 因此,只要施工人員不觸碰磁浮快線軌道,軌道電場(chǎng)就不會(huì)對(duì)施工人員的安全產(chǎn)生影響.
第3條直線電流密度分布曲線,如圖7(g)所示,通過(guò)數(shù)據(jù)顯示,發(fā)現(xiàn)箱梁表面上的電流密度幾乎為0,可見電場(chǎng)分布對(duì)箱梁表面的影響很小,施工人員可正常施工.
5? ?電磁場(chǎng)仿真結(jié)論
5.1? ?磁場(chǎng)研究結(jié)論
1)系統(tǒng)磁場(chǎng)分布主要集中在磁浮快線軌道位
置,距離磁浮快線軌道越遠(yuǎn)磁場(chǎng)強(qiáng)度越小且磁場(chǎng)衰減越快.
2)距離磁浮快線兩條外軌3.5 m以內(nèi),磁感應(yīng)強(qiáng)度超過(guò)國(guó)家安全標(biāo)準(zhǔn)值(≤100 μT). 為保證安全,距離兩條外軌附近3.5 m的施工人員應(yīng)配備絕緣工器具.
3)距離磁浮快線軌道正上方2.5 m以內(nèi),磁感應(yīng)強(qiáng)度超過(guò)國(guó)家安全標(biāo)準(zhǔn)值(≤100 μT). 但當(dāng)落梁完成時(shí),梁底附近施工人員離軌道大約4.2 m,為最接近軌道的情況,且磁浮公司采取了相應(yīng)的防護(hù)措施,導(dǎo)致磁場(chǎng)強(qiáng)度實(shí)測(cè)值小于理論值. 因此,施工人員受磁場(chǎng)影響較小.
4)磁浮快線軌道在箱梁表面產(chǎn)生的磁場(chǎng)強(qiáng)度幾乎為0,故箱梁表面施工人員可以正常施工.
5)現(xiàn)場(chǎng)施工時(shí)應(yīng)嚴(yán)格避免金屬物品掉落到軌道附近,防止造成磁浮快線軌道損壞或磁浮快線運(yùn)行事故.
5.2? ?電場(chǎng)研究結(jié)論
1)系統(tǒng)電場(chǎng)分布主要集中在磁浮快線軌道內(nèi)以及各軌道之間,最大電流密度高達(dá)2 500 A/m2,極易造成觸電死亡等意外事故. 因此,在列車通電運(yùn)行時(shí)磁浮快線軌道附近嚴(yán)禁施工人員靠近.
2)距離磁浮快線兩條外軌0.7 m以內(nèi),電流密度超過(guò)人體電流密度安全限值(≤10 mA/m2),為保證安全,兩條外軌附近0.7 m以內(nèi)嚴(yán)禁施工人員靠近.
3)磁浮快線軌道在箱梁表面產(chǎn)生的電場(chǎng)幾乎為0. 因此,箱梁表面施工人員可以正常施工.
參考文獻(xiàn)
[1]? ? 張建,王永光,孔祥韶,等. 九堡大橋主橋頂推施工模型試驗(yàn)研究[J]. 中外公路,2017,37(5):94—99.
ZHANG J,WANG Y G,KONG X S,et al. Experimental study on the push construction model of the main bridge of Jiubao bridge [J]. Sino-foreign Highway,2017,37(5):94—99. (In Chinese)
[2]? ? 杜亞江,宗海. 曲線鋼箱梁橋頂推施工新方法[C]//2010年全國(guó)橋梁學(xué)術(shù)會(huì)議論文集. 北京:中國(guó)公路學(xué)會(huì)橋梁和結(jié)構(gòu)工程分會(huì),2010: 425—430.
DU Y J,ZONG H. New construction method of curved steel box girder bridge jacking [C]//Proceedings of 2010 National Bridge Academic Conference. Beijing: Bridge and Atructural Engineering Branch,China Highway Society,2010: 425—430. (In Chinese)
[3]? ? 姜早龍,李園,張志軍,等. BIM技術(shù)在跨越磁懸浮軌道橋梁工程施工中的應(yīng)用研究[J].施工技術(shù),2018(24):58—63.
JIANG Z L,LI Y,ZHANG Z J,et al. Research on the application of BIM technology in the construction of trans-maglev railway bridge [J]. Construction Technology,2018(24): 58—63. (In Chinese)
[4]? ? 張志軍,萬(wàn)鈺,姜早龍,等.承插型鍵槽式鋼管支架在城市高架橋施工中的應(yīng)用研究[J].公路工程,2018,43(6):15—21.
ZHANG Z J,WAN Y,JIANG Z L,et al. Research on application of spigot type steel pipe support in urban viaduct construction [J]. Highway Engineering,2008,43(6):15—21. (In Chinese)
[5]? ? 蘇魁. 鋼箱梁斜拉橋頂推施工關(guān)鍵問(wèn)題研究[D]. 上海:同濟(jì)大學(xué)土木工程學(xué)院,2006:2.
SU K. Research on key problems of steel box girder cable-stayed bridge jacking construction [D]. Shanghai: College of Civil Engineering,Tongji University,2006:2. (In Chinese)
[6]? ? ZELLNER W,SVENSSON H. Incremental launching of structures [J]. Journal of Structural Engineering,1983,109(2):520—537.
[7]? ? 趙人達(dá),張雙洋.橋梁頂推法施工研究現(xiàn)狀及發(fā)展趨勢(shì)[J].中國(guó)公路學(xué)報(bào),2016,29(2):32—43.
ZHAO R D,ZHANG S Y. Research status and development trend of bridge jacking construction [J]. China Highway Journal,2016,29(2):32—43. (In Chinese)
[8]? ? 張曉東. 橋梁頂推施工技術(shù)[J]. 公路,2003(9):45—51.
ZHANG X D. Construction technology of bridge jacking [J]. Highway,2003(9):45—51. (In Chinese)
[9]? ? 湯俊生. PC梁頂推施工技術(shù)的回顧與展望[J]. 橋梁建設(shè),1996(1):11—14.
TANG J S. Review and prospect of PC beam jacking construction technology [J]. Bridge Construction,1996(1):11—14. (In Chinese)
[10]? 邵厚坤,周以誠(chéng). 用頂推法施工的狄家河連續(xù)梁橋設(shè)計(jì)[J].? ?鐵道標(biāo)準(zhǔn)設(shè)計(jì),1979(8):7—14.
SHAO H K,ZHOU Y C. Design of Dijiahe continuous girder bridge constructed by push method [J]. Railway Standard Design,1979(8):7—14. (In Chinese)
[11]? 陳青. 連續(xù)梁橋的頂推施工技術(shù)[J]. 中外公路,1998(1):22—25.
CHEN Q. Jacking construction technology of continuous beam bridge [J]. Sino-foreign Highway,1998(1):22—25. (In Chinese)
[12]? 陳勤. 橋梁鋼箱梁頂推施工過(guò)程受力分析及施工對(duì)策[D]. 重慶:重慶大學(xué)土木工程學(xué)院,2013:1.
CHEN Q. Force analysis and construction countermeasures in the process of bridge steel box girder jacking construction [D]. Chongqing:College of Civil Engineering,Chongqing University,2013:1. (In Chinese)
[13]? 馬如嶺. 跨鐵路線78m鋼桁梁頂推施工[J]. 鐵道建筑,2006(2):15—16.
MA R L. Jacking construction of 78m steel truss beam across railway line [J]. Railway Construction,2006(2):15-16. (In Chinese)
[14]? MARTINKOVIC B,IVANKOVIC A M,ILIC K. Competitiveness and progress in application of incremental bridge launching[C]// Proceedings of IABSE Symposium. Madrid,2014:823—830.